ON THE BOREL TRANSFORM OF AN ENTIRE FUNCTION OF
EXPONENTIAL TYPE

PreEM SINGH

-

Let Lf(z) = Z {(nl) a, z® depoie the Borgr transform of the entire function defined

=0
by the series
@
fla) = Z a, .
n=—0
Then let
o3
le () —= E () ay z': y
=0

where z.g; = I ; simifarly, let

ol
ka (Ak) - 2 (n!)k fn z;(' »
n=0

where z; 1 . T = 1. Then all the f'L (zk) are cntire functions on the zplane or
. k

on the (1/7) -plane, acecording 1o the parity of k. A necessary and sufficicnt condition
for fL (zk) to be of finite order has been oblained, as well as some relations between
3

the orders, lower orders, types and » - types of f(z) and fL (zk) *).
k

1. Let

f@ =Y s
1=}

be an entire function of order g and lower order A. It is said to be of exponential type if
it is of growth (1, T) fe., of order g == 1 and if ¢ == 1, then its type is at the most equal
to T(T < ~). BoreL first showed ({'], p. 73) that

(L1 1@ =Y, a2
n=0

is an. entire function of order 1 and type'a if

o

(1.2) L@ = Z Y a, 2

n=0

(*) Contenis were presenfed to the 30th Conference of the Indian Maihemalical Society at DRARWAR
in 1964,
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is convergent for | z| >¢. L f(2), as wsual, denotes the BoreL transform of f(z). We

. 1
apply the transformation z—= — to (1.2) and denote

1 1

il —1b .

7 Lf:(zl) Yle (zy)
Thus, we get =
(1.3 N =Y, a,(n)) 2|

n=0

where f(z) and L f(z) are in the éame plane while Jr, (z,) is in the new plane which we

denote by Z -plane, If the order p of f(2) is less than 1, then we show in this paper that :
f , (e is also an entire function in the Z -plane. This is generalised by appliving the BoreL
transform and inversion transform repeatedly, Thus, if I, (z), be of order g, (p, << 1) the £

. 1 .
application of the Borel, transform and the inversion transform z, = = to (1.3) yields
2
o}
1 i
(1.4) /2 (?) = Z ay (07 2= £y (2)
r=i}

which will be an entire function in the z-plane. Repeating the argument & times, we can write

ay

(1.5) f, @ = Y, @ a0k 2 -

n=0

Evidently, if % is an odd integer the function ka (z) will be in the Z -plane, while if &
is even, it will be in the z-plane. It will follow that if ka (zx_.;) is an entire function of
— L

order g, ,<<1 in one of these planes then ka (z;) is an entire function in the other plane.

In this paper I have investigated a necessary and sufficient condition under which
1. (z) is an entire function of finite order in one of these planes, A number of relations
between orders, lower orders, types, and A -types of f(z) and f; (z;) have also been obta-
ined. The results are given in the form of theorems with remarks.

2. Theorem 1, If

ol

f@ =Y, ay

=0

is an entire function of order p, then

i, @, =12, n)
is an entire function of finite order in one of the planes, if and only if, ko< 1.

Proof. We have
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log |an (rDF ™" log ay|”' Kk log ()
nlog n nlog n nlogn

But from STIRLING’s formula

+3 —
n!f-'nn z.e"".\/Zn.
Therefore,
log | a, (n )k |—! log |a, |t k(n+t4%)logn ( 1
nlog n nlogn n log n log n

_ log ot
= “atogn  FTOD.

Since (['], p. 9)

—1
@1 lim inf 08lertT L
e nlogn I
by making use of (2.1) in the above expression we get
Nk |—t
2.1y hm inf 08 @G DR L
_ o nlogu o

This leads us to the conclusion that fy {(zg) is of finite order if ko << 1.
Conversely, let f(z) be of order p (where & p << 1); then, from (2.1)

lim sup — n log 1
s log | a, |

Hence for any s >0, we can find a number N (&) such that

_I‘)gr’#r < (g4 forall n> N,()
or
pa— n —
| an] < n €F°
or
1
[y a,|'"'" < et
Therefore :
lim | ()% a, |"'rl =0
S,
and hence the theorem.
Theorem 2, Letf
i (z) = E a, 2

n==_

be of order p(mop << 1) and lower order ) and let py and Ly denole respeetively the order
and lower order of
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ka G, k=1,2,...,m,
then
_—_ e
@2 QG =1_"% 0
If further,

a
m * (k:1,2,...,m)

Jorms a non-decreasing function of n for n > n, then

2
(2.3) he =177

Proof. (2.2) follows from (2.1)". Further, since

.. T
(""i"Dk ot

forms a non-decreasing function of n for n > ny, in view of the fact ([*], p. 1047), that

l’ (k:l,2,...,m)

) - log lay ™ 1
@4 !u;?*:;up nlogn A
we get
. log |a, |t 1
]'Tai“p nlog n = A

Using StirLingG’s formula for #!, we easily get

1
=TT
Applications, Let
F@ =) anz"
. n=0
be of order g, (o << 1) lower order 1 and
N oy
ka (zp) = Z a, (n Dk z}i
n=0

be of order g, and lower order 1 respectively and satisfy the hypothesis of theorem 2: then
the direct consequences of (2.2) and (2.3) are

2.5 e <l g <o <...< gp— < om ifand only if po=h0,.
(2.6) A< < d <. <y <d, ifandonlyif 1z=0
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2.7 g =0 if and only if o, =0 forany % 1=Fk<=<m,
{2.8) A=0 ifand only if A, =0 forany k 14k < m,
2.9 e=1 if and only if g, = A3 forany &k 1=<k<m,

{.e. if £{2) is of regular growth then so iSka fz) and vice versa.

Theorem 3. Lef

)

flz) = Z a, 2"

n=0
be an entive function of order g,{0 << m o < 1) and type T. Then

o
(2.10) == @IV for k=12 ..., m
k

where o3 and T, are the order and type, respectively, of ka {zp).

Proof. Let
L3
" —
= 2. WAL
v = . | an (n Dk |
Then
, 1 ke, e,
log win) = log S logn+—Flognh+ —=log |a,].

ee, n 7

Since, from (2.2),

+1
Qk_———]‘tg—k_g and n!""!’f" e \/E.TI,

by making use of these in the above expression, we get

e
3
log v (n) ~ log + re logn [a, Y™,

kg

ce, . © *
Now, proceeding to limit, we get
1 o
T =-—{h*
k 2,

in view of the fact ('], p. 11) that

99
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- e
2.11) lim sup s Ya,] T

fimderd

and hence the theorem is proved,

Let /' (2) be of order g and lower order ,(0<<4 < ¢ < ), then [*],

2.12) im inf S0EMG)
gt re
Further, let
(2.13) hm inf SEMM _
o rh

We call 1, the 4 -type of f(z). Jt has also been shown [1 that, if (0 < 1< o)
fn
L%

and forms a non-decreasing function of # for n > n,, then

LA
(2.14) fiminf 27 {an| " =ty

nox
The following theorem can be proved on the lines of the proof of theorem 3.

Theorem 4. Let

o

@@=y a2

=0
be an entive fimction of order p, lower order 1 (0 << A << o) and ltype t3. If

fn
(ﬂ + l)k An+1

s k=12, .., m)

forms a non-decreaging function of n for n > n,, then

LY

(2.15) 1k = —11“ @r) k
. k

for

k=1, 2, .., m
where A, and t, are lower order and k- type of f.}‘k ().

Remark. If f(z) is of regular growth ie. ¢ = 1 then (2.15) is the relation involving
the lower types of f‘r‘k (z3) and  f(z). Otherwise, if ¢ + 1 it follows from (2.12) that
lower type of f(z) is zero.

Here we give a few applications of theorems 2,3 and 4.
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() The relation, (2.2), (2.3), (2.10) and (2.15) are recurrence relations. Hence knowing
the order and type of any one function out of the m - 1 furctions, one can find out the
order and type of any of the other m functions. The same is true for the lower order and
A-type.

i (ox Tk)l"pk and (g 13 )10

are invariant quantities for
k=1, 2, .., m

@i I

a,
TT | =1 2em

forms a non-decreasing function of » for s > n,, then ka {zz) is of perfectly regular
growth if and only if f(z2) is of perfectly regular growth,

(i) ¥ pwsd then 1, =0 for k=1, 2,.,m 1, is the lower type Of'fl-k (z).

(» ¥ mp<1, then f(z) and ka (z) each have an infinity of Zerces in their
respective planes,

(/) I one considers (0, @), (1, g,), ..., (", @,) as points in the cartesian plane then
all lie on the curve ‘

4
J? =
1—x0
Theorem 5, Let
oo
flzn)= E an 2
r=0

be an entire function of order, e lower order A(0<<2, mo<C1), type T(T>) and
I-type 1y, (3 = 0), then

m

T .
(2.16) iﬂé_T 2 = T @it T
k=1
and
m
@17 0, — = ) %18 .
k=1
If further, In | forms o non-decreasing function of n for n > n,, then
ot
i
(2.19) bt T (s 12, Yk
' At H =t gy

k=1
and,
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1

(2.19 ' Ap—4 = Z A—y Tk
k=1

where for k=1, gy=e¢, W= To=T, ipo=11 and Qs Ay T and iy
are the same as in theorems 2, 3 and 4.

Proof. Let us consider the entire functions ka_l (zz—,) and ka (zz) then, on Fhe basis
of theorem 3, we can see that

2.20) | ; e
T, = o (er g T gz

%
Putting k=1,2,..., m in (2.20) and then multiplying the m equations thus obtained.
we get

1 = .
(2.21) T T Tm=———— (D" ... (&m—y Tn—1)’m—1 .

BiCzevr- Om

Again, considering ka_l (zk~i) in place of f(z) in theorem 2, then (2.2) reduces to

Or—1 .
P e O T Q1 T € Q1 .

(2.22) g = I— 6 s

Making use of (2.22) in (2.21), we can casily see that

"

2m T, e
";Tm. = 11_[1 ey Tyy)
o

which is (2.16). ,
In (2.22), putting £k ==1,2,..., m and then adding all the equations thus obtained,
we get ‘

e M

Z (g — e )= Z (e 1)
k=1

k=1 -

or

n
Om — @ = Z Qk E'k_.l
k=1

which is (2.17). Similarly, we can prove (2.18) and (2.19).

3, Now, we obtain relations between the maximum moduli of f(z) and ka (z;) and

also between their maximum terms and their ranks. We denote by M () the maximum mo-
dulus of f(2) for | z| =y, and by M (3, f1,) the maximum modulus of ka (z), taking

| 2z | = | z| = y. When k is even we have z — zx but when % is odd we have z = 1/zr.,
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In the latter case, having chosen a value y for | z ], we look for the point in the Z-plane
such that | zz | = 9. Corresponding to this point zx the point in the z-plane will have
the modulus 1/y. Similar remarks apply also for the maximum terms and for their ranks in the
following thecrems.,

Theorem 6. Let

[« ]

1@ =Y ay

n==0
be an entire function of order (0 = mp < 1) and lower order 1. If

a, l
(41" any

forms a non-decreasing function of for n > #,, then for any & > Q.

;\—vp——c 1 A +€ 1

B e M) YO <log M@, <7 g My P

Jor y <y, () and k=1,2,...,m
Proof. It is known (['], p. %) that

. sup loglogM(y) ¢
lim .
¢ »co inf - logy Y !

Therefore, for any & = 0, we can find a positive number y, (s") such that

G.D P < log M) <

Similarly, for the integral function ka (z3), we have

1jk:\ *ek ‘ T o
¥ <logM (, fr) =7 for y > yy (=)
or '
A-pE 1 p—l+a E
Tk 1 —Fkp i—ke
) {logM(y)} ‘Z<10gM('y,ka)<? {logM(y)}
where
11—k
= (o 257).
Making use of (3.1) in the above inequality, we get
?\up—z 1 p—ate 1

2 Llog i ) T <rogartn fry <y {log My}
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where
y>ra()= max (y,¢") ye(e)}
1=k=m i
and hence the theorem.
Theorem 7. Let
- 5

fl)= Z a, z"

n=0

be an entive function of order o (0 < o << 1), lower order & and let

v Shv @, ka), v, FCN and vy, f g:)

denote respectively the ranks of the maximum terms of
1@, fr, @)
and their s-th derivatives
@ and f f—'z (zr) .

If

ay I

D)™ anst,

Jorms a non-decreasing function of n for n > n,, then for any & >0, we have

Y ¥
A—pg—ze H g (x, 5) l_f @k (x, 5)
1~k +(I—k2-)slogy f x dx‘:ﬁc;g—y x @

Yo Yo

14 1 )

e— £ @PLix, 8
<H—ke T (I—kg)slogy;f x =

o

for v > T:» and k=21, 2,..., m, where
¢ s) =2 (1 f) — v (1,1,

w9 = v (I — v fy ) -

Proof. It is knowa ([*], p. 276) that

v
lim % _1 f 2 6. ) dx =12
oo mf slogy x A

.

[}

Therefore, proceeding on the same: lines as in theorem 6 we easily obtain the result,
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Theorem: . Let

L]

f@) =), ay 2"

n=0

be an entire function of order p (0 < mg << 1), lower order 1 and let
B f) s p(ndy ) kS arm’u(r,f,f;))
(4
denote respeciively the maximum terms of

f@, f, @) /0@ ad 12 @)

An

¥ ‘ GO anrs

is a non-decreasing function of n for n > n,, then for any s> 0,

I4p—p—s 1 (5 I+p—dte 1
) O el R {fﬁfbﬁ} ke f G, fO) D
6 () wni)f =7 » (7.7

Jor
y >y, (8 amd k=1,2,...,m.

Proof. It is known ([%], p. 107) that

(y,f{‘)) }'Is
o {L_M
im S 2T Vs D e
oo inf log i

Again, proceeding on the same lines as in theorem 6 we get the result (V).
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OZET

L]

(=]
Lf(z) = Z ah T m, flz) = Z @, zm seri aphumt  ile .Veril‘en tam fonksiyonun
n=7 =0

BorgL ddnigtiiciilmiigiindi - gdstersin, Bu takdirde, z .2) =1 olmak {izere,

Sy, E0= Y wha, g,
=0

vaz edilsin ve buna benzer tarzda, z;_j . 7, = 1 olmak iizere,
. w _
"
ka ) = Z 0% ap 2f
n—=0
tamxplansm. ka (zk) fonksiyonlari, % saywsinin gift veya tek olmasina gdre, z veya

1/z diizfeminde tam fonksiyonlardwr. Bu yazida bu fonksiyonlarin sonlu mertebeden
olmalart igin bir gerek wve yeter gart clde edilmig, ayrica ‘fL (zk) tle f(z) fonksiyon-
'

larmin  mortebeleri, alt mertebeleri, tipleri we 3 - tipleri arasinda bam  bagintilar
ispat edilmigtir,




