ON THE MEAN VALUES OF INTEGRAL FUNCTIONS *

SATYA NARAIN SRIVASTAVA

Let p. (¢} and mg ;. (r) be the two functions associated to an integral function f(z)
by the formulae {1.1) and (1.2}, 5 and % denoting any two positive nombers, *

Three- theorems concerning these two functions are proved.

1. Let f(z) = Z a, z" be an integral function of order g. Also, let
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where § and & are any positive numbers.
We shall obtain some of the properties of By (*) and mg ).

2, Theorem 1. Let f(2) be an integral function. Then, for 0 << r, < r,,
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where 8 and k are any positive numbers,

Proof. From (1.1) and (1.2), we have
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Therefore,
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From (2.1) follows
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and the inequalities follow since By (x) is an increasing function of x.
We may note that if f{z) is an integral function, other than a constant, and « (0<Ca<C1)

is a constant,
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3. Theorem 2. If f(2) :_Z a, z% be an integral function of order p (0 << g < ),
=} '
type v ond lower type v, then
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where 8 and k are any positive numbers,

Proof. (i) We have
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where p(r) = lQN(r)[ PV s the maximum term of rank N () for | z{ = r, in the series

for f{z).
From (3.1) and (3.2), we get
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(3.3) (g P Zp, )= {ME))}3,
Since for functions of finite order log u(r} ~ log M (r) it follows, from (3.3),
(3.4) log {u, (1) 175 ~ log M ().

The result (7) follows easily from (3.4) since
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since x) is an increasing function of x.
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Taking limits, we get
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Also, from (2.1), we have for g =0
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since g () is an increasing function of x.

Taking limits, we get
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Since the left hand side is independent of a, for g —> 0, we get
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The result (7) follows from (3.5) and (3.6).
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4. Theorem 3, Ler f(2) be an integral funciion. Then

lim sup ﬁ’f‘i) AT sup __nli’ﬂ‘ﬁL = _2 s
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where M () = max |f(2)| and 3.k are any positive numbers.

Proof. Since p a(x) is an increasing function of x, therefore from (2.1), we have
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Taking limits, we get
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Also, from (1.1), we have
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"Therefore, from (4.1) and (4.2), follows
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ug ) ve ny ko ), F(z) integral fonksiyonuna (1.1) ve (1.2) formilleri ile 1okabil etti-
rilen iki_ fonksivonu gdstersin: & ve &’mn birer pozitif sayt olduklan farz edilerck

bu iki fonksivonu ilgilendiren dg teorem ispat edilivor.




