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The periods of oscillation of a rotating column of a perfectly conducting liquid in the 
presence of an axial magnetic field and a uniform axial current are derived. It is 
found that the presence of an axial magnetic field and a uniform axial volume current 
splits each characteristic value (in the absence of the magnetic field and axial volume 
current) into two, A criterion for the frequencies to be real has also been obtained. 

I . Introduction . LORD K E L V I N (1910) has first investigated the problem of the periods 
of oscillation of a rigidly rotating column of an inviscid liquid. F U L T Z (1959) has demonstrated 
in his experiments the excitation of axisymmetric modes by means of a small disc on the axis of 
a rotating cylinder containing water. CHANDRASEKHAR in his treatise (1961) [A, 390] has dis­
cussed the problem of the periods of oscillation of a rotating column of liquid in the presence 
of a uniform axial magnetic field. GUPTA (1968) has studied the problem of the periods of 
oscilllation of a rotating column of liquid in the presence of a uniform axial volume current. 

The object of the present note is to study the periods of oscillation of a rotating column of 
a perfectly conducting liquid in the presence of an axial magnetic field and a uniform axial vo­
lume current. 

I I . Formulation of the problem and solutions. We consider the stationary circular flows 
of an incompressible, inviscid and perfectly conducting fluid between two rotating coaxial 
cylinders in the presence of an axial magnetic field and a uniform axial volume current. 
The non-dissipative equations of hydromagnetics [ 3, 332, for vanishing )' and 7j], then, allow 
the stationary solution 

where Q and Qf are constant. 

We then consider an infinitesimal perturbation of the flow represented by the solution (1) 
and take the perturbed physical variables as 

uT = ux = 0 «a = V(r)=rQ(r), 

(1) N0 = Q' r , Hg = H = constant, 

(2) uT,V+u , , hr , H (r) + h , H + h,, co = o\i. 

where 

(3) 
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Analysing the disturbance into normal modes, we seek solutions of the above equations 
whose dependence on 0 and z is given by 

02) J(pt+m§+kz) 

where p is a constant (which can be complex), m is an integer (positive, zero, or negative) and 
k is the wave number of the disturbance in the z-direcfion. 

Let ur(r), H„ {r\ ujj), hr(f), h0 (r), hjr) and a>(r) now denote the amplitudes of the 

various perturbations whose (t, 0, z) dependence is given by (12). Equations (4) - (11) then give 

(13) iaur — 2Que —~—{imQ'hT — 2Q'he + ikHhT) = —Do>, 

(14) iau0 + 2QuT (imQ'he + 2Q'hr + ikHh&) = — ~ Z 

(15) i a U s ~ ^ " I " A*) = — 

(16) /oAr = / (/cff + mQ')ur , 

(17) /oA6 - i (kH + mfl ')«e -

(18) /tfft, = / ( i f f + m f l > * » 
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(19 ) O i i r + ~ ^ + - y - i / e + i k u t = 0, 

and 

(20) Dhr + ^ + ™hB +ikhg = 0, 

where 

(21) a = p + ffliJ and D=-^- . 

Introducing the Lagrangian displacement £ defined by 

(22) H r = / o | r , M 9 = i'o^a , = io\z , 

and inserting for u in terms of | in equations (16) - (18), we get 

(23) hT = i(kH + mQ')lr , hB = i (kH + mQ')%B , K = KkH + mQ')\x . 

—>• —>• 
Now substituting for u and h in accordance with equations (22) and (23) in equation (13) 

-(15), we find after some reduction 

(24) („• - ah)%, + 2, (« f l - % - DZ, 

(26) —(3^)5, = * ^ , 

where 

(27) i3 IJ = {kH + mQ'f . 

Again using equations, (22) and (23), both the equations of continuity (19). and the 
solenoidal equations (20) (from A. H = 0) reduce to 

(28) i ^ r + ^ + - y - ^ + 1*5, = 0 . 

Multiplying equations (25) and (26) by — ~ - and — ik, respectively, adding and ma­

king use of (28), we obtain 

while eliminating | 9 between equations (24) and (25), we obtain 
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(30) 
4[a£3 

kH + mQ' 

n , 2m V kH+mQ' 

Since the radial velocity vanishes at the boundary of the column of radius R, it follows 
from (22) that 

(31) at /• = R. 

This condition is consistent with the assumption of a rigid boundary at r = R, as in 
the experiments of F U L T Z . 

(32) 

where 

(33) 

Eliminating %r between (29) and (30), we obtain 

d*o> I d_co_ 
r~ dr 

4k'1 

fl2 = 
oQ — kH+mQ' 

03 = 0 , 

-k2. 

The boundary condition (32) with the help of (30) and (31) reduces to 

(34) Deo 
2m 

r 
kH+mQ' 

tt) = 0 , at n — R . 

The solution of (32) regular at the origin is 

(35) 7= C Jm (fir) , 

C being a constant and Jm being the BBSSEL function of order m. Applying the boundary condi­
tion (34), we then obtain 

2m oQ 
(36) 

with « = p R. 

« J m (*) + 
kH+mQ' 

Jm (a) = 0 , 

Comparing (32) and (34) with the corresponding equation in the absenec of axial magnetic 
field and the axial current [ a , chapter V I I , equations 88, 89] we find that the equations become 
identical i f a in the nonmagnetic case is replaced by 

QUV If Lifjil \ 

Thus i f o 0 be the characteristic value for a given wave number of the hydrodynamic prob­
lem, the characteristic value a for the present hydromagnetic problem is given by 
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( 3 7 ) ' - ' — ^ flfir 
kH + mii' 

Thus, the presence of an axial magnetic field and a uniform axial volume current splits each 
characteristic value <i (in the absence of the magnetic field and axial current) into two, al and a1 

such that 

»„« ± V Ooi-01 — 413 
(38) kH + mü' -QQ] 

2 Q 

From equation (38), we infer that the frequencies are real i f Q > aaQ'/(kH -\- mQ'). The con-
for the frequencies to be real, thus depends on the strength of the axial magnetic field as 
well as the axial volume current. I t has been shown by GUPTA [ 4 , 7 1 ] that in the presence of a 
uniform axial volume current, the characteristic frequency is split into two and that the frequen­
cies are always real i f Q > (fiefing)1/* Q', 

For the axisymmetric mode m = 0, it is clear from equation (38) that the frequencies are 
real, depending on the strength of the axial magnetic field. 
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ÖZET 

Eksenin doğrultusuna E öre yönelmiş bir manyetik alan ve yine eksenin doğrultusunda geçirilen 
bir düzgün elektrik akınım etkisi altında bulunan, ekseni etrafında dönen lam iletken bir sıvı 
akımın sal inimi arının pcryodlan elde edilmiştir. Bu eksensel manyetik alanın vc düzgün 
ceryanının varlığı (manyetik alan ve eksensel hacım akımın yokluğu hafinde) her has değeri 
iki kısma ayırdığı gösterilmektedir. Frekanslann gerçel olmalarım sağlayan bir kriter 

verilmiştir. 


