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The periods of oscillation of a rotating column of a petfecily conducting liquid in ihe
presence of an axial magnetic field and & uniform axial current are derived, Tt is
found that the presence of an axiaf magneric field and a uniform axial volume current
splits each characteristic value {in the absence of the magnetic field and axial volume
cugrent) inte two. A criterion for the [requencies to be rcal has also been obtained.

I. Intreduction. Loro KELVIN (1910) has first investigated the problem of the periods
of oscillation of a rigidly rotating column of an inviscid liquid. Furtz (1959) has demonstrated
in his experiments the excitation of axisymmetric modes by means of a small disc on the axis of
a rotating cylinder containing water. CHANDRASEXKHAR in his treatise (1961) [¥, 390] has dis-
cussed the problem of the periods of oscillation of a rotating column of liquid in the presence
of a uniform axial magnetic field. Gupra (1968) has studied the problem of the periods of
oscilllation of a rotating column of liquid in the presence of a uniform axial volume current.

The objeci of the present note is to study the periods of oscillation of a rotating column of
a perfectly conducting liquid in the presence of an axial magnetic field and a uniform axial vo-
lume current,

Il. Formulation of the problem and solutions, We consider the stationary circular flows
of an incompressible, inviscid and perfectly conducting fluid between two rotating coaxial
cylinders in the presence of an axial magnetic field and a uniform axial volume current,
The non-dissipative equations of hydromagnetics [*, 332, for vanishing » and 5], then, allow
the stationary solution
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where 2 and " are constant,

We then consider an infinitesimal perturbation of the flow represented by the solution (L)
and take the perturbed physical variables as
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The linearized equations governing these perturbations are

[47]
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Analysing the disturbance into normal modes, we seek solutions of the above equations
whose dependence on ¢, 8 and z is given by
12). . ’ et'(pt—l—mﬂ +kz)

where p is a constant (which can be complex), m is an integer (positi#e, zero, or negative) and
k is the wave number of the disturbance in the z-direction.

Let wr), (), wr), h(?), By (r), h(#) and E(r) now denote the amplitudes of the
various perturbations whose (¢, 0, z) dependence is given by (12). Equations (4) - (11) then give

13 {1, — 20w, *Z%" (@ hy —20"hy + IKH by) = — Do,
(14) jou, + 20u, -4”7‘; (mQhy + 20k, + bH hy) = — %’5
(15) z‘ou,—fTZ‘ GmQ’hy - icH b)) = — ik,

(16) Sieh, = i (kH 4+ mQ"u, ,

an iohy = i (kH + mQ ) u, ,

(18) _ teh, = i(kH + mQu, ,
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(19) Du,Jr—l;LJri—Tue Yk, =0,
and '
(20) Dh,+h7’+"%ha+ikh,:0,
where

21 g =p+ mé and D =6% R

. -+ -
Introducing the Lagrangian displacement £ defined by

(22) iy =10k, , Uy = 0%y , U, = i0k,,
- 0 — 0 > - .
and inserting for u in terms of £ in equations (16) - (18), we get

23) b= ifcH + mQOE., by = i(kH + mQEy , h, = ikH + mQ"E, .

— —
Now substituting for # and # in accordance with equations (22) and (23) in equation (13)
-(15), we find after some reduction
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where

P Y]

(27 Q% = 40 (kH + mQ’): .

Again using equations, (22) and (23), both the equations of continuity (19). and the
solenoidal equations (20) (from 4. H = Q)reduce to .

(28) D§r+%+ﬂ:1‘ge+ﬂcg,ﬁo.
Multiplying equations (25) and (26) by —# and — ik, respectively, adding and ma-

king use of (28), we obtain
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while eliminating £, between equations (24) and (25), we obtain
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Since the radial velocity vanishes at the boundary of the column of radius R, it follows
from (22) that

(a1} IE.=0 at =R,

This condition is consistent with the assumption of a rigid boundary at r = R, as in
the experiments of FuLTz.

Eliminating &, between (29) and (30), we obtain

o 1de 2\~
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The boundary condition (32) with the help of (30) and (31) reduces to

Q300
(0= )
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(34) Dw -I—wwj:u- o —08) w=0,atn=1R,

The solution of (32} regular at the origin is
(35) o =CJ, (B,

C being a constant and J,, being the BesseL function of order m. Applying the boundary condi-
tion (34), we then obtain
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’ —0
36) o’ (@) + = Tm(2) =0,

with & = § R.

Comparing (32) and (34) with the corresponding equation in the absenec of axial magnetic
field and the axial current [¥, chapter VII, equations 88, 89} we find that the equations become
identical if ¢ in the nonmagnetic case is replaced by

o (o0 2
| o™ — L) (“ W)’

Thus if ¢, be the characteristic value for a given wave number of the hydrodynamic prob-
lem, the characteristic value o for the present hydromagnetic problem is given by
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Thus, the presence of an axial magnetic field and a uniform axial volume current splits each
characteristic value ¢ (in the absence of the magnetic ficld and axial current) into two, o, and 4,
such that

\/ . Qo \
DD.Q + (GO,Q) — 4.Q [m—ggﬂv]

20

(38) Oy =

From equation (38), we infer that the frequencies are real if £ > a,07/(kH -+ m2"). The con-
for the frequencies fo be real, thus depends on the strength of the axial magnetic field as
well as the axial volume current. It has been shown by GupTa [ 71] that in the presence of a
uniform axial volume current, the characteristic frequency is split into two and that the frequen-
cies are always real il Q > (uefdmp)t/2 Q.

For the axisymhwtric mode m = 0, it is clear from equation (38) that the frequencies are
real, depending on the sirength of the axial magnetic field,
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OZET

Eksenin dogrulivsuna gdre yonelmis bir manyelik alan ve yine eksenin dogrolfusenda gegirilen

bir diizgiin elekirik akimm etkisi altinda bulunan, ekseni etrafinda dénen lam iletken bir s1vi

akimin salmimiarmin peryodlart elde edilmigtir. Bu eksensel manyetik alamn ve diizgiin

ceryammn varlefic (manyetik alan ve eksensel hacim akimun yoklufiu halinde) her has degeri

iki kisma aymrdipn gosterilmektedir, Frekanslatin  gergel olmalarim saglayan bir  kriter
verilmigtir,
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