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Abstract

In this article, we investigate the existence of solutions to a class of initial value problem ( for short IVP) for
fractional order impulsive partial hyperbolic differential equations (for short FOIPHDEs) with infinite delay.
Here we use Mixed Riemann-Liouville fractional derivative to construct the considered FOIPHDEs. The
analysis of this article is based on Burton-Kirk fixed point theorem. A new existence result for FOIPHDEs
with infinite delay has been obtained. To support the analytic proof, we give an illustrative example.
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1. Introduction

The purpose of this study is to establish an existence criterion of solutions to the following class of IVP
for FOIPHDEs with infinite delay:(

Dr
zk
u
)

(x, y) = f
(
x, y, u(x,y)

)
; if (x, y) ∈ Jk, k = 0, 1, 2, · · · ,m, (1)

u
(
x+
k , y

)
= u

(
x−k , y

)
+ Ik

(
u
(
x−k , y

))
; ify ∈ [0, b] , k = 1, 2, · · · ,m, (2)

u (x, y) = φ (x, y) ; if (x, y) ∈ J̃ , (3)
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u (x, 0) = ϕ (x) , x ∈ [0, a] u (0, y) = ψ (y) , y ∈ [0, b] , (4)

where, Dr
zk

is the mixed Riemann-Liouville fractional differential operator of order r = (r1, r2) ∈ (0, 1] ×
(0, 1] , J0 = [0, x1] × [0, b] , Jk = (xk, xk+1] × [0, b] ; k = 1, 2, · · · ,m, zk = (xk, 0) ; k = 0, 1, 2, · · · ,m, a, b >
0, J = [0, a] × [0, b] , J̃ = (−∞, a] × (−∞, b] \ (0, a] × (0, b] , ϕ : [0, a] → Rn, ψ : [0, b] → Rn are given
continuous functions with ϕ (x) = φ (x, 0) , ψ (y) = φ (0, y) for each (x, y) ∈ J, 0 = x0 < x1 < x2 < · · · <
xm < xm+1 = a, f : J × B → Rn, Ik : Rn → Rn, k = 1, 2, · · · ,m, φ : J̃ → Rn are given functions and B
is a phase space which will be specified in the next section. If u : (−∞, a] × (−∞, b] → Rn then for any
(x, y) ∈ J, u(x,y) is defined by

u(x, y) (s, t) = u (x+ s, y + t) for (s, t) ∈ [−α, 0]× [−β, 0] .

The necessity of fractional order differential equations (for short FDEs) lies in the fact that fractional order
model is more accurate than integer order models, that is, there is more degree of freedom in the fractional
order models. Furthermore, fractional order derivatives provide an excellent mechanism for the description
of memory and hereditary properties of various materials and processes. In applied sense, FDEs arise in
various engineering and scientific disciplines for mathematical modeling in the fields of physics, chemistry,
biology, fluid flow, electromagnetic theory, polymer rheology, electrical network, statistics, economics, signal
and image processing, viscoelasticity, aerodynamics and porous media, etc., see for instance [1, 2, 3, 4, 5, 6,
7, 8, 9, 10] and their cited references. Some recent development of ordinary and partial fractional differential
equations can be found in the monographs of Abbas et al. [11], Kilbas et al. [8], Podlubny [10], the papers
of Agarwal et al. [12], Asaduzzaman and Zulfikar Ali [13], Zhu et al. [14], Zhang and Fu [15], Agarwal et al.
[16], Hemeda [17], Abbas et al. [18, 19], Abbas and Benchohra [20, 21, 22], Agarwal et al. [23], Benchohra
et al. [24], Benchohra and Slimani [25], Vityuk and Golushkov [26] and the references therein.
Initial value problems for FOIPHDEs have been addressed by several researchers during last few decades. In
current literature, some researchers have been studied the existence of solutions of initial value problems for
FOIPHDEs, see for instance [27, 28, 29, 30, 31] and their cited references. Theory of functional differential
equations is a significant branch of nonlinear analysis. Functional differential equations or differential delay
equations have been used in modeling of different scientific phenomena for long time. Frequently, it has
been supposed that the delay is either a fixed constant or is given as an integral in which case it is called a
distributed delay, see for instance [32, 33, 34, 35, 36, 37, 38, 39].
On the other hand, theory of impulsive differential equations has become important in some mathematical
models of real processes and phenomena studied in physics, chemical technology, population dynamics,
biotechnology and economics. There has been a significant development in impulse theory in recent years,
especially in the area of impulsive differential equations and inclusions with fixed moments; see for instance
[24, 40] and their cited references.
To the best of our knowledge, there is no any work considering the existence of solutions to the initial value
problem given by (1) to (4), using Burton-Kirk fixed point theorem [41, 42]. Therefore, our main object is
to establish the existence criteria of solutions to the initial value problem for FOIPHDEs given by (1) to
(4), using Burton-Kirk fixed point theorem. The rest of this work is furnished as follows: In Section 2, we
provide some basic definitions, lemmas and state Burton-Kirk fixed point theorem. Section 3 is used to state
and prove our main results, which provide us a technique to check the existence of at least one solutions of
initial value problem for FOIPHDEs given by (1) to (4). Finally, in Section 4, we give an example to verify
our main result.

2. Preliminaries Notes

In this section, we introduce some necessary definitions and preliminary facts which will be used through-
out this paper. First, we introduce phase space. The phase space plays an important role in the study of
both qualitative and quantitative theory of functional differential equations. To define this space, we usually
choose a semi-normed space satisfying some suitable axioms, which was presented by Hale and Kato [38] (see
[32, 33, 35]) for functional ordinary differential equations.
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Definition 2.1. (see [32, 33, 35, 38]). For any (x, y) ∈ J , we denote

E(x, y) = [0, x]× {0}
⋃
{0} × [0, y] , (5)

furthermore for x = a, y = b we write simply E. The phase space (B, ‖., .‖) is a semi-normed linear space
of functionals mapping from (−∞, 0]× (−∞, 0] into Rn satisfying the following fundamental axioms:
(I) If z : (−∞, a]× (−∞, b]→ Rn and z(x, y) ∈ B; for all (x, y) ∈ E, then there are constants H, K, M > 0
such that for any (x, y) ∈ J, the following conditions hold:
(i) z(x, y) ∈ B,
(ii) ‖z (x, y) ‖ ≤ H‖z(x, y)‖B,
(iii) ‖z(x, y)‖B ≤ K sup(s, t)∈[0, x]×[0, y] ‖z (s, t) ‖+M sup(s, t)∈E(x, y)

‖z(s, t)‖B,
(II) The space B is complete.

Example 2.2. If the phase space B is a set of all functions φ : (−∞, 0] × (−∞, 0] → Rn which are
continuous on [−α, 0]× [−β, 0] , α, β ≥ 0, with the semi-norm

‖φ‖B = sup
(s, t)∈[−α, 0]×[−β, 0]

‖φ (s, t) ‖, (6)

then we have H = K = M = 1.

Throughout this paper, L1 (J, Rn) denote the space of Lebesgue-integrable functions u : J → Rn with
the norm ‖u‖L1 =

∫ a
0

∫ b
0 ‖u (x, y, ) ‖dxdy and C (J, Rn) denote the space of continuous functions u : J → Rn

with the norm ‖u‖∞ = sup(x, y)∈J ‖u (x, y) ‖.
Among the different definitions of partial fractional derivative and partial fractional integral, the most fre-
quent used definitions are Riemann-Liouville partial fractional integral, Riemann-Liouville partial fractional
derivative and Caputo partial fractional derivative, see for instance [2, 8, 10, 11].

Definition 2.3. (see [4, 8, 9]). Let α ∈ (0, ∞) and u ∈ L1 (J, Rn). The Riemann-Liouville partial fractional
integral of order α of u (x, y) with respect to x is defined by

Iα0, xu (x, y) =
1

Γ (α)

∫ x

0
(x− s)α−1 u (s, y) ds,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b], where Γ (α) is the Euler Gamma function of α and
provided that the integral exists.
Similarly, the Riemann-Liouville partial fractional integral of order α of u (x, y) with respect to y is defined
by

Iα0, yu (x, y) =
1

Γ (α)

∫ y

0
(y − s)α−1 u (x, s) ds,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b].

Definition 2.4. (see [4, 8, 9]). Let α ∈ (0, ∞) and u ∈ L1 (J, Rn). The Riemann-Liouville partial fractional
derivative of order α of u (x, y) with respect to x is defined by(

Dα
0, xu

)
(x, y) =

∂

∂x

(
I1−α

0, x u (x, y)
)
,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b].
Similarly, the Riemann-Liouville partial fractional derivative of order α of u (x, y) with respect to y is defined
by (

Dα
0, yu

)
(x, y) =

∂

∂x

(
I1−α

0,y u (x, y)
)
,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b].
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Definition 2.5. (see [4, 8, 9]). Let α ∈ (0, ∞) and u ∈ L1 (J, Rn). The Caputo partial fractional derivative
of order α of u (x, y) with respect to x is defined by

(
CDα

0, xu
)

(x, y) = I1−α
0, x

(
∂

∂x
u (x, y)

)
,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b].
Similarly, the partial Caputo fractional derivative of order α of u (x, y) with respect to y is defined by

(
CDα

0, yu
)

(x, y) = I1−α
0, y

(
∂

∂x
u (x, y)

)
,

for almost all x ∈ [0, a] and for almost all y ∈ [0, b].

In general, partial Caputo fractional derivative and partial Riemann -Liouville fractional derivative of a
function are not same. In particular, the solution space of CDα

0, yu (t) = 0 is spanned by
{

1, t, t2, · · · , tn−1
}
,

while the solution space of Dα
0, yu (t) = 0 is spanned by

{
tα−1, tα−2, · · · , tα−n

}
.

Definition 2.6. (see [8, 26]). Let r = (r1, r2) ∈ (0,∞) × (0,∞) , zk = (xk, 0) and u ∈ L1 (J, Rn). The
left-sided mixed Riemann-Liouville fractional integral of order r of u (x, y) is defined by

(
Irzk+u

)
(x, y) =

1

Γ (r1) Γ (r2)

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 u (s, t) dtds, (7)

and the right-sided mixed Riemann-Liouville fractional integral of order r of u (x, y) is defined by

(
Irzk−u

)
(x, y) =

1

Γ (r1) Γ (r2)

∫ xk

x

∫ 0

y
(s− x)r1−1 (t− y)r2−1 u (s, t) dtds, (8)

where Γ (r1) Γ (r2) are Euler Gamma function of r1, r2 respectively and provided that the integral exists.

Definition 2.7. (see [8, 26]). Let r = (r1, r2) ∈ (0,∞)× (0,∞) , zk = (xk, 0) and u ∈ L1 (J, Rn). Then the
left-sided mixed Riemann-Liouville fractional derivative of order r of u is defined by

(
Dr
zk+u

)
(x, y) =

∂2

∂x∂y

(
I1−r
zk+u

)
(x, y) , (9)

and right-sided mixed Riemann-Liouville fractional derivative of order r of u is defined by

(
Dr
zk−u

)
(x, y) =

∂2

∂x∂y

(
I1−r
zk−u

)
(x, y) , (10)

and left-sided mixed Caputo fractional derivative of order r of u is defined by

(
CDr

zk+u
)

(x, y) =

(
I1−r
zk+

∂2

∂x∂y
u

)
(x, y) , (11)

and right-sided mixed Caputo fractional derivative of order r of u is defined by

(
CDr

zk−u
)

(x, y) =

(
I1−r
zk−

∂2

∂x∂y
u

)
(x, y) , (12)

where 1 − r mean that (1− r1, 1− r2) ∈ (0,∞) × (0,∞) and D2
xy =

∂2

∂x∂y
denote the mixed second order

partial derivative.
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To establish the main result, we need the following generalization of GronwallâĂŹs lemma for two inde-
pendent variables and singular kernel.

Lemma 2.8. (see [43]). Let v : J → [0,∞) be a real function and w (., .) be a nonnegative, locally integrable
function on J . If there are constants c > 0 and 0 < r1, r2 < 1, such that

v (x, y) 6 w (x, y) + c

∫ x

0

∫ y

0

v (s, t)

(x− s)r1 (y − t)r2
dtds, (13)

then there exists a constant δ = δ (r1, r2) such that

v (x, y) 6 w (x, y) + δc

∫ x

0

∫ y

0

w (s, t)

(x− s)r1 (y − t)r2
dtds, (14)

for every (x, y) ∈ J .

Theorem 2.9. (Burton-Kirk fixed point theorem) ( see [41, 42]). Let (X, ‖.‖) be a Banach space, and
S, T : X → X two operators satisfying:
(i) S is completely continuous, and
(ii) T is contraction with contraction constant α < 1.
Then either
(a) the operator equation u = λT (u/λ) + λS (u) has a solution in X for λ = 1, or
(b) the set P = {u ∈ X : u = λT (u/λ) + λS (u)} of all such solutions is unbounded for 0 < λ < 1 .

Now, we define the solutions of our problem given by (1) to (4) and for these solutions we shall consider
the space

Ω =
{
u : (−∞, a]× (−∞, b]→ Rn : u(x,y) ∈ Bfor (x, y) ∈ E and

∃ u
(
x−k , .

)
, u
(
x+
k , .
)
existwith u

(
x−k , .

)
= (xk, .) ;

k = 1, 2, · · · ,m and u ∈ C (Jk,Rn) ; k = 0, 1, · · · ,m, }

where Jk = (xk, xk+1]× (0, b]. Let

J ′ = J \ {(x1, y) , (x2, y) , · · · , (xm, y) , y ∈ [0, b]}.

For u ∈ Ω, we define the function ũk ∈ C ([xk, xk+1]× [0, b] ,Rn) by

ũk (x, y) = u (x, y) for (x, y) ∈ [xk, xk+1]× [0, b]

and
ũk (xk, y) = lim

k→x+k
u (x, y) , for k = 0, 1, · · · ,m.

Furthermore, for a set D ⊂ Ω, we represent the set D̃k by D̃k = {ũk : u ∈ D}, for k = 0, 1, · · · ,m.

Lemma 2.10. (see [44]). A set D ⊂ Ω is relatively compact if and only if, each set D̃k, for k = 0, 1, · · · ,m,
is relatively compact in C([xk, xk+1]× [0, b],Rn).

Definition 2.11. A function u ∈ Ω is said to a solution of the IVP given by (1) to (4) if u satisfies
(Dr

0 (x, y)) = f (x, y, u (x, )) on J ′.

Let us consider h ∈ C ([xk, xk+1]× [0, b] ,Rn) , zk = (xk, 0) and

µk (x, y) = u (x, 0) + u
(
x+
k , y

)
− u

(
x+
k , 0

)
, k = 0, 1, · · · ,m. (15)

The following lemma will be needed to establish the existence of solutions of our problem given by (1) to (4):
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Lemma 2.12. A function u ∈ C ([xk, xk+1]× [0, b] ,Rn) , k = 0, 1, · · · ,m is a solution of following partial
fractional differential equation(

Dr
zk
u
)

(x, y) = h (x, y) ; (x, y) ∈ [xk, xk+1]× [0, b] , (16)

if and only if u (x, y) satisfies

u (x, y) = µk (x, y) +
(
Irzkh

)
(x, y) ; (x, y) ∈ [xk, xk+1]× [0, b] . (17)

Proof. Let u(x, y) be a solution of
(
Dr
zk
u
)

(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]×[0, b]. Then from the definition
of the derivative (Dr

zk
u)(x, y), we have

∂2

∂x∂y

(
I1−r
zk

u
)

(x, y) = h (x, y) . (18)

Hence, we obtain that

Irzk

(
∂2

∂x∂y

(
I1−r
zk

u
))

(x, y) =
(
Irzkh

)
(x, y) , (19)

which gives us

I1
zk

(
∂2

∂x∂y
u

)
(x, y) =

(
Irzkh

)
(x, y) . (20)

But we know that

I1
zk

(
∂2

∂x∂y
u

)
(x, y) = u (x, y)− u (x, 0)− u

(
x+
k , y

)
+ u

(
x+
k , 0

)
.

So from (20), we yield that

u (x, y) = µk (x, y) +
(
Irzkh

)
(x, y) , ∀ (x, y) ∈ [xk, xk+1]× [0, b] . (21)

Conversely, suppose that u (x, y) satisfy (17). Then, it is obvious that u (x, y) must be a solution of(
Dr
zk
u
)

(x, y) = h (x, y), for all (x, y) ∈ [xk, xk+1]× [0, b]. This completes the proof.

Lemma 2.13. Let 0 < r1, r2 ≤ 1 and let h : J → Rn be a continuous function. Then the function u (x, y)
is a solution of the fractional integral equation

u (x, y) =



φ (x, y) if (x, y) ∈ J̃ ,
µ (x, y) +

∑
0<xk<x

(
Ik
(
u
(
x−k , y

))
− Ik

(
u
(
x−k , 0

)))
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk
xk−1

∫ y
0 (xk − s)r1−1 (y − t)r2−1 h (s, t) dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1 (y − t)r2−1 h (s, t) dtds, k = 1, 2, · · · ,m,

(22)

if and only if u (x, y) is a solution of the fractional IVP(
Dr
zk
u
)

(x, y) = h (x, y) ; (x, y) ∈ Jk, k = 0, 1, · · · ,m, (23)

u
(
x+
k , y

)
= u

(
x−k , y

)
+ Iku

(
x−k , y

)
, k = 1, 2, · · · ,m. (24)

Proof. The proof of this lemma follows from the Lemma 2.12.
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3. Main Results

This section is devoted to establish the existence criteria for solutions to a class of initial value problem
for fractional order impulsive partial hyperbolic differential equations with infinite delay given by (1) to (4)
applying a fixed point theorem (Theorem 2.9) due to Burton and Kirk [41, 42]. To establish the desired
existence criteria, we need the following assumptions:
(A1) The functions Ik : Rn → Rn and f : J ×B → Rn are continuous.
(A2) There exists p, q ∈ C (J,R+) such that

‖f (t, x, u) ‖ ≤ p (t, x) + q (t, x) ‖u‖B for (t, x) ∈ J andu ∈ B.

(A3) There exists l > 0 such that

‖Ik (u)− Ik (v) ‖ ≤ l‖u− v‖ for each u, v ∈ Rn.

We are now in position to present and prove our main results.

Theorem 3.1. Suppose that the assumptions (A1) , (A2) and (A3) are hold. If there exists l > 0 such that

2ml < 1, (25)

then the initial value problem given by (1) to (4) has least one solution on J .

Proof. We shall diminish the existence of solutions of IVP given by (1) to (4) to a fixed point problem.
Consider an operator A : Ω→ Ω which is defined as follows:

A(u) (x, y) =



φ (x, y) if (x, y) ∈ J̃ ,
µ (x, y) +

∑
0<xk<x

(
Ik
(
u
(
x−k , y

))
− Ik

(
u
(
x−k , 0

)))
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk
xk−1

∫ y
0 (xk − s)r1−1 (y − t)r2−1 h (s, t) dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1 (y − t)r2−1 h (s, t) dtds, k = 1, 2, · · · ,m,

Now, we set two operators S, T : Ω→ Ω, which are defined in the following way:

S(u) (x, y) =



φ (x, y) if (x, y) ∈ J̃ ,
1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk
xk−1

∫ y
0 (xk − s)r1−1 (y − t)r2−1 if (x, y) ∈ J,

f(s, t, u(s, t))dtds+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1 (y − t)r2−1

f(s, t, u(s, t))dtds, k = 1, 2, · · · ,m,

and

T (u) (x, y) =


0, if (x, y) ∈ J̃ ,
µ (x, y) if (x, y) ∈ J,
+

∑
0<xk<x

(
Ik
(
u
(
x−k , y

))
− Ik

(
u
(
x−k , 0

)))
, k = 1, 2, · · · ,m.

Let v : (−∞, a]× (−∞, b]→ Rn be a function defined by

v (x, y) =

{
φ(x, y), if (x, y) ∈ J̃ ,
µ (x, y) , if (x, y) ∈ J.

Then v(x,y) = φ for all (x, y) ∈ E.
Now for each w ∈ (J,Rn) with w(x, y) = 0 for every (x, y) ∈ E, we define a function w̄ by

w̄ (x, y) =

{
0, if (x, y) ∈ J̃ ,
w (x, y) , if (x, y) ∈ J.
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If u satisfies the integral equation,

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, u(s,t))dtds, (26)

then we can decompose u as u(x, y) = w̄(x, y) + v(x, y); (x, y) ∈ (xk, xk+1] × [0, b], which implies that
u(x,y) = w̄(x,y) + v(x,y), for every (x, y) ∈ J × [0, b], and the function w satisfies

w(x, y) =
∑

0<xk<x

(
Ik
(
u
(
x−k , y

))
− Ik

(
u
(
x−k , 0

)))
+

1

Γ (r1) Γ (r2)

·
∑

0<xk<x

∫ xk

xk−1

∫ y

0
(xk − s)r1−1 (y − t)r2−1 f(s, t, w̄(s,t) + v(s,t))dtds

+
1

Γ (r1) Γ (r2)

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 f(s, t, w̄(s,t) + v(s,t))dtds.

(27)

Now, if we set
B0 = {w ∈ Ω : w(x, y) = 0 for (x, y) ∈ E},

and let ‖ · ‖B0 be the norm in B0, which is defined by

‖w‖B0 = sup
(x,y)∈E

‖w(x,y)‖B + sup
(x,y)∈J

‖w(x, y)‖ = sup
(x,y)∈J

‖w(x, y)‖, w ∈ B0,

then it is clear that B0 is a Banach space with norm ‖ · ‖B0 . If we consider two operators S, T : B0 → B0,
which are defined in the following way:

S(w) (x, y) =



1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk
xk−1

∫ y
0 (xk − s)r1−1 (y − t)r2−1

f(s, t, w̄(s,t) + v(s,t))dtds+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1

(y − t)r2−1 f(s, t, w̄(s,t) + v(s,t))dtds,

where (x, y) ∈ J, k = 1, 2, · · · ,m,

and
T (w) (x, y) =µ (x, y) +

∑
0<xk<x

(
Ik
(
u
(
x−k , y

))
− Ik

(
u
(
x−k , 0

)))
,

where (x, y) ∈ J, k = 1, 2, · · · ,m,
then the problem of finding solutions of the IVP given by (1) to (4) is diminished to finding solutions of the
operator equation S(w) + T (w) = w . To prove this theorem, we shall prove that the operators S and T
satisfy all the conditions of Theorem 2.9. The proof will be completed in the following steps.
Step-1: In this step we prove that the operator S is continuous.
Let {wn} be a sequence such that wn → w as n→∞ in B0, then for each (x, y) ∈ J we have

‖S(wn)(x, y)− S(w)(x, y)‖

≤ 1

Γ (r1) Γ (r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0
(xk − s)r1−1 (y − t)r2−1

‖f(s, t, w̄n(s,t) + vn(s,t))− f(s, t, w̄(s,t) + v(s,t))‖dtds+
1

Γ (r1) Γ (r2)

∫ x

xk

∫ y

0

(x− s)r1−1 (y − t)r2−1 |f(s, t, w̄n(s,t) + vn(s,t))− f(s, t, w̄(s,t) + v(s,t))‖dtds

≤
‖f(., ., w̄n(.,.) + vn(.,.))− f(., ., w̄(.,.) + v(.,.))‖

Γ (r1) Γ (r2)

 ∑
0<xk<x

(∫ xk

xk−1

∫ y

0

(xk − s)r1−1 (y − t)r2−1 dtds
)

+

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds

]
.
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Since, f is continuous function, then we have

‖S(wn)− S(w)‖B0 ≤
2ar1br2‖f(., ., w̄n(.,.))− f(., ., w̄(.,.))‖∞

Γ (r1 + 1) Γ (r2 + 1)
→ 0, as n→∞. (28)

Therefore, the operator S is continuous.
Step-2: In this step we prove that the operator S maps on bounded sets in B0.
To complete this step, it is sufficient to prove that for any m∗, there exists a positive constant τ such that,
‖S(w)‖B0 ≤ τ for every w ∈ Bm∗ = {w ∈ B0 : ‖w‖B0 ≤ m∗}.
From assumption (A2) we have for each (x, y) ∈ (xk, xk+1]× [0, b],

‖S(w) (x, y) ‖

≤ 1

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(xk − s)r1−1 (y − t)r2−1 ‖f(s, t, w̄(s,t) + v(s,t))‖dtds

+
1

Γ (r1) Γ (r2)

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 ‖f(s, t, w̄(s,t) + v(s,t))‖dtds

≤ ‖p‖∞ + ‖q‖∞m∗

Γ (r1) Γ (r2)

[
m∑
k=1

(∫ xk

xk−1

∫ y

0
(xk − s)r1−1 (y − t)r2−1 dtds

)

+

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds

]
.

Hence
‖S(w)‖B ≤

2ar1br2 (‖p‖∞ + ‖q‖∞m∗)
Γ (r1 + 1) Γ (r2 + 1)

= τ (say), (29)

where
‖w̄(s,t) + v(s,t)‖B ≤ ‖w̄(s,t)‖B + ‖v(s,t)‖B ≤ Km∗ +K‖φ(0, 0)‖+M‖φ‖B = ξ (say).

Therefore,
‖S(w)‖B0 ≤ τ.

Step-3: In this step we prove that the operator S maps from bounded sets into equicontinuous in B0.
Let (x1, y1), (x2, y2) ∈ (0, a] × (0, b], x1 < x2, y1 < y2 and Bm∗ be a bounded set as in the step-2. Now for
any w ∈ Bm∗ , we have

‖S(w)(x2, y2)− S(w)(x1, y1)‖

≤ 1

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0
(xk − s)r1−1

[
(y2 − t)r2−1 − (y1 − t)r2−1

]
f(s, t, w̄(s,t) + v(s,t))dtds+

1

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1 (y2 − t)r2−1

‖f(s, t, w̄(s,t) + v(s,t))‖dtds+
1

Γ (r1) Γ (r2)

∫ x1

0

∫ y1

0

[
(x2 − s)r1−1 (y2 − t)r2−1

− (x1 − s)r1−1 (y1 − t)r2−1
]
f(s, t, w̄(s,t) + v(s,t))dtds

+
1

Γ (r1) Γ (r2)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1 (y2 − t)r2−1 ‖f(s, t, w̄(s,t) + v(s,t))‖dtds

+
1

Γ (r1) Γ (r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1 (y2 − t)r2−1 ‖f(s, t, w̄(s,t) + v(s,t))‖dtds
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+
1

Γ (r1) Γ (r2)

∫ x2

x1

∫ y1

0
(x2 − s)r1−1 (y2 − t)r2−1 ‖f(s, t, w̄(s,t) + v(s,t))‖dtds

≤ ‖p‖∞ + ‖q‖∞m∗

Γ (r1 + 1) Γ (r2 + 1)

[
m∑
k=1

(∫ xk

xk−1

∫ y1

0
(xk − s)r1−1 [(y2 − t)r2−1

− (y1 − t)r2−1
]
dtds

)
+

m∑
k=1

(∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1 (y2 − t)r2−1 dtds

)

+

∫ x1

0

∫ y1

0

[
(x2 − s)r1−1 (y2 − t)r2−1 − (x1 − s)r1−1 (y1 − t)r2−1

]
dtds

+

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1 (y2 − t)r2−1 dtds

+

∫ x1

0

∫ y2

y1

(x2 − s)r1−1 (y2 − t)r2−1 dtds

+

∫ x2

x1

∫ y1

0
(x2 − s)r1−1 (y2 − t)r2−1 dtds

]

≤ ‖p‖∞ + ‖q‖∞m∗

Γ (r1 + 1) Γ (r2 + 1)

[
m∑
k=1

(∫ xk

xk−1

∫ y1

0
(xk − s)r1−1 [(y2 − t)r2−1

− (y1 − t)r2−1
]
dtds

)
+

m∑
k=1

(∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1 (y2 − t)r2−1 dtds

)
+ (2yr22 (x2 − x1)r1 + 2xr12 (y2 − y1)r2 + xr11 y

r2
1 − x

r1
2 y

r2
2 − 2 (x2 − x1)r1 (y2 − y1)r2)]

→ 0 as x1 → x2 and y1 → y2.

Hence, the operator S maps from bounded sets into equicontinuous in B0.
Combining the consequences of step-1 to step-3 and applying the Arzela-Ascoli theorem [45], we can accom-
plish that the operator S : B0 → B0 is completely continuous.
Step-4: In this step we prove that the operator T is contraction. Let w,w∗ ∈ B0, then for each (x, y) ∈ J
we have

‖T (w)(x, y)− T (w∗)(x, y)‖

≤
m∑
k=1

(
‖Ik
(
w
(
x−k , y

))
− Ik

(
w∗
(
x−k , y

))
‖+ ‖Ik

(
w
(
x−k , 0

))
− Ik

(
w∗
(
x−k , 0

))
‖
)

≤
m∑
k=1

l (‖w − w∗‖B0 + ‖w − w∗‖B0) ≤ 2ml‖w − w∗‖B0 .

Thus,
‖T (w)− T (w∗)‖ ≤ 2ml‖w − w∗‖B0 . (30)

Combining (25) and (30), we can conclude that the operator T is contraction.
Step-5: In this step we establish priori bounds.
To complete this step, it is sufficient to prove that the set

P = {w ∈ B0 : w = λT (w/λ) + λS(w), for someλ ∈ (0, 1)}

is bounded. Let w ∈ P , then we have w = λT (w/λ) + λS(w). Thus, for each (x, y) ∈ J , we have
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w(x, y)

= λ
m∑
k=1

(
‖Ik

(
w
(
x−k , y

))
λ

‖ − ‖Ik

(
w
(
x−k , 0

))
λ

‖

)

+
λ

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(xk − s)r1−1 (y − t)r2−1 f(s, t, w̄(s,t) + v(s,t))dtds

+
λ

Γ (r1) Γ (r2)

∫ x

xk

∫ y

0
(x− s)r1−1 (y − t)r2−1 f(s, t, w̄(s,t) + v(s,t))dtds.

(31)

Using the assumptions (A2) and (A3) in (31), we have

‖w(x, y)‖

≤
m∑
k=1

λ

(
‖Ik

(
w
(
x−k , y

))
λ

‖ − ‖Ik(0)‖+ ‖Ik

(
w
(
x−k , 0

))
λ

‖ − ‖Ik(0)‖

)

+ 2λ

m∑
k=1

‖Ik(0)‖+
‖p‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(x− s)r1−1 (y − t)r2−1

‖w̄(s,t) + v(s,t)‖Bdtds+
‖q‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds

+
‖p‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ x

0

∫ y

0
(x− s)r1−1 (y − t)r2−1 ‖w̄(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ x

0

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds

≤ l
m∑
k=1

(
‖(w

(
t−k , x

)
‖+ ‖w

(
t−k , 0

)
‖
)

+ 2I∗

+
‖p‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(x− s)r1−1 (y − t)r2−1 ‖w̄(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ xk

xk−1

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds

+
‖p‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ x

0

∫ y

0
(x− s)r1−1 (y − t)r2−1 ‖w̄(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ (r1) Γ (r2)

m∑
k=1

∫ x

0

∫ y

0
(x− s)r1−1 (y − t)r2−1 dtds,

where I∗ =
m∑
k=1

‖Ik(0)‖ and

‖w̄(s,t) + v(s,t)‖B
≤ ‖w̄(s,t)‖B + ‖v(s,t)‖B
≤ K sup{w(s̄, t̄) : (s̄, t̄) ∈ [0, s]× [0, t]}+K‖φ(0, 0)‖+M‖φ‖B
= σ(s, t) (say).
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Hence, for each (t, x) ∈ J , we have

‖w(x, t)‖ ≤ l
m∑
k=1

(
‖w(t−k , x)‖+ ‖w(t−k , 0)‖

)
+ 2I∗ +

2ar1br2‖q‖∞
Γ(r1 + 1)Γ(r2 + 1)

+
‖p‖∞

Γ(r1)Γ(r2)

[
m∑
k=1

∫ tk

tk−1

∫ x

0
(t− s)r1−1 (x− η)r2−1 σ(s, η)dηds

+

∫ t

0

∫ x

0
(t− s)r1−1 (x− η)r2−1 σ(s, η)dηds

]
.

(32)

Using the inequality (32) and the definition of σ , we have

σ(t, x) ≤M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(
‖w(t−k , x)‖+ ‖w(t−k , 0)‖

)
+ 2I∗

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)
+

‖p‖∞
Γ(r1)Γ(r2)

[
m∑
k=1

∫ tk

tk−1

∫ x

0
(t− s)r1−1

(x− η)r2−1 σ(s, η)dηds+

∫ t

0

∫ x

0
(t− s)r1−1 (x− η)r2−1 σ(s, η)dηds

]
.

For any (t, x) ∈ J , the Lemma 2.8 implies that there exists δ̄ = δ̄(r1, r2) such that

σ(t, x)

≤

(
M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(
‖w(t−k , x)‖+ ‖w(t−k , 0)‖

)
+ 2I∗

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)
×
(

1 + δ̄
‖p‖∞

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1 (x− η)r2−1 dηds

)
≤

(
M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(
‖w(t−k , x)‖+ ‖w(t−k , 0)‖

)
+ 2I∗

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)
×
(

1 + δ̄
ar1br2‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

)
= τ̄ (say).

Hence, for each (t, x) ∈ J , we have
‖w(t, x)‖∞ ≤ σ(t, x). (33)

This proves that the set P is bounded.
Therefore, by the consequence of Theorem 2.9 (Burton-Kirk fixed point theorem) we deduce that S + T has
a fixed point which is a solution of IVP given by (1) to (4). This completes the proof.

4. Applications

In this section, we provide an illustrative example to support the analytic proof of our Theorem 3.1.

Example 4.1.

Consider the following IVP for FOIPHDEs with infinite delay:

(
Dr
zk
u
)

(x, y) =
e−x−y

9 + ex+y
· 2 + |u (x, y) |

1 + |u (x, y) |
, (x, y) ∈ J =

[
0,

1

2

]
× [0, 1]

⋃(
1

2
, 1

]
× [0, 1] , (34)
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u

(
1

2

+

, y

)
= u

(
1

2

−
, y

)
+

|u
(

1
2

−
, y
)
|

1
4 + |u

(
1
2

−
, y
)
|
, if y ∈ [0, 1] , (35)

u (x, y) = x+ y2, if (x, y) ∈ [−1, 1]× [−2, 1] \ (0, 1]× (0, 1] , (36)

u (x, 0) = x, x ∈ [0, 1] , u (0, y) = y2, y ∈ [0, 1] , (37)

where z0 = (0, 0) , z1 =
(

1
2 , 0
)
. Let σ ∈ R and Cσ be the set of all piece-wise continuous functions φ :

(−∞, 0]× (−∞, 0]→ Rn for which a limit lim‖(s,t)‖→∞ e
σ(s+t)φ (s, t) exists with the norm

‖φ‖Cσ = sup
(s,t)∈(−∞,0]×(−∞,0]

eσ(s+t)‖φ (s, t) ‖.

Set
f (x, y, ϕ) =

e−x−y (2 + |ϕ|)
(9 + ex+y) (1 + |ϕ|)

, (x, y) ∈ [0, 1]× [0, 1] , ϕ ∈ C, (38)

and
I1 (u) =

|u|
1
4 + |u|

, u ∈ R. (39)

Then, it is clear that the functions f and I1 are continuous, and for (x, y) ∈ [0, 1]× [0, 1] and ϕ ∈ C, we have

|f (x, y, ϕ) | ≤ e−x−y

(9 + ex+y)
(2 + |ϕ|) . (40)

Hence assumption (A2) is satisfied with

p (x, y) =
2e−x−y

(9 + ex+y)
and q (x, y) =

e−x−y

(9 + ex+y)
.

Now, for u1, u2 ∈ R, we obtain

|I1 (u1)− I2 (u2) | = | |u1|
1
4 + |u1|

− |u2|
1
4 + |u2|

| ≤ 1

4
|u1 − u2|. (41)

Thus assumption (A3) is satisfied with l = 1
4 . Since l = 1

4 , then the condition (25) is also satisfied. That is
all the assumptions of Theorem 3.1 are satisfied. Therefore, the Theorem 3.1 implies that the IVP given by
(34) to (37) has at least one solution on (−∞, 1]× (−∞, 1].

5. Conclusion

In this article, we have proven a new existence criterion for solutions to the initial value problem for
FOIPHDEs given by (1) to (4), applying Burton-Kirk fixed point theorem. Using our Theorem 3.1, one can
easily be checked the existence of at least one solution of initial value problem given by (1) to (4). The
established result provides an easy and straightforward technique to cheek the existence of solutions to the
initial value problem for FOIPHDEs given by (1) to (4). Furthermore, the results of this research extend
the corresponding results of Abbas et al. [19], Benchohra and Boutefal [27], and Abbas and Benchohra
[28, 29, 30, 31].
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