ON THE MEANS OF AN ENTIRE FUNCTION AND ITS DERIVATIVES ')

1. P. SiNGH

Some properties of the lower and upper limits of particular means of an entire

. function and its derivatives are obtained, These properties are extensions of some

previously proved, under less general conditions, by R. P. Smivastava, PK. KAMTHAN
and O.P. JunEsa.

1. Let f(2) be an entire function of order ¢ and lower order . For 0 <& < w and
z = reit let .
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where ™) (z) denotes the m-th derivative of f(2). Then the following results are
known :

Taeorem [*]. For évery entire function f(z), ather than a polynomial
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(here r + <o excluding a set of values of r having measure zerc).

1) 1 wish to express my sincere thanks to Dr, 8. H, Dwivept, for his helpful suggesfions and
guidance in the preparation of this paper. ’ N
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Jungia ['] proved. the following result as a corollary:

If f(z) is an entire function of lower order 4 > 1 + _r% and order g (< ), then
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Theorem [']. For every entire function f(z), other than a polynomial,
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where r tends to infinity through wvalues excluding an exceptional set of at most finite
measure, .
For é§ =1, R, P. SmivasTava [°] has given a proof of (1.3); when the upper limit
is only considered. For 1.<d < oo, P. K. KamraaN [?] has given a proof of (L.4) for
the upper limit only and under the condition that r » o excluding a set of values of r having
measure zero. Their methods, infact, fail to give the lower limit, The result {1.5) has been
obtained by O. P. JungJa, imposing the condition on the lower order. In the case 0 < d << 1
O. P, JuNgra has given a proof of the result (1.6) (see [']), when the upper limit is only
considered. His method, in fact, fails to give the lower limit of the left-hand expression in (1.6).
Our aim in this paper is to prove some results on the means of an entire function
and its derivatives, We prove the following :

2. Theorem 1. If f(z) is an entive function of lower ovrder J and order g (< o), then
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where 0 =1 and m=12,..., m.

Remark, This result is stronger than that of Jumgsa in the sense that it does not

impose the additional condition 2 > 1 + el
To prove this theorem we require the following lemmas :
Lemma 1. For an entire function f(z)
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This lemma has been proved by Ramman [7].

Lemma 2, If f(z) is an entire function of order ¢ and lower order 4 and é =1, then
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Proof, It is known that [?}
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Putting & = 1,2,..., m and multiplying the m fnequalities thus obtained, we get
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Now by Lemma 1, we have
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Hence for all r > ro > 1, we get
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which is {2.3).

Lemma 3. If f(z) is of finite order ¢ and lower order 1, then for r > re
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and for an infinite sequence of values of r tending to infinity
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where §>=1 and & is positive.

Proof. 1t is enough to prove (2.4) since the proof of (2.5) is similar.
We know [2] that for every &> 0 and large r
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Giving & the values 1,2,3,...,m and multiplying the m inequalities thus obtained, we
get for large » -
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Proof of Theorem 1. Lemma 2 leads to
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Proceeding to limits and using Lemma 1, we get
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Comparing (2.6) and (2.7), we get (2.1),

3. Theorem 2. For every entire function [(z), other than a polynomial,

(1)} 1
logr{ﬂa(r,f ) }7;

Jim SUP Ms(nf) J e

oo mF log »

3.0 0<s<1.

where r tends to infinity trough values excluding an exceptional set of at most finite measure,
The proof of this theorem requires the following lemmas :

Lemma 4. For every entire function f(z), other than a polynomial, outside an
exceptional set of at most finite measure,
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where » () denotes the rank of maximum term in f(zy for |z| =r, k is positive constant
cand 0 <8< 1[Y. .

Lemma 5. If f(z) is of finite order ¢ and finite lower order 4, then for r > r,
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Proof, It is known [*] that
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Then the proof of the Lemma follows on the lines of that of Lemma 3,

Proof of Theorem 2. Lemma 4 leads to
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Comparing (3.5) and (3.6), we get (3.1).
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OZET

Bir tam fonksiyon ve hu tam fonksiyonun tiirevleri ile tanmlanan bizi ozcl ortalamalarm

alt ve iist limitlerinin  biz: Ozellikleri ispat edilmekiedir. Bu sonuglar, daha dar bir

gergeve iginde R, P. Smivastava, P. K, Kamrunan ve O. P, Junesa tarafindan elde edilen
bizi baginfillann genellegtirilmesidir,




