
ON THE BOREL TRANSFORM OF A N ENTIRE FUNCTION OF 
EXPONENTIAL TYPE 

P R E M S I N G H 

Let £ / ( 0 = ^ an z" denote the BOREL transform of the entire function defined 

to 

i 

' B = 0 

where z . z j — 1 ; similarly, let 

n=0 

by the series 

n=0 
Then lei 

n=0 

where z^__[ . z^ = 1 . Then all the (z^) are entire functions on the z-plane or 

on the -plane, according to the parity of AT. A necessary and sufficient condition 
for fj ( z , ) to be of finite order has been obtained, as well as some relations between 

Lk * 
the orders, lower orders, types and \ - types of / ( z ) and / 0 , ) (*). 

1. Let 

m = 2 a " z " 

be an entire function of order Q and lower order X. I t is said to be of exponential type if 
it is of growth (1, 7") i.e., of order Q ̂  1 and if e = 1. then its type is at the most equal 
to T(T< * » ) . B O R E L first showed ( [ ' J , P- 73) that 

( i . i ) m = £ fln2rt 

is an entire function of order 1 and type a if 
CO 

n=0 

(*) Contents were presented to the 30 th Conference of the Indian Mathematical Society at D H A R W A R 
in 1 9 6 4 . 

9 5 
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is convergent for | z | ^ o , L / (z), as wsual, denotes the B O R E L , transform of f (z). We 
i 

apply the transformation z 

Thus, we get 

0-3) 

— to (1.2) and denote 

± - L f ( ± ) byfL (Zl). 
7 , \ Z , J 1 

CO 

f ^ d !) z'l 
n=0 

where /(z) and L f(z) are in the same plane while fLi (z,) is in the new plane which we 

denote by Z -plane. I f the order Q of /(r) is less than 1, then we show in this paper that 
/ £ ( ( z j is also an entire function in the Z -plane. This is generalised by appliying the B O R E L 

transform and inversion transform repeatedly. Thus, i f fLi (z t), be of order ei G?L < 1) the 

application of the B O R E L transform and the inversion transform z, = — to (1.3) yields 

0.4) 
tu 

which will be an entire function in the z-plane. Repeating the argument k times, we can write 

0.5) 

Evidently, if k is an odd integer the function f, (zk) will be in the Z -plane, while if A 
fc 

is even, it will be in the z-plane. I t will follow that i f fL (zk-i) * s a n entire function of 
order Q^^I in one of these planes then fL^ (zk) is an entire function in the other plane. 

I n this paper I have investigated a necessary and sufficient condition under which 
fL^ (z f t) is an entire function of finite order in one of these planes. A number of relations 
between orders, lower orders, types, and X -types of f(z) and fL (r^) have also been obta­
ined. The results are given in the form of theorems with remarks. 

2. Theorem 1. If 

m = J *n * n 

is an entire function of order Q, then 

fL ( z ^ , ( £ = 1 , 2 , . . . , m) 
k 

is an entire function of finite order in one of the planes, if and only if k Q < 1 . 

Proof. We have 
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log 1 an (« ! ) * | log | an \ k log (n !) 
n log H « log n n log « 

But from S T I R L I N G ' S formula 

11: ^ n . e~n .\Jja . 
Therefore, 

log | g„ (n \)k \~l ^ log | g „ | - ' k(n + j) log /; 
ti log « /i log n n log n 

_ log | o„ |" 1 

Since ( [ ' ] , p. 9) 

(2.1) lim inf 

n log « 

log | an j ~ l 1 

+ 0 ( i s b ) 
¿ + 0(1) . 

« log « t> 

by making use of (2.1) in the above expression we get 

(2.1) hm inf 1—: •— = k . 
« log /; Q 

This leads us to the conclusion that f, {zk) is of finite order if k Q < 1 . 
k 

Conversely, let f(z) be of order Q (where k Q < 1); then, from (2.1) 

,. n log n 
l im sup — . — 7 rzrr — £ • 

log | an | 
Hence for any e > 0 , we can find a number N (s) such that 

"log j t | - r < ( e + c ) f o r a 1 1 " > ( E ) 

1 
fc— 

Therefore 

and hence the theorem. 

Theorem 2. i e f 

lim | (« ! ) * «„ 
( I - i c o 

/(z) - ^ «» z * 
n = 0 

6<? o/ orefer Q(mq< 1) faiccr order X and let f>& «/Ji/ denote respectively the order 
and lower order of 
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fL (2fr), (ft = 1 , 2 , . . . , m), 

then 

(2.2) 

// further, 

6k = 1 — /c (> 

yiwms a non-decreasing function of n for n > « 0 /Ae/i 

(* = 1,2, in) 

(2.3) ** - 1 - A A 

Proof. (2.2) follows from (2.1)'. Further, since 

, (Je — 1, 2, . . . , m) 

forms a non-decreasing function of n for « > «„, in view of the fact ( [ 2 ] , p. 3047), that 

log 1 an | - i _ 1 
(2.4) 

we get 

lim sup , 
„-«o « log n 

i i m sup 
log |fl„ ( « ! ) * | - 1 1 

« log 13 

Using S T I R L I N G ' S formula for n !, we easily get 

1 — k X 

Applications. Let 

/ ( * ) = £ 2 " 

« = 0 

be of order Q, (rn Q < I) lower order X and 

CO 

fH (**> = E o « ( " ! ) A ^ 

be of order QK and lower order A fc respectively and satisfy the hypothesis of theorem 2: then 
the direct consequences of (2.2) and (2.3) are 

(2.5) Q < QL < QS < .. . < QM_T < QM if and only if Q 0 , . 

(2.6) X < ^ < As < , . . < i m _ t < A m i f and only if J l ^ O 
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(2.7) Q ~ 0 if and only if QK — 0 for any k, 1 ^ 4 ^ m, 

(2.8) X ~ 0 if and only i f Xk = 0 for any k, 1 ^ m, 

(2.9) Q — X if and only if QK = A& for any fc, 1 ^ k ^ m, 

i.e. i f/(z) is of regular growth then so is/, ^zft) and vice versa. 
k 

Theorem 3. Let 

/ U ) - 2 fl" z " 
«=o 

6e i7/i e/i/ire function of order Q, (0 < m e < 1) fltfi/ f^pe T. 77ie>i 

1 ^ 
(2.10) 7jt — —— (e T) P for k = \ , m 

where Qk and Tk are the order and type, respectively, of fL^ ( z f c ) . 

Proof. Let 

V(„) = \a„(n\)k\" . 

Then 

1 ' c efc f̂c 
log v x") = log ~ h log « + — , 0 g (" ^ + ~ l o 8 I 

Since, from (2.2), 

e,. = and n\ ~ n 2 . e^" ^ 2 * » 

by making use of these in the above expression, we get 

log y 00 ~ log + i o g „ I a n 

Now, proceeding to limit, we get 

1 ^ 
* e,. 

in view of the fact ( [ ' ] , p. 11) that 



100 P R E M S I N G H 

lim sup ~ K l " " = X (2.11) 

and hence the theorem is proved. 

Let f(z) be of order g and lower order X,(0^ A < y < co), then [ a ] , 

(2.12) 

Further, let 

(2.13) 
. . log M(y) 

h m m f — /j , . 
y - i a D 

We call the A -type of f(z). It has also been shown [ a ] that, if (,0 <. X < t») 

and 

(2.14) 

forms a non-decreasing function of n for /i > //<,, then 

lim inf — r ! ö n  eX = t. 

The following theorem can be proved on the lines of the proof of theorem 3. 

Theorem 4. Let 

W = 0 

fee an entire function of order £>, lower order X (0 < X < <») A-fy/je // 

, , "t , (* — 1, 2, m) 
( « + l ) i o n - f - i 

forms a non-decreasing function of n for n > n0, then 

(2.15) 

for 

A = 1, 2, m. 

ivAere AA and t^, are lower order and Ik- type of ft (z^)-

Remark. I f f(z) is of regular growth i.e. Q — X then (2.15) is the relation involving 
the lower types of fL (zk) and f{z). Otherwise, if Q =f= X it follows from (2.12) that 

k 
lower type of f(z) is zero. 

Here we give a few applications of theorems 2,3 and 4. 
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(i) The relation, (2.2), (2.3), (2.10) and (2.15) are recurrence relations. Hence knowing 
the order and type of any one function out of the m -\~ 1 functions, one can find out the 
Order and type of any of the other m functions. The same is true for the lower order and 
A-type. 

< e * r f c ) 1 / p * and {Xkt^lH 

are invariant quantities for 
h ==• 1, 2, m. 

m if 

( « + l ) * t f , l + l 

(fr = l , 2, ...m) 

forms a non-decreasing function of n for n > « 0 , then fL^ (z f c) is of perfectly regular 
growth if and only i f /(z) is of perfectly regular growth. 

(j'v) I f 8"fi> X then tk = 0 for k — 1, 2, m, /A is the lower type of fLk(zk). 

(v) I f niQ < 1, then /(z) and (z f t) each have an infinity of zeroes in their 

respective planes. 

(w) I f one considers (0, o\ (1, et\ (m, g m ) as points in the cartesian plane then 
all lie on the curve 

Theorem 5. Let 
CO 

= Z ° n z " 
n = 0 

«« entire function of order, @ lower order X {0 < Xt m Q < 1), Oye T ( T > ) on*/ 
%-type U (fj , > 0 ) , then 

(2.16) 

and 

(2.17) 

7/ further, 

(2.18) 

and 

e r 

/ ( - I 

/or/itt Q non-decreasing function of n for n > n0, then 

m 

A = l 
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(2.19) xm — i =z Y.h-.yk 
/ ( = 1 

where for k = 1, Q0 — e, Xa=X, T0 = T, ijw = ' A . and e f c , Xk, Tj. a/id t^k 

are the same as in theorems 2, 3 and 4. 
Proof. Let us consider the entire functions f} (zt— t) and fT (z&) then, on the basis 

k—i k 
of theorem 3, we can see that 

(2.20) j _^L_ 

P A 

Putting /c = l , 2 , . . . , m in (2.20) and then multiplying the m equations thus obtained, 
we get 

(2.20 i \ T2 . . . r m = — — (e r ) p . . . ( e m _ x ^ - j p ^ - i . 
8 [ f i ! " " tfm 

Again, considering (z ) in place of /(z) in theorem 2, then (2.2) reduces to 

Qk—i 
(2.22) Qk = - y — ; i.e. gk - e / ( _ ! = QI( EFT_, . 

Making use of (2.22) in (2.21), we can easily see that 

HI 

which is (2.16). 
In (2.22), putting /c — 1, 2 , . . . , m and then adding all the equations thus obtained, 

we get 

2 Cet — e f t _i> = 2 ( e * e ' £ - l } 

~~ e = Z j e * 

which is (2.17). Similarly, we can prove (2.18) and (2.19). 

3. Now, we obtain relations between the maximum moduli of /(z) and fL} (zk) and 
also between their maximum terms and their ranks. We denote by M(y) the maximum mo­
dulus of f(z) for I z I = y, and by M (y, fL/) the maximum modulus of fLk(zk), taking 

I 2̂  I = ] z J — y. When /c is even we have z = zk but when k is odd we have z = l/z/c.. 
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I n the latter case, having chosen a value y for | z 1 , we look for the point in the Z-plane 
such that | zk j = y. Corresponding to this point zk the point in the z-plane will have 
the modulus t(y. Similar remarks apply also for the maximum terms and for their ranks in the 
following theorems. 

Theorem 6. Let 

CO 

/(*) 

be an entire function of order Q (0 ^ m Q < 1) and lower order X. If 

forms a non-decreasing function of for n > «0 , then for any e > 0. 

y—p—E 1 e—A+e 1 

y1 kX {log Miy)}1 k* <logM(y,flk)<y1 *" . {iogM(y}}1 

for y < ya (e) and k = 1, 2, . . . , m. 

Proof. I t is known ( [ ' ] , p. 9) that 

,. sup log log .M 00 e lim . — 
Y ->co inf log y X 

Therefore, for any e ' > 0, we can find a positive number yQ ( a ' ) such that 

(3.1) y X ~ e ' < log M ( y ) < / + " ' . 

Similarly, for the integral function (z^), we have 

y < log M (y, / £ ) > y for y > y f e 

or 

where 

y { log M (y) y*** < i o g M <y,/£jfc) < y ^ { log M (y) } 

Making use of (3.1) in the above inequality, we get 

p—E ^ J ^ _ p—x+e 1 

y { log M (y) ^ < log A/ (y, j y < y ^ { log M (y) ^ 



104 P R E M S I N G H 

where 

Y > Yo 0) = ( Yo (O. Vk (*k)} 

and hence the theorem. 

Theorem 7. Let 

be an entire function of order Q ( 0 ̂  Q < 1 ) , lower order I and let 

* OS A v (y. fQ, v and p(y,ff ) 

denote respectively the ranks of the maximum terms of 

and their s~th derivatives 

f^ Or) and ff (z*) . 

V 

\ ( « + l ) m fln+1 

/>fms a non-decreasing function of n for n > n0 , i/jen /or imj> « > 0, we have 

l—ki ( 1 — feA) j logy J x i l o g y / x 
Yo Yo 

1 — kQ ( 1 — k{>)s log y 

y > yo flm^ /f — 1» 2, m, where 

= » - ( y , / ( e ) ) - y(y,f), 

k k 

Proof, I t is known ( [ * ] , p. 276) that 

l im S U f V - f < ^ d X = * ^ m mf i l o g y ; x I 

Therefore, proceeding on the sanu lines as in theorem 6 we easily obtain the result. 
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Theorem Let 

m = J ) an z" 
?i—o 

be an entire Junction of order e ( 0 ^ m g < 1), /ewer order A and let 

/*(/./) . M(y,/w)fl«rf/»(r./f'>) 

denote respectively the maximum terms of 

is a non-decreasing function of n for n > f l 0 > /b/" any e > 0 , 

I+x—i>—e 1 V (y f ^ ) 1 + P — A + B 

/of 

Proof. I t is known ( H , p. 107) that 

log y 
l im s u p t p(y,f) I _ e 

inf log y Jl 

Again, proceeding on the same lines as in theorem 6 we get the result (')• 
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Ö Z E T 

L/(z) — 2^ (" ') a„ z n • f(z) ~ £j a
n

 2™ s e r ' açılımı ile -Verilen tam fonksiyonun 

« = 0 »ı=0 

BOR EL dönüştürülmüşünü göstersin. Bu takdirde, z . zı = 1 olmak üzere, 

« = 0 

vaz edilsin ve buna benzer tarzda, z £ _ \ • = 1 olmak üzere, 

tanımlansın, / 0>) fonksiyonları, fc sayısının çift veya tek olmasına göre, z veya 

l /z düzleminde tam fonksiyonlardır. B u yazıda bu fonksiyonların sonlu mertebeden 
olmaları için bir gerek ve yeter şart elde edilmiş, ayrıca fT O . ) ile f(z) fonksiyon­la k 

larmın mertebeleri, alt mertebeleri, tipleri ve \ - tipleri arasında bazı bağıntılar 
ispat edilmiştir. 


