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A conneclion  parameter, whether symmeiric or  asymmetric, may be used Lo dsline
cerisin ~mecthods of covariunt JHf

niialion, purallelisms and the corvature lensaors ol

the space for whish the conn

an has been  d:=fined. The relarive connection

coelficient. (given in 1#1) defines two proceszes ol covariant differentiation.  Fiendo-
geodesics are anto-parall=! curves refailve to each of the two methods of differeniiation,
Prvanoviten [9] has used this connzction .pzarameter in the derivation of what have
been called the refative Farser formulae. In ithe  present paper  the anthor has
obtained three curvarure t=nxors called the relative cuarvaiure tensors of the [irst,
second  and thicd kinds. A number of identities have been deducsd. The notion of
refatively [lat subspaces has been intreoduscd for cach process of dill:rentiation.

1. Fundamental formulae. Let a subspace, V,, given by the equations
PpE == S (x)y ;o a=1,..,m ; i=1,...,n;

be immersed in an m-dimensional riemannian space Vm. Consider a set of unit vectors
l;‘u) (w=mn-+1,..., m) defining (m—#) congruences of curves such that through each point
of V,, therc passes exactly one curve of each congruence. At the points of the subspace, we
may write

it . .
a1 By =ty BE Y Cun NGy s =ntl m,

P |

where the combonents féu) and the scalars C(:n') are functions of xf | N&) are unit normal

. ay% R ,
vectors of ‘the subspace and B = -;%I— It is assurned that the wvectors }'?u)’ together
1.

with any # linearly independent vectors of V,,, form a set of m linearly independent vectors
of V. This is possible if and only if the determinant |C(m)| =0,

Consider a vector field & = Ef{x) of the subspace. With respect to this vector field,

an asymmetric connection Mff’k , called refative connection parameter, has been defined in [].
This is given by )

1.2) _ Mpy, = Iy + 2 »

(89}
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where _
. _ . . ,
(1.3) D=2 D Couy ey G G— 0 ) &, 18
T

is a tensor, F;k is the CaristorreL symbol of the second kind, C is the cofactor of

. v
Couny 0 | Cn 171 €yt and &y = @) B 8', 0, ,; being the second fundamental

tensors of the subspace. A pseudogeodesic (['} and [*])} of the subspace is given by
d? xi ;odx dxk = A . del  dx/
a4 a2 2 Cen P g g
. .

f Cdx! At
(o= roi G ) =0

2. Relative covariant differentiation. The connection parameter M[fk may be used in
the following two definitions of relative covariant differentiation of a tensor. of type

T (x, E)
wr 27, 3T &

el L .-
(2}) R I.‘Jik = Bxk + BEd axk + TI’ M!"k‘ . TJI MJ"."C

and

. 9T art pd .
P | ! 7 M
@2 , s o gl A T

— T, My;.

. ' §
It may be verified that the curve xf = x7(s) is a pseudogeodesic of the subspace if

we have
dxi dx/ _ (dx" dx! _
(ds)u ds =0, or ds);j ds =0

Therefore, pseudogeodesics are auto-parallel with respect to each of the two définitions of
relative covariant differentiation.

It may be verified that
2.3) (@) Qp + Oy =0, (b} gy, =0

and

© Eyik = Z Dy Uiy s &+l g 8ae— 28y 1 a) s
"
where

¥

Qe = &y Ly and D, = 2 Can k-

3. Relative curvature tensor of the first kind. Consider a vector field «f (x)} of the
subspace. Subjecting this to the relative covariant differentiation of the type (2.1), we get




ON RELATIVE CURVATURE TENSORS IN THE SUBSPACE OF A RIEMANNIAN SPACE 71

; a2 ot dwl  ddt
3.1 P ee——— —— M, M
G it axk dx/ axk ¢ o ax/ -
aMl, aml aw o )
[4 i i Lt { ) i r
M, — M
N ( dxk aE? Pxk My My, Ulr Mk
whence
i i L i
(32) Y~y = ff'.:lu v, (@ — ).
- where
wd d
(33) Rl e = 8 B/j!;k . 2 M;ff d s - 3 M;h a Jh BE
el ax® agd Xt Dl agd ok
+ er-h Mj,.lfc' rk Mjh

Remark. It may be noted that the term wf R (Q;k — ),;) occuring in the right hand

FaR
side of (3.2) includes o . Tis coefficient has not been absorbed in R’ 1 as the altered va-
‘-

lue of the relative curvatire tensor will not be consistent with a theorem ( Theorem (6.1))
on the existence of relatively parallel vector fields.

Using the fact that the CarIsTORFFEL symbol ijk is independent of &% and substituting
from (1.2) the equation (3.3) simplfies to

e — .Q’

349 fz.ﬂrk = K'. Jhic + ‘Q}k s ‘th sk ,+ ‘Q; &
where K "‘ ke is the RIEMANN {curvature) tensor of the subspace.

The tensor R’ is called the relative curvature tensor of the first kind and we have

1 . fhk
(3.5) '{{ijhk T &gy fi e = Konee T Ly o — Lom s ke

: . + ‘Qi_rli' ‘Q;:k - ‘Qirk Q;"fl )
- The following results are obvious : ' '

- e ey

i
(3.6) R e = — Ry and R ke — — 8
[l 1 t
Introducing certain interchanges of, indices and using the relation (2.3) (a), we get
— ¥
‘pu‘h 'Qj ‘erk ““_u - ( el = Ic — erk 'Qr'h) .

This relation, the use of {2.3) (a) once again and the fact that

I(u]r = K}Hrk )
proves
Coe e . - . ) - . -y
G . Ji'{rjfm: - Ifjmk ’
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Finally, from (3.5) we obtain

/\

(3.8) ‘ lifhk + 'Ri‘l'rkj + ‘erqh er_k—;ii + “QH_U 1k + 'QikT'r i

“+ (Qn'k ‘Q ] + Qm‘i =4 _k o "‘rrl £ Ml) »
where

— e ) i i f
Q= Gy — Ly and Q= Ly —

and we have used the following well known identity about the Riemann tensor [%, 112]

39 Kigpge + Kygyy + Ky = 0.

Using the eduation (1.3) it can be proved that the expression in brackets on the right hand
side of-(3.8) vanishes and we have

/\

(3.10) Uhk + ‘R.u'rfq =+ Rl.’qh £ + "'rh vk + Q’t’f(?r H

[

4. Relative curvature tensor of the second kind. Consider the relative covariant c[1ffc-
rentiation of the type given by (2.2). Proceeding as in section 3 we deduce

i T B i - -
@1 Yo Vi = o Koy, (2 — By ),
where
ST T i o r
4.2 R e = K e & Qg on— Qi T Yy ‘(‘!q Oy Py -
The tensor R, is called the relative curvature tensor of the second kind. Also we have
2
-~ def
4.3 J’;fﬂ,k = &y R itk = K T Qg iy
v =+ (‘Qihr ‘Q;':j—“ Qifcr ‘Q}P )‘
1t is obvious that
.(4-4)' Ku.w( = *Efjkh and &' e = ~® KR
2 2 2" 27

L)
However, in co?ltradiction to lfi,rhk or K., the tensor Ruhk is #not skew symmetric in the

first two indices.

The equations 4.3), (3.9) and (1.3) yield

-

(4.5) ufrk -+ 'R!l'th -+ -Rhtqh ‘Qlk_r h + Q —+ ‘thk H

5. Relative curvature tensor of the third kind. Using the covariant derivatives of the
types given by equations (2.1) and (2.2) it may-be verified that




ON. RELATIVE CURVATURE TENSORS IN THE SUBSPACE OF A RIEMANNIAN SPACE 73

. i . i d
(s.1) o, = vt(%+ﬁdﬂ4&,_3§_+M,Mf)
. |7k dxk Oxf dxk b Ed ﬂaxk i kr
e’ i Ao y .
F gk My o My — 9y, My
Since ,
(5.2) rpii ,— q)'i; — ot (M,:r _ M,:f) ,
it follows {from {5.1) and a similar equation},
; : L
(5-3) Yl — Yk =0 f,. th
where '
c i . i o =d . i - { . d
(5.4) R My @M 9T My 8 M, 3%
N ik . E}xh ] Ed axh axk a Ed Ak

+ M}, Mj— M}, M} — M, M, + M:-j My
The above equation, when simplified with the help of (1.2}, reduces to
(5.5) ;15*'_ e = K e F Qg Qg O 25— 0l o
— Q5 O 4 0l
The tensor Ej' ik is called the relative curvature tensor of the third kind, This is

nof skew symmetric in the indices # and k., We have

> def -~ -
(5.6) };r'jka — & fr. e = Kigne Qe — Qug e T Qe D

— Qe Dy — Lygy L A Ly Qg
It may be verified from the equations (1.3}, (3.9) and (5.6) that
(5.7 ' Rige + Rypy + Ry = 0.
3 3 3
A simple calculation based on the equations (3.5), (4.3) and (5.6) yields
.8) ’ Rr’jhk + Rihkj + Rikjfz =0.
1 z 3
The following commutation formulae may be of some interest :
. . " /‘-l ’
(5.9 Vil gk ™ Pilkj Z*“’lf.ikj“”ur(Qr;k'"gij)’

-

‘ )
(5.10) Uil T Yk T T R gy vy (9 — )

e e A D I O A PP I O T e e I OO OO A S A A R
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and
s

. ) 7
(5.11) Vilg ok T k) T T Ry

6. Relatlvely flat subspaces. Definition (6.1). A subspace V, is said to be a relatively
flat subspace of the first or second or third kind according. as

(6.1) {tfjlzk =0 or Ry =0 or Ry, =0,

2 3

at all the points of ¥, . It is said to be a relatively flat subspace if all the three conditions
given in (6.1} are satisfied. ’

Definition (6.2). A vector field of is called a relafively parallel vector field of the
first kind if

(6.2)a _ v"l ;= 0, - identically.
‘On the other hand it is said to be a relatively parallel vector field of the second kind if
(6.2} b , o =0, at all the points of ¥,.

We shall prove the follov.fing:

Theorem (6.1).

A nrecessary and sufficient condition that a Vu admits a set of n linearly independent
relatively parallel vector fields of “the first kind s that it is a velatively flat subspace of
the firse kind.

Proof. The equation (6.2)a may be written as

. dot i B
(6.3) (Ex—") = — My, ot

The conditions,

( 9t of ) _ ( % ot )
axk 9xf ‘ 2t axk
of integrability of (6,3) are equivalent to-

©4) - - of Ry = 0.

~ Theorem (6.1} is immediate from this equation.

Theorem (6.2).

A necessary, and sufficient condition that a V. admits a set of n linearly independent
relatively parallel vector fields of the second kind is that it is a velatively flat subspace of
the second kind. ' :

The proof is similar-to that of Theorem (6.1).




ON RELATIVE CURVATURE TENSORS IN THE SURBSPACE OF A RIEMANNIAN SPACE 15

Theorcm (6.3).

If a V, admits n linearly independent relatively parallel vector fields of the first kind
and also n linearly indepéndent relatively parallel vector fields of the second kind then it is
a relatively flat subspace.

The proof of this thcorem is an immediate consequence of Theorems (6.1), (6.2) and
the equation (5.8). _

The relative curvature tensors studied in this paper may be used in the definition of
scalars _ corresponding to Riemannian curvature of the subspace and also in the derivation
of generalised Gauss characteristic equations of the subspace. These properties will be
studied in a separate paper.
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OZET

Herhangi bir uzayda simetrik veya asimetrik olabilen bir bagimliik parametresi ve-
rildikten sonra, bu parametre siyesinde bir kovaryant lirev alma iglemi, bir paralel-
lik kavram) ve bir egrilik tenstrt tamimlanabiliv. PrvanovercH [8], rilatif bagim-
Ik parametresi dedifi biyle bir parametre tammlamig ve bunu rilatif Frener
formulieri olarak adlandirilan’ bafmtilart elde etmek jgin  kullanmistir, Bu  aragtir-
mada bu parametre ile farkle iki kovaryant tirev alme iglemi tamimlanmgtr, Bu iki
tiirev iglemine gire kendi kendine paralel olma ozelligini haiz egriler psidogeodezik
egrilerdir, Ayrica, yine bu tirev alma iglomlerini uyguluyarak, birinci, ikinci ve tgtin-
cit cins rilatif egrilik tensirleri denen ¢ gesit tensir tammianmig ve bu tensdrlerin
sagladiklart bazi ozdeslikler elde edilmigtiv. Her tirev alma iglemi igin bir rolatif daz
alt wzay kavrami da tamimlanougtir,




