NUCLEAR AND STRONGLY NUCLEAR SEQUENCE SPACES

T. Terzioğlu

In this article the relationships between nuclearity and strong nuclearity of smooth sequence spaces have been examined. It has also been shown that a strongly nuclear sequence space is co-nuclear. Further, a theorem on the structure of a strongly nuclear sequence space has been proved.

1 — Terminology

Let P be a set of sequences of non-negative real numbers with the following properties:

- (i) for every integer m there exists a sequence $a = (a_n)$ in P with $a_m > 0$.
- (ii) for every finite collection of sequences a^1, \ldots, a^k from P, there exists a sequence a in P with $a_n \ge \max\{a_n^1, \ldots, a_n^k\}$ for every positive integer n. P is then called a system of steps and the space of all sequences of complex numbers (ξ_n) which satisfy

(1)
$$P_{\alpha}(\xi_n) = \sum_{n=1}^{\infty} |\xi_n| a_n < \infty$$

for every $a=(a_n)$ in P is called the sequence space generated by P. We denote it by $\lambda(P)$. $\lambda(P)$ becomes a complete locally convex space under the topology generated by the semi-norms defined by (1). A sequence space $\lambda(P)$ is nuclear if and only if for every a in P there exists b in P with

(2)
$$\sum_{n=1}^{\infty} a_n / b_n < \infty$$

where we use the convention that $a_n/b_n=0$ if $b_n=0$. (2) is called the Grothendieck-Pietsch condition. Similarly, $\lambda(P)$ is strongly nuclear if and only if for every a in P there exists b in P such that the sequence (a_n/b_n) is rapidly decreasing; i.e $(n^k a_n/b_n)$ is bounded for each k=1,2,3... (See [2]). Strongly nuclear spaces were first defined and examined by Brudovskii in [1].

Let P be a system of steps with the additional conditions:

- (iii) each a in P is increasing and strictly positive.
- (iv) for each a in P there exists b in P with $(a_n)^2 \leq b_n$ for every n.

Then λ (P) is called a smooth sequence space of infinite type, and we use the abbreviation G_{∞} - space. Similarly, if Q is a system of steps with

- (iii)' each q in Q is decreasing and strictly positive
- (iv)' for each q in Q there exists $\overrightarrow{\varrho}$ in Q with $\sqrt{q_n} \leq \varrho_n$ for every n, then $\lambda(Q)$ is called a smooth sequence space of finite type and we write a G_1 -space.

For an increasing sequence (β_n) of non-negative real numbers we denote by $\lambda_{\infty}(\beta_n)$ the sequence space generated by the system of steps $\{(\varrho^{\beta_n}): 0<\varrho\}$ and by $\lambda_1(\beta_n)$ the sequence space generated by $\{(q^{\beta_n}): 0< q<1\}$. $\lambda_{\infty}(\beta_n)$ is called a power series space of infinite type and $\lambda_1(\beta_n)$ a power series space of finite type. Every power series space of infinite respectively of finite type is a G_{∞} -respectively a G_1 -space. The power series space $\lambda_{\infty}(\log n)$ is the space of all rapidly decreasing sequences and it is denoted by s. This space can be generated also by the system $\{(n^k): k=1, 2, \ldots\}$.

2 — Smooth sequence spaces

It is known that a smooth sequence space $\lambda(P)$ of infinite type is nuclear if and only if P contains a sequence $a = (a_n)$ with

$$\sum_{n=1}^{\infty} \frac{1}{a_n} < \infty.$$

(See [^a]) We show that a similar condition is necessary and sufficient for strong nuclearity.

(1) A G_{∞} - space λ (P) is strongly nuclear if and only if there exists a sequence α in P with $(1/a_n)$ rapidly decreasing.

Proof. If $\lambda(P)$ is strongly nuclear, then for every b in P there exists a in P with (b_n/a_n) rapidly decreasing. Since $b_0/a_n \le b_n/a_n$ we have that $(1/a_n)$ is also rapidly decreasing.

On the other hand, if there exists a in P with $(1/a_n)$ rapidly decreasing, then for any P in P we choose P with P wi

$$b_n / c_n \leq b_n / d_n^2 \leq 1 / d_n$$

we have that (b_n/c_n) is rapidly decreasing, which shows that $\lambda(P)$ is strongly nuclear.

An immediate consequence of (1) is

(2) A power series space $\lambda_{\infty}(\beta_n)$ is strongly nuclear if and only if $(q_0^{\beta_n})$ is rapidly decreasing for some q_0 with $0 < q_0 < 1$.

For smooth sequence spaces of finite type we get a result which is stronger than (1). First we need a simple Lemma.

Lemma. A decreasing sequence (q_n) of positive real numbers is rapidly decreasing if and only if

$$\sum_{n=1}^{\infty} (q_n)^{\lambda} < \infty$$

for every real number $\lambda > 0$.

Proof. If (q_n) is rapidly decreasing, for a given $\lambda > 0$ we choose an integer k with $\lambda k > 2$. Since $n^k \ q_n \le M$ for some M > 0 we have $q_n^{\lambda} \le \frac{M^{\lambda}}{n^k \lambda}$ and so $\sum q_n^{\lambda} < \infty$.

If on the other hand $\sum q_n^{\lambda} < \infty$ for every $\lambda > 0$, then for a given integer k we choose $\lambda = \frac{1}{k}$. Since (q_n) is a decreasing sequence, the inequality

$$nq_n^{\lambda} \leq \sum_{m=1}^n q_m^{\lambda} \leq \sum_{m=1}^{\infty} q_m^{\lambda} = M < \infty$$

holds and so we have $n^k q_n \leq M^k$ for every n.

- (3) For a G_1 space $\lambda(Q)$ the following conditions are equivalent:
- (a) $\lambda(Q)$ is strongly nuclear
- (b) $\lambda(Q)$ is nuclear
- (c) $Q \subset l^1$.
- (d) $Q \subset s$

Proof. The pattern of the proof is $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (a)$. Of these, the first implication is trivial.

(b) \Longrightarrow (c): By Grothendieck-Pietsch condition for every sequence q in Q, there exist sequences q' in Q and (ξ_n) in l^1 with $q_n \leq \xi_n \, q'_n$. Since q' is decreasing, we have $q_n \leq \xi_n \, q'_n$ and so q is in l^1 .

(c) \Longrightarrow (d): Let q be a sequence from Q and $\lambda > 0$. We choose $k \ge 1$ with $2^{-k} \le \lambda$ and q' from Q with $q'_n \ge (q_n) 2^{-k}$. Then from the inequality

$$(q_n)^{\lambda} = (q_n^{2-k})^{\lambda 2^k} \leq (q_n')^{\lambda 2^k}$$

it follows that

$$\sum_{n=1}^{\infty} q_n^{\lambda} < \infty,$$

since $\lambda 2^k \ge 1$ and

$$\sum_{n=1}^{\infty}q_n'<\infty$$

by assumption, Hence by our Lemma q belongs to s.

 $(d) \Rrightarrow (a)$: For any q in Q we choose q' from Q with $\sqrt{q_n} \leq q'_n$. Then from $q_n \leq q'_n q'_n$ we have that $\lambda(Q)$ is strongly nuclear, since by assumption the sequence (q'_n) is rapidly decreasing.

Next we apply our results to power series spaces.

- (4) For an increasing sequence (β_n) of non-negative real numbers the following conditions are equivalent:
 - (a) $\lambda_{\infty}(\beta_n)$ is strongly nuclear
 - (b) $\lambda_1(\beta_n)$ is nuclear
 - (c) $\lambda_1(\beta_n)$ is strongly nuclear

Proof. (b) \Longrightarrow (c) is an immediate consequence of (3) and (c) \Longrightarrow (a) follows from (3), (d) and (2). It remains to prove (a) \Longrightarrow (b). By (2) we can find a number q_0 , $0 < q_0 < 1$ with $(q_0^{\beta_n})$ rapidly decreasing. For a number q, 0 < q < 1, we choose $\lambda > 0$ with $q_0^{\lambda} \succeq q$. Then $(q_0^{\lambda})^{\beta_n} \succeq q^{\beta_n}$ and from the Lemma we have then

$$\sum_{n=1}^{\infty} q^{\beta_n} < \infty.$$

It follows from (3), (e) that $\lambda_1(\beta_n)$ is nuclear.

Nuclearity and strongly nuclearity of G_{∞} - spaces are not equivalent; for s is a nuclear power series space of infinite type which is not strongly nuclear.

3 — Structure of strongly nuclear spaces.

Köthe showed in [1] that a nuclear sequence space $\lambda(P)$ is co-nuclear if and only if the positive sequences in $\lambda(P)$ satisfy the Grothendieck-Pietsch condition. He also asked the question whether every nuclear sequence space is co-nuclear. We show that this is true for strongly nuclear spaces.

(1) If a sequence space λ (P) is strongly nuclear, then it is also co-nuclear.

Proof. Let (ξ_n) be a sequence in $\lambda(P)$ with $\xi_n \geq 0$. For any a in P we choose b from P with $(a_n \mid b_n)$ rapidly decreasing. Hence we can find M > 0 with $n^2 a_n \leq M b_n$. So from the inequality

$$\sum_{n=1}^{\infty} n^2 n a_n = M \sum_{n=1}^{\infty} \xi_n b_n < \infty$$

it follows that $(n^2 \xi_n)$ is in $\lambda(P)$. If $\eta_n = n^2 \xi_n$, then $\xi_n \leq \frac{1}{n^2} \eta_n$ and so $\lambda(P)$ is co-nuclear.

This result is not true in general; for ω_d is strongly nuclear as a topological product of strongly nuclear spaces, but its strong dual φ_d is not nuclear for $d > x_0$. The converse of (1) is also false. s' is nuclear (in fact strongly nuclear) but s is not strongly nuclear. This example also shows that the duality between nuclear F- and DF- spaces breaks down in the more restrictive case of strongly nuclear spaces.

We now start to prove a theorem on the structures of strongly nuclear sequence spaces which is similar to the theorem on the structures of nuclear sequence spaces in [1].

Let $\lambda(P)$ be a sequence space. If we add to P all sequences λ a, a in P and $\lambda>0$, and all positive sequences b with $b_n \leq a_n$ for some a in P, the locally convex space $\lambda(P)$ remains the same. Let us assume then that a system of steps P satisfies the following additional properties:

- (iii) if $a \in P$, then $\lambda a \in P$ for every $\lambda > 0$.
- (iv) if $a \in P$, then $b \in P$ for every sequence b with $0 \le b_n \le a_n$ for every n.

The dual λ' of λ (P) is then the normal hull of P.

(2) If λ (P) is strongly nuclear, then for each a in P, the vectors $(n^p \ a_n)$, p = 1, 2, ..., are also in P.

Proof. By assumption there exists b in P with (a_n / b_n) rapidly decreasing. Hence for every p = 1, 2, ... we can find $\lambda_p > 0$ with $n^p a_n \le \lambda_p b_n$ for every n.

If a is a strictly positive vector in P, then we denote by λ' (a) the normal hull of the set $\{(n^p a_n): p=1, 2, \ldots\}$. By (2) λ' (a) is a subspace of λ and it is equal to s' up to the diagonal transformation which sends a to the vector $(1, 1, 1, \ldots)$. If a from P is not strictly positive, then we define $M(a) = \{n: a_n > 0\}$ and $N(a) = \{n: a_n = 0\}$. If M(a) is finite, we set λ' (a) $= \varphi$; if infinite we apply our previous consideration to sequences which have indices only in M(a) and thus get a space λ'_M (a) which is identical with s' up to a diagonal transfor-

mation. On N(a) we denote by φ (a) the space of all sequences with only a finite number of non-zero coordinates and with indices in N(a) only. In this case we denote by λ' (a) the sum λ'_M (a) $\bigoplus \varphi$ (a). Since $\lambda' = (\lambda(P))'$ is the normal hull of P, we have $\lambda' = \bigcup_P \lambda'$ (a). By taking the α -dual of λ we get.

(3) Every strongly nuclear space $\lambda(P)$ is the intersection $\bigcap_{P} \lambda(a)$ where $\lambda(a)$ is equal to ω or to $\lambda_M(a) \oplus \omega(a)$ where $\lambda_M(a)$ is isomorphic to s by a diagonal transformation and $\omega(a)$ is the space of all sequences with indices in N(a).

REFERENCES

[1] BRUDOVSKII, V.S.: Associated nuclear topology, mappings of type s and strongly nuclear spaces, Soviet Math. Dokl., 9, No. 3, 572-574 (1968).

[2] BRUDOVSKII, V.S.: s-type mappings of locally convex spaces, Soviet Math. Dokl., 9, No. 1, 61-64 (1968).

[3] Köthe, G. : Topologische lineare Räume, Springer Verlag, (1960).

[4] Köthe, G. : Über nukleare Folgenräume, Studia Math. 31, 3, 267 - 271 (1968).

[5] Pietsch, A, : Nukleare lokalkonvexe Räume, Berlin' Akademie Verlag, (1965).

[6] Terzioğlu, T. : Die diametrale Dimension von lokalkonvexen Räumen, (Ph. D. thesis) Collectanea Mathe-

matica, 20, Fasc. 1 (1969).

Orta Doğu Teknik Üniversitesi (Ankara)

(Manuscript received March 29, 1969)

ÖZET

Bu çalışmada düzgün dizi uzaylarının nükleer ve kuvvetli nükleer halleri araştırılmıştır. Kuvvetli nükleer dizi uzaylarının ko-nükleer oldukları gösterilmiş ve bu gibi uzayların yapısı hakkında bir teorem ispat edilmiştir.