PREM SINGH

Let $Lf(z) = \sum_{n=0}^{\infty} (n!) a_n z^n$ denote the BOREL transform of the entire function defined

by the series

$$f(z) = \sum_{n=0}^{\infty} a_n \, z^n \, .$$

Then let

$$f_{L_{1}}(z_{1}) = \sum_{n=0}^{\infty} (n!) a_{n} z_{1}^{n}$$

where $z_1 z_1 = 1$; similarly, let

$$f_{L_{k}}(z_{k}) = \sum_{n=0}^{\infty} (n!)^{k} a_{n} z_{k}^{n}$$

where $z_{k-1} \cdot z_{k} \approx 1$. Then all the $f_{L_{k}}(z_{k})$ are entire functions on the z-plane or on the (1/z)-plane, according to the parity of k. A necessary and sufficient condition for $f_{L_{k}}(z_{k})$ to be of finite order has been obtained, as well as some relations between

the orders, lower orders, types and λ - types of f(z) and $f_{L_k}(z_k)$ (*).

1. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \ z^n$$

be an entire function of order ρ and lower order λ . It is said to be of exponential type if it is of growth (1, T) *i.e.*, of order $\rho \leq 1$ and if $\rho = 1$, then its type is at the most equal to $T(T < \infty)$. BOREL first showed ([¹], p. 73) that

(1.1)
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is an entire function of order 1 and type σ if

(1.2)
$$L f(z) = \sum_{n=0}^{\infty} (n !) a_n z^n$$

(*) Contents were presented to the 30th Conference of the Indian Mathematical Society at DHARWAR in 1964.

is convergent for $|z| \ge \sigma$. L f(z), as usual, denotes the Borel transform of $f_1(z)$. We apply the transformation $z = \frac{1}{z_1}$ to (1.2) and denote

$$\frac{1}{z_1} L f\left(\frac{1}{z_1}\right) \text{ by } f_{L_1}(z_1).$$

~

Thus, we get

(1.3)
$$f_{L_1}(z_1) = \sum_{n=0}^{\infty} a_n(n!) z_1^n$$

where f(z) and $L_1 f(z)$ are in the same plane while $f_{L_1}(z_1)$ is in the new plane which we denote by Z -plane. If the order ϱ of f(z) is less than 1, then we show in this paper that $f_{L_1}(z_1)$ is also an entire function in the Z -plane. This is generalised by applying the BOREL transform and inversion transform repeatedly. Thus, if $f_{L_1}(z_1)$, be of order $\varrho_1(\varrho_1 < 1)$ the application of the BOREL transform and the inversion transform $z_1 = \frac{1}{z_2}$ to (1.3) yields

(1.4)
$$\frac{1}{z_2} f_{L_1}\left(\frac{1}{z_2}\right) = \sum_{r=0}^{\infty} a_r (n!)^2 z_2^r = f_{L_2}(z_2)$$

which will be an entire function in the z-plane. Repeating the argument k times, we can write

(1.5)
$$f_{L_k}(z_k) = \sum_{n=0}^{\infty} a_n (n!)^k z_k^n.$$

Evidently, if k is an odd integer the function $f_{L_k}(z_k)$ will be in the Z-plane, while if k is even, it will be in the z-plane. It will follow that if $f_{L_{k-1}}(z_{k-1})$ is an entire function of order $g_{k-1} < 1$ in one of these planes then $f_{L_k}(z_k)$ is an entire function in the other plane.

In this paper I have investigated a necessary and sufficient condition under which $f_{L_k}(z_k)$ is an entire function of finite order in one of these planes. A number of relations between orders, lower orders, types, and λ -types of $f_{\lambda}(z)$ and $f_{L_k}(z_k)$ have also been obtained. The results are given in the form of theorems with remarks.

2. Theorem 1. If

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is an entire function of order ϱ , then

$$f_{L_k}(z_k), (k=1, 2, \ldots, m)$$

is an entire function of finite order in one of the planes, if and only if, $k \varrho < 1$.

Proof. We have

$$\frac{\log |a_n(n!)^k|^{-1}}{n \log n} \sim \frac{\log |a_n|^{-1}}{n \log n} - \frac{k \log (n!)}{n \log n}.$$

But from STIRLING's formula

$$n! \sim n^{n+\frac{1}{2}} \cdot e^{-n} \cdot \sqrt{2\pi}$$

Therefore,

$$\frac{\log |a_n(n)|^k|^{-1}}{n \log n} \sim \frac{\log |a_n|^{-1}}{n \log n} - \frac{k(n+\frac{1}{2})\log n}{n \log n} + O\left(\frac{1}{\log n}\right)$$
$$= \frac{\log |a_n|^{-1}}{n \log n} - k + O(1).$$

Since ([1], p. 9)

(2.1)
$$\lim_{n\to\infty} \inf \frac{\log|an|^{-1}}{n\log n} = \frac{1}{\varrho},$$

by making use of (2.1) in the above expression we get

(2.1)'
$$\lim_{n \to \infty} \frac{\log |a_n(n!)k|^{-1}}{n \log n} = \frac{1}{\varrho} - k.$$

This leads us to the conclusion that $f_{L_k}(z_k)$ is of finite order if $k \, \varrho < 1$. Conversely, let f(z) be of order ϱ (where $k \, \varrho < 1$); then, from (2.1)

$$\limsup_{n\to\infty} -\frac{n\log n}{\log |a_n|^{-1}} = \varrho.$$

Hence for any $\varepsilon > 0$, we can find a number $N(\varepsilon)$ such that

$$\frac{n \log n}{\log |a_n|^{-1}} < (\varrho + \varepsilon) \text{ for all } n > N_0(\varepsilon)$$

or

$$|a_n| < n \frac{n}{\varrho + \varepsilon}$$

or

 $|(n!)^{k} a_{n}|^{1/n} < n^{k-\frac{1}{\varrho+\varepsilon}}$

 $\lim_{k \to \infty} |(n!)^k a_n|^{1/n} = 0$ $n \rightarrow \infty$

and hence the theorem.

Theorem 2. Let

 $f(z) = \sum_{n=0}^{\infty} a_n \, z^n$

be of order ϱ (m $\varrho < 1$) and lower order λ and let ϱ_k and λ_k denote respectively the order and lower order of

97

98

PREM SINGH

$$f_{L_k}(z_k), (k = 1, 2, ..., m),$$

then (2.2)

$$\varrho_k = \frac{\varrho}{1 - k \, \varrho}$$

If further,

 $\left|\frac{a_n}{(n+1)^k a_{n+1}}\right|, (k = 1, 2, ..., m)$

forms a non-decreasing function of n for $n > n_0$ then

$$\lambda_k = \frac{\lambda}{1 - k \lambda} \, .$$

Proof. (2.2) follows from (2.1)'. Further, since

$$\left|\frac{a_n}{(n+1)^k}a_{n+1}\right|$$
, $(k = 1, 2, ..., m)$

forms a non-decreasing function of n for $n > n_0$, in view of the fact ([²], p. 1047), that

(2.4)
$$\limsup_{n \to \infty} \quad \frac{\log |a_n|^{-1}}{n \log n} = \frac{1}{\lambda} ,$$

we get

$$\limsup_{n \to \infty} \frac{\log |a_n (n!)^k|^{-1}}{n \log n} = \frac{1}{\lambda_k} .$$

Using STIRLING's formula for n!, we easily get

$$\lambda_k = \frac{\lambda}{1-k\,\lambda} \, .$$

Applications. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \ z^n$$

be of order ϱ , $(m \, \varrho < 1)$ lower order λ and

$$f_{L_{k}}(z_{k}) = \sum_{n=0}^{\infty} a_{n} (n!)^{k} z_{k}^{n}$$

be of order ϱ_k and lower order λ_k respectively and satisfy the hypothesis of theorem 2: then the direct consequences of (2.2) and (2.3) are

(2.5) $\varrho < \varrho_1 < \varrho_2 < \ldots < \varrho_{m-1} < \varrho_m$ if and only if $\varrho \neq 0$,

(2.6)
$$\lambda < \lambda_1 < \lambda_2 < \ldots < \lambda_{m-1} < \lambda_m$$
 if and only if $\lambda \neq 0$

(2.7)
$$\varrho = 0$$
 if and only if $\varrho_k = 0$ for any $k, 1 \le k \le m$
(2.8) $\lambda = 0$ if and only if $\lambda_k = 0$ for any $k, 1 \le k \le m$
(2.9) $\varrho = \lambda$ if and only if $\varrho_k = \lambda_k$ for any $k, 1 \le k \le m$,

i.e. if f(z) is of regular growth then so is $f_{L_k}(z_k)$ and vice versa.

Theorem 3. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \ z^n$$

be an entire function of order ϱ , $(0 < m \rho < 1)$ and type T. Then

(2.10)
$$T_{k} = \frac{1}{\varrho_{k}} (\varrho T)^{\frac{\varrho_{k}}{\varrho}} \text{ for } k = 1, 2, \dots, m$$

where ϱ_k and T_k are the order and type, respectively, of $f_{L_k}(z_k)$.

Proof. Let

$$\psi(n) = \frac{n}{e \varrho_{k}} |a_{n}(n!)^{k}|^{\frac{\varrho_{k}}{n}}.$$

Then

$$\log \psi(n) = \log \frac{1}{e \, \varrho_k} + \log n + \frac{k \, \varrho_k}{n} \log (n!) + \frac{\varrho_k}{n} \log |a_n|.$$

Since, from (2.2),

$$e_k = \frac{\varrho}{1-k\varrho}$$
 and $n! \sim n^{n+\frac{1}{2}} \cdot e^{-n} \sqrt{2\pi}$,

by making use of these in the above expression, we get

$$\log \psi(n) \sim \log \frac{1}{e \varrho_k \cdot e} + \frac{\varrho_k}{e} \log n |a_n|^{Q/n}.$$

Now, proceeding to limit, we get

$$T_{k} = \frac{1}{\varrho_{k}} \left(\varrho T \right)^{\frac{\varrho_{k}}{\varrho}}$$

in view of the fact ([1], p. 11) that

99

100

PREM SINGH

(2.11)
$$\lim_{n \to \infty} \sup_{\theta \in Q} \frac{n}{e \, \varrho} \, |a_n|^{\varrho/n} = T$$

and hence the theorem is proved.

Let f(z) be of order ρ and lower order $\lambda, (0 \leq \lambda < \rho < \infty)$, then [⁴],

(2.12)
$$\lim_{\gamma \to \infty} \inf_{\gamma \neq 0} \frac{\log M(\gamma)}{\gamma \varrho} = 0.$$

Further, let

(2.13)
$$\lim_{\gamma \to \infty} \inf \frac{\log M(\gamma)}{\gamma^{\lambda}} = t_{\lambda}$$

We call t_{λ} the λ -type of f(z). It has also been shown [^a] that, if $(0 < \lambda < \infty)$ and $\left| \frac{a_n}{a_{n+1}} \right|$ forms a non-decreasing function of *n* for $n > n_0$, then

(2.14)
$$\liminf_{n\to\infty} \frac{n}{e\lambda} |a_n|^{\lambda/\lambda_n} = t_{\lambda}.$$

The following theorem can be proved on the lines of the proof of theorem 3.

Theorem 4. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \, z^n$$

be an entire function of order ϱ , lower order λ ($0 < \lambda < \infty$) and λ -type t_{λ} . If

$$\left| \frac{a_n}{(n+1)^k a_{n+1}} \right|, \quad (k = 1, 2, ..., m)$$

forms a non-decreasing function of n for $n > n_0$, then

(2.15)
$$t_{\lambda}^{k} = \frac{1}{\lambda_{k}} \left(\lambda t_{\lambda}\right)^{\frac{\lambda_{k}}{k}}$$

for

$$k = 1, 2, ..., m$$
.

where λ_k and t_{λ_k} are lower order and λ_{k-} type of $f_{L_{\lambda_k}}(z_k)$.

Remark. If f(z) is of regular growth *i.e.* $\varrho = \lambda$ then (2.15) is the relation involving the lower types of $f_{L_k}(z_k)$ and f(z). Otherwise, if $\varrho \neq \lambda$ it follows from (2.12) that lower type of f(z) is zero.

Here we give a few applications of theorems 2,3 and 4.

101

\$20122200 Charlescontescontaine a le vez la

(i) The relation, (2.2), (2.3), (2.10) and (2.15) are recurrence relations. Hence knowing the order and type of any one function out of the m + 1 functions, one can find out the order and type of any of the other *m* functions. The same is true for the lower order and λ -type,

(ii)
$$(\varrho_k T_k)^{1/\rho_k}$$
 and $(\lambda_k t_{\lambda_k})^{1/\lambda_k}$

are invariant quantities for

$$k = 1, 2, ..., m$$
.

(iii) If

$$\left| \frac{a_n}{(n+1)^k a_{n+1}} \right|$$
, $(k = 1, 2, ..., m)$

forms a non-decreasing function of n for $n > n_0$, then $f_{L_k}(z_k)$ is of perfectly regular growth if and only if f(z) is of perfectly regular growth.

(iv) If
$$\varrho \neq \lambda$$
 then $t_k = 0$ for $k = 1, 2, ..., m, t_k$ is the lower type of $f_{L_k}(z_k)$.

(v) If $m_0 < 1$, then f(z) and $f_{L_k}(z_k)$ each have an infinity of zeroes in their respective planes.

(vi) If one considers $(0, \varrho), (1, \varrho_1), ..., (m, \varrho_m)$ as points in the cartesian plane then all lie on the curve

$$v=\frac{\varrho}{1-x^{\varrho}}.$$

Theorem 5. Let

$$f(z) := \sum_{n=0}^{\infty} a_n \ z^n$$

be an entire function of order, ϱ lower order λ ($0 < \lambda$, $m \varrho < 1$), type T(T >) and λ -type t_{λ} ($t_{\lambda} > 0$), then

(2.16)
$$\frac{\varrho_m T_m}{\varrho T} = \prod_{k=1}^m (\varrho_{k-1} T_{k-1})^{\varrho_k}$$

and

(2.17)
$$\varrho_m - \varrho = \sum_{k=1}^m \varrho_{k-1} \varrho_k .$$

If further,
$$\left| \frac{a_n}{a_{n+1}} \right|$$
 forms a non-decreasing function of n for $n > n_0$, then

(2.18)
$$\frac{\lambda_m t_{\lambda m}}{\lambda t_{\lambda}} = \prod_{k=1}^m (\lambda_{k-1} t_{\lambda_{k-1}})^{\lambda_k}$$

and

(2.19)
$$\lambda_m - \lambda = \sum_{k=1}^m \lambda_{k-1} \gamma_k$$

where for k = 1, $\varrho_0 = \varrho$, $\lambda_0 = \lambda$, $T_0 = T$, $t_{\lambda 0} = t_{\lambda}$ and ϱ_k , λ_k , T_k and $t_{\lambda k}$ are the same as in theorems 2, 3 and 4.

Proof. Let us consider the entire functions $f_{L_{k-1}}(z_{k-1})$ and $f_{L_k}(z_k)$ then, on the basis of theorem 3, we can see that

(2.20)
$$T_{k} := \frac{1}{\varrho_{k}} \left(\varrho_{k-1} \ T_{k-1} \right)^{\frac{\varrho_{k}}{\varrho_{k-1}}}.$$

Putting k = 1, 2, ..., m in (2.20) and then multiplying the m equations thus obtained. we get

(2.21)
$$T_1 T_2 \dots T_m = \frac{1}{\varrho_1 \varrho_2 \dots \varrho_m} (\varrho T)^{\frac{\rho_1}{\rho}} \dots (\varrho_{m-1} T_{m-1})^{\frac{\rho_m}{\rho_{m-1}}}.$$

Again, considering $f_{L_{k-1}}(z_{k-1})$ in place of f(z) in theorem 2, then (2.2) reduces to

(2.22)
$$e_k = \frac{e_{k-1}}{1-e_{k-1}}$$
 i.e. $e_k - e_{k-1} = e_k e_{k-1}$

Making use of (2.22) in (2.21), we can easily see that

$$\frac{\underline{\varrho_m} \ T_m}{\underline{\varrho} \ T} = \prod_{k=1}^m \ \left(\varrho_{k-1} \ T_{k-1} \right)^{\mathbf{q}_k}$$

which is (2.16).

In (2.22), putting k = 1, 2, ..., m and then adding all the equations thus obtained, we get

$$\sum_{k=1}^{m} (e_k - e_{k-1}) = \sum_{k=1}^{m} (e_k e_{k-1})$$

or

$$\varrho_m-\varrho=\sum_{k=1}^m\,\varrho_k\,\varrho_{k-1}$$

which is (2.17). Similarly, we can prove (2.18) and (2.19).

3. Now, we obtain relations between the maximum moduli of f(z) and $f_{L_k}(z_k)$ and also between their maximum terms and their ranks. We denote by $M(\gamma)$ the maximum modulus of f(z) for $|z| = \gamma$, and by $M(\gamma, f_{L_k})$ the maximum modulus of $f_{L_k}(z_k)$, taking $|z_k| = |z| = \gamma$. When k is even we have $z = z_k$ but when k is odd we have $z = 1/z_k$.

In the latter case, having chosen a value γ for |z|, we look for the point in the Z-plane such that $|z_k| = \gamma$. Corresponding to this point z_k the point in the z-plane will have the modulus $1/\gamma$. Similar remarks apply also for the maximum terms and for their ranks in the following theorems.

Theorem 6. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \, z^n$$

be an entire function of order ϱ ($0 \leq m \varrho < 1$) and lower order λ . If

$$\left|\frac{a_n}{(n+1)^m a_{n+1}}\right|$$

forms a non-decreasing function of for $n > n_0$, then for any $\varepsilon > 0$.

$$\gamma^{\frac{\lambda-\rho-\epsilon}{1-k_{\lambda}}}\left\{\log M(\gamma)\right\}^{\frac{1}{1-k_{\lambda}}} < \log M(\gamma, f_{L_{k}}) < \gamma^{\frac{\rho-\lambda+\epsilon}{1-k_{p}}} \cdot \left\{\log M(\gamma)\right\}^{\frac{1}{1-k_{p}}}$$

for $\gamma < \gamma_0$ (s) and $k = 1, 2, \ldots, m$.

Proof. It is known ([1], p. 9) that

$$\lim_{\gamma \to \infty} \sup_{inf} \frac{\log \log M(\gamma)}{\log \gamma} = \frac{\varrho}{\lambda} \cdot$$

Therefore, for any $\epsilon' > 0$, we can find a positive number $\gamma_0(\epsilon')$ such that

(3.1)
$$\gamma^{\lambda-\epsilon'} < \log M(\gamma) < \gamma^{\rho+\epsilon'}.$$

Similarly, for the integral function $f_{L_k}(z_k)$, we have

$$\gamma^{\frac{\lambda}{1-k_{\lambda}}+\epsilon_{k}} < \log M \ (\gamma, \ f_{L_{k}}) > \gamma^{\frac{\rho}{1-k\rho}+\epsilon_{k}} \quad \text{for} \quad \gamma > \gamma_{k} \ (\varepsilon_{k})$$

or

$$\gamma^{\frac{\lambda-p-\epsilon}{1-k_{\lambda}}}\left\{\log M(\gamma)\right\}^{\frac{1}{1-k_{\lambda}}} < \log M(\gamma, f_{L_{k}}) < \gamma^{\frac{p-\lambda+\epsilon}{1-k_{p}}}\left\{\log M(\gamma)\right\}^{\frac{1}{1-k_{p}}}$$

where

$$s \ge \left(\epsilon_k + \frac{1-k\varrho}{s'} \right)$$

Making use of (3.1) in the above inequality, we get

$$\gamma^{\frac{\lambda-\rho-\varepsilon}{1-k\lambda}}_{\gamma}\left\{\log M\left(\gamma\right)\right\}^{\frac{1}{1-k\lambda}} < \log M\left(\gamma, f_{L_{k}}\right) < \gamma^{\frac{\rho-\lambda+\varepsilon}{1-k\rho}}\left\{\log M\left(\gamma\right)\right\}^{\frac{1}{1-k\rho}}$$

103

and a second second

where

$$\gamma > \gamma_0 (\varepsilon) = \max_{1 \leq k \leq m} \{ \gamma_0 (\varepsilon'), \gamma_k (\varepsilon_k) \}$$

nebel all'i pui Teella créferencelle - Abrienelle, avenuelle l'épidence d'a

and hence the theorem.

Theorem 7. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \, z^n$$

be an entire function of order ϱ ($0 \leq \varrho < 1$), lower order λ and let

$$v(\gamma, f), v(\gamma, f_{L_k}), v(\gamma, f^{(s)}) and v(\gamma, f^{(s)}_{L_k})$$

denote respectively the ranks of the maximum terms of

$$f(z), f_{L_k}(z)$$

and their s-th derivatives

$$f^{(s)}(z)$$
 and $f^{(s)}_{L_k}(z_k)$.

IJ

$$\left| \frac{a_n}{(n+1)^m a_{n+1}} \right|$$

forms a non-decreasing function of n for $n > n_0$, then for any $\varepsilon > 0$, we have

$$\frac{\lambda - \varrho - \varepsilon}{1 - k\lambda} + \frac{1}{(1 - k\lambda)s\log\gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi(x, s)}{x} dx < \frac{1}{s\log\gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi_k(x, s)}{x} dx$$
$$< \frac{\varrho - \lambda + \varepsilon}{1 - k\varrho} + \frac{1}{(1 - k\varrho)s\log\gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi(x, s)}{x} dx$$

for $\gamma > \gamma'_0$ and k = 1, 2, ..., m, where

$$\varphi(\gamma, s) = v(\gamma, f^{(s)}) - v(\gamma, f),$$

$$\varphi_k(\gamma, s) = v(\gamma, f^{(s)}_{L_k}) - v(\gamma, f_{L_k})$$

Proof. It is knewn ([4], p. 276) that

$$\lim_{\gamma \to \infty} \sup_{\text{inf}} \frac{1}{s \log \gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi(x,s)}{x} dx = \frac{\varrho}{\lambda}.$$

Therefore, proceeding on the same lines as in theorem 6 we easily obtain the result.

Theorem 8. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \ z^n$$

be an entire function of order ϱ ($0 \leq m \varrho < 1$), lower order λ and let

$$\mu(\gamma,f)$$
 , $\mu(\gamma,f_{L_k}),$ $\mu(\gamma,f^{(s)})$ and $\mu(\gamma,f^{(s)}_{L_k})$

denote respectively the maximum terms of

$$f(z), f_{L_k}(z_k), f^{(s)}(z) \text{ and } f^{(s)}_{L_k}(z_k).$$

If $\left|\frac{a_n}{(n+1)^m a_{n+1}}\right|$ is a non-decreasing function of n for $n > n_0$, then for any $\varepsilon > 0$,

$$\gamma \frac{1+\lambda-\rho-\epsilon}{1-k\lambda} \left\{ \frac{\mu\left(\gamma,f^{(s)}\right)}{\mu\left(\gamma,f\right)} \right\}^{\frac{1}{s\left(1-k\lambda\right)}} < \gamma \left\{ \frac{\mu\left(\gamma,f^{(s)}_{L_{k}}\right)}{\mu\left(\gamma,f_{L_{k}}\right)} \right\} < \gamma \frac{1+\rho-\lambda+\epsilon}{1-k\rho} \left\{ \frac{\mu(\gamma,f^{(s)})}{\mu\left(\gamma,f\right)} \right\}^{\frac{1}{s\left(1-k\rho\right)}}$$

for

and dama district action is subserver as a subserver as

$$\gamma > \gamma_{0}$$
 (c) and $k = 1, 2, ..., m$.

Proof. It is known ($[^{5}]$, p. 107) that

$$\lim_{\gamma \to \infty} \sup_{inf} \frac{\log \gamma \left\{ \frac{\mu(\gamma, f^{(s)})}{\mu(\gamma, f)} \right\}^{1/s}}{\log \gamma} = \frac{\varrho}{\lambda} .$$

Again, proceeding on the same lines as in theorem 6 we get the result (1).

REFERENCE

I^1	BOAS, R.P.	:	Entire functions. ACADEMIC PRESS INC, New York, (1954).
[2]	Shah, S.M.	;	On the lower order of integral functions, Bull. American Math. Soc., 52, 1046-1052, (1052).
[*]	SRIVASTAVA R.S.L. AND SINGH, P.	:	On the λ-type of an entire function of irregular growth. Archiv der Math., 17, 342 - 346, (1966).
[4]	SRIVASTAVA, R.S.L.	:	On the maximum term of an integral function, Acta Math., 13, 275-280 (1962).
[5]	SRIVASTAVA, R.S.L.	:	On the derivatives of the maximum term of an integral function, Ganita, 11, 101 - 109, (1960).
T		· T	Manuscript reasoned Nonember 25 19661

INDIAN INSTITUTE OF TECHNOLOGY, (Manuscript received November 25, 1966) KANPUR, INDIA.

(1) I am grateful to Prof. R. S. L. SRIVASTAVA for his kind guidance in the preparation of this paper.

105

지원하여

15

ÖZET

$$Lf(z) = \sum_{n=0}^{\infty} (n!) a_n z^n$$
, $f(z) = \sum_{n=0}^{\infty} a_n z^n$ seri açılımı ile verilen tam fonksiyonun

Borel dönüştürülmüşünü göstersin. Bu takdirde, $z \cdot z_1 = 1$ olmak üzere,

$$f_{L_1}(z_1) = \sum_{n=0}^{\infty} (n \ 1) \ a_n \ z_1^n$$

vaz edilsin ve buna benzer tarzda, $z_{k-1} \cdot z_k = 1$ olmak üzere,

$$f_{\boldsymbol{L}_{\boldsymbol{k}}}(\boldsymbol{z}_{\boldsymbol{k}}) = \sum_{n=0}^{\infty} (n !)^{\boldsymbol{k}} a_{n} \boldsymbol{z}_{\boldsymbol{k}}^{n}$$

tanımlansın, $f_{L_k}(z_k)$ fonksiyonları, k sayısının çift veya tek olmasına göre, z veya 1/z düzleminde tam fonksiyonlarır. Bu yazıda bu fonksiyonların sonlu mertebeden olmaları için bir gerek ve yeter şart elde edilmiş, ayrıca $f_{L_k}(z_k)$ ile f(z) fonksiyonların mertebeleri, alt mertebeleri, tipleri ve λ -tipleri arasında bazı bağıntılar ispat edilmiştir.

106