ON CONVEX FUNCTIONS OF ORDER ZERO
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Let M {r} be a non - decreasing non negutive convex function with respect to an absolutely

continuous function ¢ (r) in (0,00) [1,#] The order [#] o of M{(r) is the quantity
fim log M)

r2>oco @) 0= = o).

‘The ohject .of this paper is to prove certain rusulis ¢oncerning convex functions of order
zero. These results contain some theorems proved for entire functions represented by power
or DIRICELET ¢xpansions [#,7].

1. Introduction. Let A (¥) be a .non-decreasing convex function with respect to an
absolutely continuous function ¢ () in (0, ) and non-negative (for details refer to the
papers[] and [?}). Let M (8) = 0, for some & = 0 (depending on M), § being a constant,
We may, then, represent A () in terms of an mtegral of a non-decreasing function n ().
n(¥) - oo as r > co, given by ["}

.
an Mo = [ n0deo,
)
the integral being considered as a LERESGUE-STIELTIES integral.

By the order g of M () we mean the quantity [*]:

1.2 H_mMg , 0=p= oo,
P00 ¥ (J‘)

In this paper we wish to prove certain results exclusively devoted to the convex func-
tions of order zero. The importance of these results is that they envelop many of the
results already known for entire functions represented by power and DiricHLET series, for
instance see [*], [®]. The results are given in the form of theorems.

2. . Theorem f. Let M (¥) be a convex function with respect to ¢ () of order zero,
then

@1 M@ =0 ((p6))*B8)

if and only if

22) Q0 =0 ((p)+p-t),
where ’

Q) = e f n() e 4 (),

and 2L a<C v} a—2 < a1,
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Proof. Under the hypothesis of the theorem, it follows from (1.1} and (1.2) that

Tim log n (r) — 0

00 ar (J‘) ?

and hence for x == x, and &> 0 arbitrarily small,

exp. (1~ ¢ (x)) . exp. (' @ (x})

=L
1 (x) T exp. (e g (x) 0= gTha

and so {exp. (7! @ (x))/n(x)} is an increasing function for x = x, and -+ oo with x.
Now for R = r.

R
(2.3) MR > f n(xy de(x) > @) {¢(R)—g@)}.

Let us choose R = R (#) such that ¢ (R) — ¢ (¢} - ¢ (), which is always possible for
a proper choice of @ (1) and then of R (for example, ¢ (*} =+, R = 2y and ¢ (r) = log r,
R = r? etc.). Hence if (2.1} holds, then (2.3) gives

n{) =0 ((cp ) )qfﬁgl)’ I
so that - ' '

00 =0 (0 [ (@b D dp®) = 0 ((rF).

Conversly, next suppose that (2,2) holds, Now

O

Q) = @™ f 7(x) =P g ()2 n (),

r

and therefore # (r} is atmost of O ({p (*))*—B—").
Again, let R> r where R = R (r, k) such that ¢ (R} — @ () - ¢ (k) > 0, k being
a constant, then

R o0
Q) = o™ f n(xy e dg(x) e f n(x) e ¢ g g (x)
R .

r

@ r
YL Ry P
= H (R) (1 e—? )+ en—t @ (R) ¢ nl d(]?(x)
R

=n(R{1l—e®E fy @Y o<yt <1, g 4 37;“ =1;

and therefore n () is at least of O (((;0 (ry)e-—p-! ) . Hence we conclude that

n() =0 ((g () E),

which when substituted in (1.1}, gives (2.1). Hence the result is proved.

Theorem -2. If L () be any function satisfying the following condition :
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(i) L () is positive, continuous for r> e« >0

lim log L(r) = 0,
¥ /g (I)

where {log L (+) [ ¢ (+}} is assumed to tend to zero steadily as r = o,
iy L)y 4 o as r— e ;

(i} L(R) ~ L{). R>r with R= R {r k) such that ¢ (R) ¢ () > ¢ (k) =0, k
being a constant ; then, if either M (¢} ~ L (*} or #(r} ~ L{r).

2.4 hm MO

rooo 1{r)
For proof of this theorem we need the following lemma :
Lemma, If L (r} satisfies the above conditions, then
) .
[ r@drw

lim o
roren L{r

= o, (d = q positive constant).

Proof of the lemma. For we have

- log L (ra)
lim —— =
¥ ()

0.

nN—=>0o

There will, therefore, exists a sequence Tug = Ty (say) of ¥ = oo, such that ({71, p. 18,
Prob. 107) '

log L (rp) log L {ra)
@ (".N) = ¢ ()

s n=1,2,..., N—1;

’

log L (x) log L (ry)
7 G 7 Oy

Xy

Let ry = r Then

r r m {x)

(L () f Lxyd qg(x) > (L{))— f(L(r))'”‘” d'p (x)
& [i]
® !
¢\ Ay )
Iog L(J‘) {li(L(f))
@ (1)
Iogm (L+0(1)).

Hence the lemma follows.

Proof of the thecorem. (i) Since M () ~ L {r), therefore, for all r=>yr, and &> 0

‘ . ) R
d—a—* LN >(1—a"' LIA>M®EB =41+ fn(x)d(;o(x),
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(I 4e " LEYy<M@E =4+ f n () de{x);
@

so that
* . R . .
{0—e=" — 1 4+ 2} LG > f n{x) d @ {x)

> {p(B—e @)}

~n{r) ¢ k).
i.e.

. n{ry
R e

"Hence, as L{r) ~ M{), (2.4) follows.

(i) Here n (¥} ~ L (), therefore, for r>~vr, , d>r, , >0

M) > (1— ) f L) d g (0.
a

Thus

(i—a)f L) d g )
d
AT

im. M8~ i
r-roxr A (I' y O3

by the lemma and (2.4) follows again ‘).
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OZET

(0, co) wralifinda mutlak ofarak sitrekli bir @ {r) fonksiyonuna nazaran konveks olan,
azalmayan ve negolif olmayan bir fonksiyon A (r) ile gdsterilsin [1,2], M{r) fonksiyonunun
«wderecesi» [ 8] : .
Tim log AT
lim loe M) (0= ¢ = co)
r—oo ()
bagintist ile tanmmlanir. Bu yazuun giyesi sifinnet dereeden konveks fonksiyonlar hak-
kinda bézi sonuclar ispatetmektir. Bu sonuclar kuvvet veva DiricHLET serileri ile verilen
tam fonksiyonlar icin bizy teoremleri ihtiva etmektedir {3,4].




