ON PSEUDO-UNION CURVES IN A HYPERSURFACE OF A RIEMANNIAN SPACE

S. C. RASTOGI

The purpose of this paper is to define the pseudo-union curves on hypersurface of a Riemannian space. The differential equation of these curves and an expression for their curvature is obtained. Pseudo-union curves then studied in relation to pseudo-asymptotic and pseudo-geodesic curves.

1. Introduction. Pseudo-geodesic curve and pseudo-geodesic curvature have been defined by PAN [¹]¹). The author [²] has defined and studied pseudo-asymptotic curves, pseudo-asymptotic curvature and totally pseudo-geodesic surfaces in a hypersurface of a Riemannian space. The purpose of the present paper is to define the pseudo-union curves in the hypersurface of a Riemannian space. The differential equation of pseudo-union curves and the expression for pseudo-union curvature is obtained. The pseudo-union curves are studied in relation to pseudo-asymptotic curves and pseudo-geodesic curves.

2. Vector field in V_n . Let x^i (i = 1, ..., n) be the coordinates of a point P in the hypersurface V_n which is embedded in a Riemannian space V_{n+i} , whose coordinates are denoted by y^{α} $(\alpha = 1, ..., n+1)^2$). For points in V_n the matrix $|| \partial y^{\alpha} / \partial x^i ||$ is of rank *n*. Let the metrics of V_n and V_{n+1} , which are supposed to be positive definite, be denoted by $g_{ij} dx^i dx^j$ and $a_{\alpha\beta} dy^{\alpha} dy^{\beta}$ respectively. The metric tensors of V_n and V_{n+1} are related as follows:

(2.1)
$$g_{ij} = \alpha_{\alpha\beta} y^{\alpha}_{,i} y^{\beta}_{,j}$$

where y^{α} , are the covariant derivatives of the y^{α} with respect to the x^{i} .

Let N^{α} be the contravariant components of a unit vector orthogonal to \vec{t} at the point P of the curve c in V_{n} (\vec{t} being the unit tangent vector). Then

 $(2.2) a_{\alpha\beta} N^{\alpha} N^{\beta} = 1,$

and

If a vector field in V_n has components U^a in the y's and components u^i in the x's, then

(2.4)

$$U^{\mathbf{a}} = y^{\mathbf{a}}, \mathbf{i} u_{\mathbf{i}}$$

2) Greek indices take the values (1, ..., n+1) and Latin indices, (1, ..., n).

[21]

¹⁾ Numbers in square brackets refer to references at the cud.

If q^{α} and p^{i} represent the derived vectors of the unit tangent vector t of c with respect to V_{n+1} and V_{n} respectively, we have [1],

(2.5)
$$q^{\alpha} = y^{\alpha}_{,i} p^{i} + \left(\Omega_{ij} \frac{dx^{i}}{ds} \frac{dx^{j}}{ds}\right) \xi^{\alpha},$$

where ξ^{α} are the contravariant components of the unit vector normal to V_n and where Ω_{ij} is the second fundamental tensor for V_n [³, 151].

Let λ^{α} be the contravariant components of a unit vector λ , in V_{n+1} . The totality of these vectors λ associated with V_n is called a λ -congruence, which is a congruence of unit vectors, if λ^{α} are functions of x^i only, or a congruence of hypercones of unit vectors if λ^{α} are functions of both x^i and dx^i . We suppose that $\overline{\lambda}$ is in V_n if and only if $\overline{\lambda}$ and the corresponding dx^i and x^i are coincident with an asymptotic direction in V_n . Expressing λ^{α} as in [1] we have

(2.6)
$$\lambda^{\alpha} = \gamma^{\alpha}_{,i} \omega^{i} + \omega \xi^{\alpha}_{,i}$$

where ω^i are the components of a contravariant vector in V_n and ω is a scalar.

 $a_{\alpha\beta} \lambda^{\alpha} \lambda^{\beta} = 1,$

from (2.5), (2.7) and (2.1) we have

With the help of (2.8) and the fact that the contravariant components of t in V_{n+1} are $y^{\alpha}_{,i} dx^{i}/ds$ we obtain

(2.9)
$$N^{\alpha} = \pm \frac{y^{\alpha}{}_{,i} \left\{ -g_{hk} \omega^{h} \left(\frac{dx^{k}}{ds} \right) \left(\frac{dx^{i}}{ds} \right) + \omega^{i} \right\} + \omega \xi^{\alpha}}{\left\{ 1 - g_{ij} g_{hk} \omega^{i} \omega^{h} \frac{dx^{j}}{ds} \frac{dx^{k}}{ds} \right\}^{1/2}}$$

The plus sign in (2.9) is to be taken when $\omega > 0$, and the minus sign when $\omega < 0$. Thus (2.9) will reduce to $N^{\alpha} = \xi^{\alpha}$, when $\overrightarrow{\lambda}$ is linearly dependent on \overrightarrow{t} and ξ^{α} ; that is, $\omega^{i} = kdx^{i}/ds$, k being any constant different from unity. Eliminating ξ^{α} from (2.5) and (2.9) we get

(2.10)
$$q^{\alpha} = \gamma^{\alpha}_{,i} \left(p^{i} - K_{n} \varrho^{i} + K_{n} g_{hk} \varrho^{h} \frac{dx^{k}}{ds} \frac{dx^{i}}{ds} \right)$$
$$+ N^{\alpha} K_{n} \left(1 - g_{ij} g_{hk} \omega^{i} \omega^{h} \frac{dx^{j}}{ds} \frac{dx^{k}}{ds} \right)^{1/2} / |\omega|$$

where K_n is the normal curvature of c and where $\varrho^i = \omega^i / \omega$.

3. Pseudo-union curves. The totally pseudo-geodesic surface is determined by the tangent to the curve c and by the relative first curvature vector in V_{n+1} of the curve c. Let μ^{α} be the contravariant components in the y's of a unit vector in the direction of the curve of the

PSEUDO-UNION CURVES ON A HYPERSURFACE IN RIEMANN SPACE

congruence of curves, one curve of which passes through each point of V_n . The components μ^{α} , in general are not normal to V_n , and therefore may be specified by

$$\mu^{\alpha} = t^{i} y^{\alpha}, t + r N^{\alpha},$$

where t^i and r are parameters.

We have

and

$$a_{\alpha\beta} \mu^{\alpha} \mu^{\beta} = 1$$

$$a_{\alpha\beta} y^{\alpha}_{\ i} N\beta = 0 \ .$$

With the help of equations (3.1), (3.2) and (3.3) it follows that

$$_{\alpha\beta} \mu^{\alpha} \mu^{\beta} = a_{\alpha\beta} \left(t^{i} y^{\alpha}, t + r N^{\alpha} \right) \left(t^{j} y^{\beta}, t + r N^{\beta} \right)$$

Hence we have

co

If the pseudo-geodesic in
$$V_{n+1}$$
 in the direction of the curve of the congruence with contravariant components μ^{α} is to be a pseudo-geodesic of the totally pseudo-geodesic surface, then it is necessary that μ^{α} be a linear combination of γ^{α} , dx^{i}/ds and q^{α} , therefore

 $t^i t_i = 1 - r^2$.

$$\mu^{a} = a y^{a}, \frac{dx^{i}}{ds} + b q^{a}$$

From (3.1) and (3.5) we have

(3.6)
$$t^i y^a_{,i} + r N^a = a y^a_{,i} \frac{dx^i}{ds} + b q^a.$$

From (2.10) and (3.6) we obtain

(3.7)
$$t^{i} y^{a}_{,i} + r N^{a} = a y^{a}_{,i} \frac{dx^{i}}{ds} + b (\bar{K}_{n} N^{a} + y^{a}_{,i} \bar{p}^{i}),$$

where

(3.8)
$$\bar{K}_n = K_n \left(1 - g_{ij} g_{hk} \omega^i \omega^h \frac{dx^j}{ds} \frac{dx^k}{ds} \right)^{1/2} / |\omega|,$$

anđ

(3.9)
$$\bar{p}^i = p^i - K_n \, \varrho^i + K_n \, g_{hk} \, \varrho^h \, \frac{dx^k}{ds} \frac{dx^i}{ds} \, \cdot$$

Multiplying (3.7) by $a_{\alpha\beta} y\beta$, and summing with respect to α and using (2.1) and (3.3) we get

(3.10)
$$g_{ij}t^{i} = a g_{ij} \frac{dx^{i}}{ds} + b g_{ij} \bar{p}^{i}.$$

Multiplying (3.7) by $a_{\alpha\beta} N\beta$, summing on α and using (2.2) and (3.3) we get

S, C, RASTOGI

$$(3.11) r = b K_n$$

From equation (3.9) we obtain

$$g_{ij} \bar{p}^i \frac{dx^j}{ds} = 0$$

where we have used $g_{ji} \frac{dx^{i}}{ds} \frac{dx^{j}}{ds} = 1.$

Multiplying equation (3,10) by dx^{j}/ds and using (3.12) we get

$$(3.13) a = g_{ij} t^i \frac{dx^j}{ds} \cdot$$

Putting for o and b from (3.13) and (3.11) respectively in (3.10) we have

(3.14)
$$g_{ij}t^{i} = g_{ij}\frac{dx^{i}}{ds}\left(g_{lm}t^{l}\frac{dx^{m}}{ds}\right) + \frac{r}{\bar{K}_{n}}g_{lj}\bar{p}^{i}.$$

Multiplication of (3.12) by g^{jk} and summation with respect to j and the replacement of t^k/r by l^k leads to

(3.15)
$$\bar{p}^k - \bar{K}_n \left(l^k - g_{im} l^i \frac{dx^m}{ds} \frac{dx^k}{ds} \right) = 0.$$

(3.15) represents the differential equation of the pseudo-union curves.

In the next section we shall discuss some properties of the pseudo-union curves,

4. Some properties. For a congruence specified by the parameters t^k , the solutions of the *n* equations (3.15) determine the pseudo-union curves in V_n relative to that congruence. The parameter *r* can not vanish under the assumption that the direction μ^{σ} is not in V_n . We denote the left hand members of (3.15) by $\bar{\eta}^k$ and call it the contravariant components of the pseudo-union curvature vector.

A pseudo-union curve of V_n with respect to a congruence determined by the parameters l^k may therefore be defined as a curve along which the pseudo-union curvature vector is a null vector.

Equation (3.15) can be written in the form

$$\bar{\eta}^k \equiv \bar{p}^k - \bar{K}_n \, \nu^k = 0,$$

where

(4.2)
$$r^{k} = g_{ij} \frac{dx^{i}}{ds} \left(l^{k} \frac{dx^{j}}{ds} - l^{j} \frac{dx^{k}}{ds} \right) \cdot$$

For a pseudo-union curve $\bar{\eta}^k = 0$, and for a pseudo-asymptotic curve $\bar{K}_n = 0$, therefore from (4.1) if follows that $\bar{p}^k = 0$, *i.e.*, the curve is a pseudo-geodesic. Hence we have:

Theorem (4.1). If the curve c has any two of the following properties it also has the third:

24

(3.12)

PSEUDO-UNION CURVES ON A HYPERSURFACE IN RIEMANN SPACE

- (i) it is a pseudo union curve,
- (ii) it is a pseudo asymptotic curve,
- (iii) it is a pseudo-geodesic curve,

provided that v^k are not the components of a null vector.

The magnitude \bar{K}_n of the vector $\bar{\eta}^k$ is given by $\bar{K}_{u}{}^2 = g_{ij} \bar{\eta}^i \bar{\eta}^j$. From (3.1) it follows that angle between the vectors μ^{α} and N^{α} in V_{n+i} is given by $\cos \phi = r$, and by virtue of the relation $i^k/r = l^k$ and the equation (3.4) we obtain $g_{ij} l^i l^j = tan^2 \phi$. The angle α between the tangent vector to c and the vector l^k is given by $\cos \alpha = g_{ik} l^i \frac{dx^k}{ds}$. In terms of ϕ and α the magnitue \bar{K}_n of the pseudo-union curvature vector is given by

(4.3) $\bar{K}_u = \bar{K}_g - \bar{K}_n \tan \phi \sin \alpha$.

In (4.3) if $\phi = 0$, or $\alpha = 0$, or $\vec{K}_n = 0$, we have $\vec{K}_u = \vec{K}_g$. Hence we have

Theorem (4.2). The necessary and sufficient condition for a pseudo-union curve to be pseudo-geodesic is one of the following :

(i) it is a pseudo-asymptotic curve,

(ii) the congruence consists of the normals,

(iii) the direction of the tangent vector to c coincides with that of the vector $l^{\mathbf{k}, (1)}$

REFERENCES

[1] Pan, T. K.	: On a generalisation of the first curvature of a curve in a hypersurface of a Riemannian space, Canad. J. Math., 6, 210-216 (1954).	
[2] RASTOCI, S. C.	: On pseudo-asymptotic curves in a hypersurface of a Riemannian space, Communicated for publication.	

[3] EISENHART, L. P. : Riemamian Geometry, PRINCETON (1949.)

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW, (INDIA). (Manuscript received March 4, 1969)

ÖZET

Bu yazının gâycsi bir RIEMANN uzayına ait bir hiperyüzeyin üzerine çizilmiş psödo-birleşik eğrileri tanımlamaktır. Bu eğrilerin diferansiyel denklemi ve eğriliklerinin bir ifadesi elde edildikten sonra, bu eğrilerin özellikleri, psödo-asemptotik Ve psödo-gcodezik eğrilerle bağlı olarak incelenmektedir

i) I am grateful to DR. D. M. UPADHYAY for his guidance and help in the preparation of this paper.

25