MAGNETO-HYDRODYNAMIC FLOW OF A VISCOELASTIC FLUID
BETWEEN TWO CONDUCTING POROUS PLATES

D. NAGRAJ

The present paper deals with the flow of a conducting viscoelastic fluid between two

porous plates under a transverse magnetic field with constant suction and injection,

and finite electricai wall conductivities, Using the perturbation method, an exact solution

is obtained for small relaxation time. Tt is found that velocity decreascs with the

increase in the viscoclastic parameter, whereas the induced magaoetic field increases

with the increase in both the piate conductivity snd the viscoclastic parameter. Also
various other conclusions are drawn.

0. Notation :

Cos €7y, Clyy Cop s Coy s Cuw s Cups Gy s Gy, €y Constants
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Strain rate tensor

Applied transvérse magnetic field
Dimensionless induced axial magnetic field
Half-width between plates

HARTMANN number

Suction parameter

Hydrostatic préssure

Dimensionless hydrostatic pressure
Deviatoric siress tensor
Dimensionless deviatoric stress tensor
Magnetic PRanDTL number
ReynNoLDs number

Magnetic REyNoLDs number
Dimensionless axial velocity
Longitudinal distance

Dimensionless longitudinal distance
Transverse distance

Dimensionless longitudinal distance
Viscoelaslic parameter

Relaxation time
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p Viscosity

¥ Kinematic viscosity
e Magnetic permeability
7 Electric diffusivity

oy, Electrical conductivity parameters of lower and upper plates

o Density

a Electrical conductivity b
i KronECKER tensor

i Stress tensor

1. Imtreduction: The flow of a conductiug newtonian fuid oetween two paraltel plates
under transverse magnetic Held was first studied by HaRTMANN and Lazarus [*]. Guera [?] has
studied PorseurLLE flow with suction and injection. Later Kapur and Ratay [*] investigated
the same probiein for a conducting viscoelasiic fluid, taking the walls to be nonconducting.
But n the flow vrocess, the percolation of the fluid through the plates makes them eiectrically
conducting, even though the plates thomselves are non conducting when they are in dry state,
Thus electrical conductivity of the plates plays a significant par{. Hence we cannot neglect
the conductivities of 1he plates, when we are dealing with magneto-hydrodynamic flow problems
with suction and injection.

The aim of the present paper is to study the effect of wall conductivity in this problem, In
this paper we have studied ihe steady incompressible flow of a viscoelastic fluid between two
conducting parallel plates undar a transverse magnetic fieid with constant suction and injection.

In the analysis a rectangular Cartesizn co-ordinate system is used.
— — - —
H{(H,, 5, 0), Vi, 0,08 E(0,0, £} 7(0,0,7,)

denote the magnetic, velocity. electric and current field vectors respectively. It is assumed that
all the flox variables depend on 7 oniy.

2. Basic Equations. The Rheological equation is

@n M= 8+ B,
{2.2) ﬁfj——l—l,ﬁ,-j:Z;.se,-j,
where
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With the above assumptions from the basic equations of magnefo-Auid~dynamics and the rheolo-
gical equations, we get
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2.4) o, a_‘jx — a_‘i’ a].;xy B H, af{x- i
ag ax ag 4n ay
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at‘_’xly B, T ity
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an ou
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(2'8) Pax + i (‘Ua a‘gx—'za_; ny) =0 ,
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Using the transtormations,

EF=Lx,g=Ly,v,—=mu,uy=u,u, H =11,
PP P Py = QU Py s Byy == QUL Pyy s Bax == QU Pxg 5

2.10) PRl I S

Hfa
,Rm=4n,ueuuL,M=,ueHoL(%) .

we pet the non-dimensional form of equasions (2.4) to (2.7) as

- e dp | d M? dh

@10 "y = a Ty Pt R,

d*h du dh
2 d —0
(2.13) Pyy*?":m?ypyyf L

d di 1 du
(214) ny+8(’n'5pxy¥pyy ;Iy):]" ?i;’ -
ép i ap . o

It can be shown that FrR constant. Hence we take Efc':_—A’ where A4 1s a positive

constant.

_ Bovndary Conditions ;: Let the two walls be given by y=+ 1. From the no slip
condition, we get

(2.15) a=0 at y==+1.

—- —
The condition that the tangential component of E and H must be continuous across the
interface ( 4}, []), gives the following boundary cendition for the mduced magnetic field
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(2.16)

3. Solution: Integratien of (2.11) gives

3.

mu—Ay +ny+

Eliminating p,, between (2.12) and (2.13), we get

3.2

We develop the solution in powers of

(3.3)

g(8<Z < 1), hence we lake
1
:23"[;" ! C1=28 Cl(") ’

xyzz £np(n) x¥ s Pgy =2 gnp(ﬂ) By pxx:zsnp(") xx

Substituting (3.3) in (2.12), (3.1) and (3.2) and equating the various powers of &,
the equations for determining

Hn, iy and pi)y, for 1=0, 1,2,

The boundary conditions will give

(3.4

(3.5)

and

u,,=0_ (n=0,12,..

———hy=0,(r=0,1,2 ...

—h,=0,(n=0,1,2,...
Fu m (

Zero Order Solution,

terms in £ , we have

(3.6)

Substituting (3.3) in (2.12), (3.1) and (3.2) and taking zero order
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3.7  mity= Ay 4 P(g) ay + o R& " bt €y s
1 4
(3-8) P {0} xy:: T 'ag;o .

Eliminating u, and p¢) ., from (3.6), (3.7) and (3.8), we have

1\ dh R AR? .
(+ )° . - (m* RRpy— M) hy = S+,

Tm Rm prm ™

3.9

Solving this, we get

ARRy;
3.10) hy=Che™+Chebfi— —————y1+C,, -
( ‘. 1] 1 + 20 A’I‘!‘—mLR_Rm + 9

From equations (3.6} and (3.10), we get

@.11) ho=cm(m~—f—’—’;§f)e‘w+cw( — o) b e v G,

where =, are zeroes of

(3.12) }."'—mR( )1—{— - (m* RRpy — M) =0

Using the boundary conditions (3.4% (3.5), we get
ARRm {(Q;Qz-i‘h fi—mQq) Q. (™ —cha){-(mQ,—Q, 0,5hx) Qy(cB? —c&_@}_ ;

'ul’:

M*—m* RRm Q6 0y 5h f— 0 Qs 5h )
(3.13)
hom AREn [_{(Q..Q.Jshfi'—mQr,)[c“L(aunrl )" -H(mQs—Q, @,5h) [eﬂ"—(ﬁ%-l-l)e”l}
—m* R, @, 0, 5hf— 0,0y sh2)
(3.14) —{y—(l + 92 }]
where '

i
le(mhprgm). Q~3= (m**&‘;TL)x_Q.;:z"_Wf—,_?;u’
Qr=x(pae*tore™ N +2sha,Qy=Fgpeb + gre f)+2sk7.

Knowing u, , fi, we can get all other field quantities, like, E;, , P(o)xy » P(s)lyg - ©1C.

First Order Solution. Substituting (3.3) in (3.2) and taking first order terms in & from
equation (3.2), and simplifying we have

1 du L d*u
(3.15) ’ P(s)xyz?a—l-— FE_)J_: .
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Proceeding in a similar way as in the zerc order solution, we get the equation determining /i in
first order as

d*h 1 dh, R =
3.16 l—mR(l ) ——— (m*RR,, — MY :
(3.16) dy* +prm dy -+ mPrm( Ve i
! R ' Prm% PrmP
e L s S B G RO
‘FThe solution of (3.16) is
"R ' Prm®
— ay . 2 gy— Brm*\ Lay
(3.17) = Co e o Coe o ﬁ)[c,qa (m i )e

— Cye8® (m ﬁprTTﬁ)eﬂy] y+Cy.

Taking first order terms in s from (2.12) and using (3.17), we get

(3.1%) u=0C, (m— Prm ) e 1 C,, (m—- R"“"‘) i
R R
1 of . Rem® uy( mR
+ 525 [ rowt (m—Fem? Jeor (-ay— =)

() (02 )i

Applying the boundary conditions (3.4), (3.5), we have

(3.19) ' U, =C 0, (W — N4 C,, 0, (eB¥ —e— )
1 mR o ) mR '
oz [ Cure e (1har %) e (1er 22
. mR o - mR
—Cu B Qz{eﬂy( ) ¢ ﬂ(l ﬁ+prm)}]’
(3.20) h=cu{ xy~(«qrn+1>e“}+cn{eﬂv~(ﬁ¢u+1>eﬂ}

“mtp [ o (R e [0k g, 1] |

— Cpo? (m— Zeat? ){yeﬂy—[ Fﬁ)tff:;?Irl}eﬁ}_]
Zl:—‘a—l_T’, [ Cpoa? Ql{slrx + ( o ;ﬁ) cirx}
—cume, {onst (- S Yang )]

R
Zg :prm (m_ﬁ [ Clu x? Q1 { 2CIJI+ ( Pu eq‘l’_(ﬁleiq ) _E" o (‘pueﬂ_qj‘l e ) }

—c@ﬁﬁgg{ 2085+ ( puch-tpie? )+ 6 vuet—piep Rk

where




MAGNETO-HYDRODYNAMIC FLOW OF A VISCOELASTIC FLUID n

Zo=a(pget@re~ " 2shx , Z,=f{pyebtore )+ 24070,

= { - Brm %y o _( _Peml
Z (m R )s ®%, Zo=|m R sh 8,
c _ 27— Z\Z, c _gizﬁ—g_ﬂgi.
“wTz,2,—Z.Z, ' N 7 Z— 2,2

Knowing u,/hr, we can evaluate £, (1) xg > P(1) 2x » P(D gy et

n-th Order Solation: Taking »#-th order terms also into account in equation (3.2) and
substituting the value of Py sy in (3.1) and then eliminating, We have

@hy ANa o R epr AR —
(321) W R mR<1—Jf’prm)’dy +Rm}7,-m(m RRm M j]’n"ﬁf;'l(“n—-unn—?:---)-

Knowing the solutions up to the (z—1) th order, we know f. Then we can soive (3,21} to know
k. Similar procedure as in zcroth order and first order solution gives u,. Hence in this way
theoretically, the solution can be found up to any order we like. But second and higher order
solutions w.ll give unwieldy expressions and the solution up to the first order gives fairly.ap-
proximate values.

4. Conclusion: The graphs (Fig. 4.1, Fig. 4.2) showing the variation of w(—uw, + 2u,),
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Fig. 2

and h{=h,-}2h)) versus y are drawn for fixed values of m, R, Ry .prm, ¢ and for various
values of M and ¢y, @, and it is tound that .

D As the HARTMANN number increases, velocity is decreasing at every point, hence the
fluid is being retarded by the increase in the magnetic field.

I} The velocity decreases with the increase in the plate conductivities,

III}) Maximum of velocity moves towards the plate with suction with increase of HARTMANN
number as well as with the increase in plate conductivities ¢ , g .

I¥V) Induced magnetic field increases with ihe increase in the plate conductivities g, ¢, and.
decreases with the increase of HARTMANN number.

%) Induced magnetic field is more near the plate with in_iectiori, than that near the plate with
suction.
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Fig. 4.3
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(Fig. 4.3, Fig. 4.4) are the graphs showing the variation oi # and h versus y for fixed values
of M,m,R,R, . /Pr;m and ¢y, @y or various values of &, from which it is concluded that

¥I} . In PoseuiLLE flow. the velocity increases at every point due to viscoelastic effects and the
maximum of the velocity profile shifts towards the plate with suction,

VI The induced magnetic field also increase due to viscoelastic effects, (%)
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OZET

Bu yazida iletken ve viskoelastik bir akiskanm iki mesameli levha arasindaki akigt ince-
tenmektedic : bu olay Sncelerken dikine bir magnetik alanin vazliit, emiy veya verigin
sabit oldufiu ve duvarlann elektrik iletkenliiin sonlu bulundufiu kabul edilmigtir. Pertlir-
basyon metodunu kullanmak suretiyle kisa bir relaksasyon zamantna tekabdl ecden tam
gizitmler elde edilmigtir, Viskolastik parametrenin biyfimesi balinde bizin azatdifiine, halbuki
doffurulao magnetik alanmn gerek levha iletkentifii, gerek viskoelastik parametre ite birlikte
bayGdidgd tesbit edilmistir, Ayrica ¢bziimden daha bagka sonuclar da gikamlmigtir.
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