
SURFACES O N W H I C H T H E L A G U E R R E L I N E S 

F O R M A N H E X A G O N A L T H R E E - W E B 

A B D U L K A D i R O Z D E G E R (*) 

The aim of this paper is lo study those surfaces on which the L A G U E R U E iines (G-lines) 
form an hexagonal three-web. The following results have been obtained : 

Tn I. a necessary and sufficient condition, for the G-liues of a pseud o-spherical surface to 
form an hexagonal thrce-web, is given. Furthermore, the three families of G-lines together 
with the two families of asymptotic lines form an hexagonal 5-web on such surfaces. 
Tn 2. a criterion for the surfaces of constant mean curvature on which the G-lines form an 
hexagonal three-web is also given. 

In 3. a theorem concerning the surfaces on which the two families of G-lines form an iso-
thermally orthogonal net having a mean curvature W, of the form W— W [ U(u) + K(i')] s 

where u and v are the isothermic parameters of these G-lines is proved. A characterization of 
DuPiN's Cyciides by means of G-lines is given in 4. and it is shown that the G-lincs on 
D U P I N ' S Cyciides form an hexagonal three-web. 

In 5. the developable surfaces on which the two families of G-lines together with a family 
of lines of curvature form an hexagonal three-weh are considered and it is shown that any 
cone satisfies this condition. More generally, two families of G-lines together with a family of 
lines of curvature will form an hexagonal three-web on the tangential developable ofaspace 
curve if and only if there exists a relation, between p and T, of the form 

— = (ps + q)"'3 {p ,q ^- const.), 

p , i and s being, respectively, the curvature, the torsion and the arc length of the space 

curve. Finally, in 6. a result concerning parallel surfaces is mentisoned 

0. Laguerre Lines (G-Lines). 

A_ G-line on a surface is defined as follows [ ' ] : L e i S be a real surface and let C be 

•a line drawn on S. C is said to be a G-Iine i f and only i f at every poiu t P on C, the normal 

plane of S containing the tangent line PT to C, cuts the surface S i n a line superosculated by 

its circle o f curvature at P. 

F r o m the above definition, one can see that a line C on. S w i l l be a G-line i f and only i f the 

relation 

(O.D £ = ¿ . - 2 6 ^ = 0 ( f t . = ^ ) . 

holds a l l along C, [ ' , 140], where £ is L A G U E R R E ' S direction funct ion 'and Qn, Qg, tg and s 

are, respectively, the normal curvature, the geodesic curvature, the geodesic torsion and the 

arc length of C. 

N o w , let a G-line on a surface S be given i n function of any parameter / , by 

H = H ( / ) , v = v ( / ) 

(*) The Author wishes to thauk Professor F . §EMIN for his guidance and'help in the preparation of 
this thesis. 
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;/ and v being the parameters on S. Then the differentia! equation ( 0 . 1 ) can be expressed in func
t ion o f the coefficients o f the two fundamental forms o f S and their partial derivatives, namely 

[La — 2{LT\, -I- M r \ [)} du* + 3 {£„ — 2 ( L r ] ± + MrU)\du*dv 

( 0 . 2 ) 

-V 3 [Ntt~2[MrW +Nriz))ttudv* -1- [Nv — 2{MrU +NrU))dv* = 0 , 

where L , M and N are the coefficients o f the second fundamental fo rm of S and rfj (/, j , k = 1,2) 
are its C H R I S T O F F E L symbols [A, 1 0 7 ] . 

The differential equation (0 .2) being o f the first order and th i rd degree, in general, three 
G-lines pass through each point o f the surface. Therefore i t w i l l be convenient to study the three-
web formed by its G-lines on a surface and see under what conditions this three web wi l l be 
an hexagonal one. I t is, however, difficult to f ind a genera! solution for this problem and we 
have had to l i m i t our analysis and consider only special classes o f surfaces. 

1. The pseudo-spherical surfaces on which the G-lines form an hexagonal three-web. 

The G-lines on a pseudo-spherical surface do not , in general, fo rm an hexagonal three-web. 
The fo l lowing theorem gives us a necessary and sufficient condit ion for this to occur. 

Theorem 1.1. The necessary and sufficient condition for the G-lines on a pseudo-spheri
cal surface to form an hexgonai three-web is that o)(u,v) be a function of f satisfying the differential' 
equation 

d*m 
dt< 

-|- a e* sin to = 0 , (a = const.) 

where co(u,v) is the angle between the asymptotic lines of the pseudo-spherical surface and 
uv = E e t , (s = T 1). 

Proof. The differential equation o f the G - l ines o f any surface is (0.2). Suppose that the 
asymptotic lines o f the surface are taken as parametric lines. Then, i f we make L — 0, 7Y = 0 
in (0.2) we obtain the differential equation 

(1.1) r^du" + 3 r ? 2 du*dv + 3P\tdudv* + r \ t dr* = 0. 

N o w let the surface be pseudo-spherical : then its asymptotic lines form a T C H E B Y C H E F 

net [ 3 , 180], and therefore the coefficients, E(u, v) and G(u, v), o f the first fundamental fo rm 
of the pseudo-spherical surface, are o f the f o r m E = E(u) and G = G(v). Then, by a suitable 
transformation o f the parameters [ 4 , 150], the first fundamental f o r m of the surface reduces to 

(1.2) ds* = du2 + 2 cos <u du dv + dv*. 

We then have 

E = G = 1 , F = cos (•}, 

and for the G A U S S I A N curvature K, o f the pseudo-spherical surface, we f i n d • 

0-3) * = _ _ J _ . i ^ . . 
sin co audv 

Setting the above values for Ffj i n (1.1) this equation reduces to 

0 . 4 ) ^ l ^ + ^ ^ O . 
au av 
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Solving this differential equation i n — a n d putt ing p(u, v) = 4 ~ = — " V ~-> we see 
• du du * co„ 

l ha t the three families o f G-lincs on a pseudo-spherical surface are given by 

dv — p(it, v) da — 0 , 

(1.5) dv—jp(tt>v)du = 0 , 

dv — j ' 2 p(n, v) dtt = 0 , 

where j is a complex cube root o f uni ty. 

We now introduce the three differential forms 

« i = # • ( « , v).{dv—pdii) , 

a* = f 3 («, i') • (dv~~j . p du) , 

o-j = gs (u> v) • (rfv — 7 2 . j? rfw) 

3 
w i t h ^ O, i') ^ 0, (/ — i ,2 ,3), and determine ^ ; (/i, v) so as to satisfy the condi t ion ^ o f —• 0. 

i = l 
3 

Then the normed differential forms satisfying the condit ion ^ — 0 are 

/ = ] 

d* = —- p du + rfv , 

(!,6) „ a*2 =-~p p du+Jdv, 

OH ~ — J / 7 ^ " + j 2 dv. 

The three families o f G-lines which are given by (1.5), w i l l f o r m an hexagonal three-web, 
i f and only i f the dependency j ' , o f the three-web is an exact differential [ 5 , 164]. 

Fo r the element o f area, Q, o f the three-web, we can take the exterior product 

[a* , o*2] ~ il ~j (j— l)p (it, v) [du , dv]. The exterior differentials o f the differential forms 
(1.6) differ f rom Si by scalar functions, say lii(u,v) ( i = 1, 2, 3), and the //,-'s satisfy the relation 
3 

y\ /(,• — 0. Denot ing exterior differentiation by b , we obtain 
( — 1 

fa o\ - . , P \ - r Q - K Si , h ot = — Si = A , « 

and hence 

y ( y - D J> ' • y — l p 

O n the other hand, y is defined as y / ; z o* — / ^ c ' , [ 6 , 163]. Inserting the above 

values for / f j , h% , o * and in the expression of y, we f i n d that y = (In p)„ dv. The condi t ion 

that y be an exact differential is 

(1.7) " ( I n / > ) H W = 0, 

and therefore the function p (//, c) is o f the form ^ («, i') = Z ( / / ) . £ (c). Since, (//, v) = — "sj^ , 

we sec that the function O J (», v) satisfies the partial differential equation 

,(1.8) • ^ — 2 , (») . S, (v) - 0 , [ 5 t (v) = Ss (v), ZL («) = — Z ' (w)l. 
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The general solution o f the differential equation (1.8), is o f the form 

(1.9) v(u,v)=f[X(u) + i*(v)} 

Therefore our problem reduces to the problem o f determining the three arbitrary functions. 
/, X and ft, appearing in (1.9) so as to satisfy the differential equation 

(1.10) ^ _ ^ L . ^ = a , 
Sin co d/idv t 

which is found by put t ing K — const = a i n (1.3). I f we put t = A(«) + the differential equa
t ion (1.10) takes the f o r m 

( M O ' ) . roo.<W = - ^ p 

where / * ( , ) = \ ' { u ) = ^ , j* ' (v) = ^ and K = a < 0. 

Using the property o f equation (1.10') and making the necessary calculations we first f i n d 

(1.11) A(H) = k In ( A /( + c 2 ) , (c\ , = const.) 

and 

(1.12) n(v) = k In (c Bv ~\- c.^ , (c 8 . c 4 = const.). 

Therefore t ~ A(i/) -{- /x(v) = k { I n [ ( c ^ - j - c 3 ) (c3i> + c,J]}. I t is clear that we can make 
r s = c± = 0 by choosing a suitable or igin on the pseudo-spherical surface. Accord ing ly 
t = /t In c, c 3 + A: In i iv and hence we get 

(1.13) <M(«,V) = co { I n I I V } . 

Final ly the differential equation (1.10) reduces to 

(1.14) ^ T i i ' s i n f f l ( i ) f 0 , (f = ln«v) 

and thus the p roo f o f the theorem is completed. 

N o w , let us determine the G-lines for these pseudo-spherical surfaces. Using the value o f 

(o (u, v), which is given by (1.13), we f ind that p(u, v) = — . Substituting this value for 

p(u,v) i n (1.5), we obtain the three differential equations 

dv + *\— du = 0 , dv +j. "V — da = 0 , dv +j* , V — du = 0. 
* u u u 

Integrating these differential equations, we f ind the three families o f G-lines o f the surfa
ces under consideration, namely 

„ija + v 3 ' " = kL = const. , 

(1.15) H , ' ' + ) V 1 " = * - , = const. , 

«?" -\-fv,/a =ka = c o n s t . , 

I t can be easily seen that the three families o f G-lines, given by (1.15), together w i t h the two-
families o f asymptotic lines for these pseudo-spherical surfaces f o r m an hexagonl 5-web. Moreo
ver, we see f rom (1.13) that the family <x>(u, v) = const, together w i t h the asymptotic lines f o r m 
an hexagonal three-web o n these surfaces. 
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2. Surfaces of constant mean curvature on which the G-iines form an hexagonal three-web. 

On a surface o f constant mean curvature the three families o f G-Iines cut each other at an 
angle of 120° , [ ' , 145], but they do not , i n general, form an hexagonal three-web. We shall 
now prove the fol lowing theorem : 

•Theorem 2.1. The G-lines of a surface of constant mean curvature will form an hexagonal 
three-web if and only if the surface is applicable to a surface of revolution. 

Proof. Let S be a surface o f constant mean curvature and let 5 be referred to its min imal 
lines. Then, since E = G = 0 and F=fc 0 , the C H R I S T O F F E L symbols T y ( / , / , k ^ 1 ,2 ) take 
the form 

( 2 . 8 ) r h = r j 8 = r u = r B a = o , r [ L = ( i n f ) a , r u = (inF)v. 

On the other hand, the G A U S S I A N curvature K and the mean curvature W o f S, are o f the 
fo rm 

( 2 . 9 ) K = + W , W = ^ = const. 

r r 

Using the M A I N A R D I - C O D A Z Z I relations, we f ind that 

( 2 . 1 0 ) ¿ „ = 0 , J V U = 0. 

By virtue o f ( 2 . 8 ) , ( 2 . 1 0 ) and ( 0 . 2 ) the differential equation o f the G - l ines o n S reduces to 
( 2 . 1 1 ) L ^ ] n ~ ^ du'—N (^In—-^ </v3 = 0 . 

I f we assume the G- l ines to fo rm an hexagonal three-web on &', we f ind that 

( 2 . 1 2 ) 

3 

where we pu t \ / -JT • ~, = p (u,v) i n ( 1 . 7 ) . 

W i t h the a id o f ( 2 . 10 ) , i t is easy to see that the condit ion ( 2 . 1 2 ) may be writ ten in the form 

LN 

, LN \ a(u) 
In-

•—F'' 

and therefore we obtain 

t N 
-t^L = T[«(u) + / i (v ) ] = K — , ( W = c o u s l . ) 

where a{t<), 60')» a(w), /?(»), and T[a(u) + £(v)l are arbitrary functions. 

Therefore the min imal lines u = const., v = const, and the family K = const, f o r m an 
' hexagonal three-web on S. But this means that the surface S is applicable to a surface o f revolu

t i o n ['",341. 
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Conversely, we assume the surface S to be applicable to a surface o f revolution. In this 
case the minima! lines u = const., v = const, together wi th the family K — conts. form an hexa
gonal three-web on S. Consequently, K must be o f the form K = K\_U(u) + V(v)], U(u) and 
V{y) being arbitrary functions [ f ' ,29]. 

Therefore since, by (2.9), F2 — — J{[U^)''^-'V(v)]—W2 W C S C C ^ f i e x a g ° n i i l i t y 

condition, (2,12), is satisfied,. This means that the G-lines o f S form an hexagonal three web. 

The G-lines o f a min imal ruled surface (right helicoid) fo rm an hexagonal three-web be
cause every min imal ruled surface is applicable to a surface of revolution. The helicoid 

x - - H cos v , v = if sin v , z = cv — c f V - ^ — • — ~ r • ~ , being a minimal surface, gives 
J * ir — i- ii 

a second example for the above theorem ; since every helicoid is applicable to some surface of 
revolution. 

3. Surfaces on which the two families oi G-Hnes form an isothermally orthogonal net 
and have a mean curvature of the form W= W[V(u + V(y)\ u and v being the isothermic para
meters of these G-lines. 

I f a surface is referred to its orthogonal parametric lines, the three directions of G-lines, 
through the same point on the surface, are given 106] by 

(3.1) (;•( — 2 f / ) c o s V + 3 (r2 — 2 g t) c o s > sin tp - f 3 (r, + 2g t) cos <p s i n V 
- I - 0", + 2 g - O s i n V = 0, ' 

where g and g are the geodesic curvatures of the parametric lines, / is the geodesic torsion of the 
parametric lines v =^ const, and r L , r s , r , , r a are the invariant derivatives of. r and f respec
tively. 

V p ,i„ Since = y — • —— i n an orthogonal coordinate system the equation (3.1) takes 
-CH till 

the fo rm 

(3.2) E** (i\ — 2gt) du* + 3 E V(?(ra — 2gt) du2 dv-\-lG V~E (f, -(- 2gt) du efr4 

+ G ' " ( r , + 2gt)dva = 0. 

The necessary and sufficient conditions for the lines v = const, n =const . and u + v = 
const, to be the G-lines o f the surface, are, according to (3.2) 

(3.3) ri—2gt = 0 , 

(3.4) r , +2gt = 0 , 

and 

(3.5) VE~(rt — 2 gt) = VG~(ri + 2gt) 

respectively. By using the conditions (3.3), (3.4) and (3.5) we f ind that 

VE ( r , + r , ) = V < f Q-L + rJ. 

This equality may be wr i t ten as 

(3.6) V E W2 = VG Wi , f Wy = , W. = 

V VE ' VG 

where Wv and Wt are the invariant derivatives o f W i n the direction o f the parametric lines. 

We now prove the fol lowing theorem : 
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Theorem 3.1. If the two families of G-lines of r. surface form an isotiiermally orthogonal 
net, then the three families of G-iines of such a surface will form an hexagonal three-web, if and • 
only if the surface has a mean curvature W, of the form W = W[U(tt) -|- V(v)], where u and v 
are the isothermic parameters. 

Proof. Let the two families of G-lines which are assumed to f o r m an isothermaily or
thogonal net, be taken as parametric lines on the surface. Then the conditions (3.3), (3.4) and 

(3.7) (^%r) - 0 , F = 0 
\ E fnv-

are satisfied. 

Suppose that the G-iines form an hexagonal three-web on the surface in question. Then, 
the lines v = const., u = const, and u + v = const, may be taken as the three families o f 
G-!ines and therefore (3.5) and (3.6) are, also, satisfied. Wi th the aid o f (3.6) and (3.7), we f ind 
that 

>-4) 
and therefore we have 

(3.8) W = WW(u) + V(v)]. 

This means that the family o f curves for which W = W\U(u) -f- V(y)) = const, forms an 
hexagonal three-web w i t h the two families o f G-lines which were assumed to f o r m an isother
maily orthogonal net. 

Conversely, we assume the mean curvature, W, to be o f the fo rm W = yV[(J(u)+ K(v)] 
and prove that the three families o f G-lines f o r m an hexagonal three-web. Let the two families 
of G-lines which are assumed to f o r m an isothermaily orthogonal net be taken as the line* 
v = const, and u = const. I n this case the conditions (3.3) and (3.4) are satisfied. We then f ind , 
f rom (3.2), that the differential equation o f the th i rd family o f the G-lines is 

. EVG~(r,— 2 gi)du + GVE~(rL + 2gt)dv = 0 . 

Using the relations (3.3) and (3.4), this differential equation may be writ ten in the fo rm 

E VG~ IV, du + G V~E Wi dv = 0 , 

and then we f ind 

(3.9) E Wv du + GiVadv^Q. 

Since W — W{U{u) - ( - V(v)] and the parametric lines fo rm an isothermaily orthogonal 
net, the differential equation (3.9) takes the f o r m A' (u) du + B' (v) dv = 0, and therefore 
we obtain 

A{u) + -B(v) = Const. 

as the third family o f G-lines. Bu t the families v = const., it = const, and A(u) + B(v) = const, 
fo rm an hexagonal three-web. Hence the p roo f o f the theorem is completed. 

4 . Dupin's Cyclides. 

We first prove the fo l lowing theorem concerning D U P I N ' S Cyclides. 

Theorem 4 . 1 . The necessary and sufficient condition that the two families of G-lines of a 
surface coincide with the lines of curvature is that the surface be a Dupin's Cyclide. 
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Proof. Suppose that the two families of G-h'nes on a surface coincide wi th the lines of 
curvature. I f we refer the surface to its lines of curvature, then at any point on the surface the 
directions of L A G U E R R E are given, 291]. by the equation 

(4.10) r , c o s V + 3 t*s c o s V sin <?> - I irL cos <p s i n V + ''2 s i n V = 0, 

cp being the angle between the tangents of a G-Iine and v = const. 

N o w , since the two families of G-lines coincide with the lines of curvature, the equation 

(4.10) w i l l be satisfied for <p — 0 and <p = i i / 2 - I n this case we have 

(4.11) r , = 0 , f , = 0 , 

at every poin t of the surface. But these conditions characterize D U P I N ' S Cyclides [ '", 141]. 

Conversely, we assume that the surface in question is a D U P I N ' S Cyclide and refer i t to its 
lines of curvature. Since rL = 0 and r2 — 0 for a D U P I N Cyclide, we f ind f rom (4.10) that the 
L A G U E R R E directions, at any point on the surface, are given by the equation 

( r a cos (p + r± sin f) . sin <p cos y = 0 

Therefore the two directions of L A G U E R R E coincide w i t h y> = 0 and <p = ~ ; that is, wi th 

the lines of curvature. This proves the theorem. 

Theorem 4,2. The G-lines on Dupin's Cyclides form an hexagonal three-web. 

Proof. Le t us refer a D U P I N Cyclide to its lines of curvature. By theorem (4.1) the two 
families of G-lines on a D U P I N Cyclide coincide wi th the lines of curvature. On the other hand, 
the lines of curvature on a D U P I N Cyclide fo rm an isothermally orthogonal net. Therefore the 
two families of G-lines which are coincident w i t h the lines o f curvature, also fo rm an isothermally 
orthogonal net. Furthermore, f rom (4.11) we see that the principal curvatures r, r are of the form 
r = r ( v ) , f = r ( / / ) . Therefore the mean curvature, W, of a D U P I N Cyclide takes the form 
1W = r(u) + r(v). Consequently, D U P I N ' S Cyclides satisfy a l l the conditions of theorem (3.1) 
and therefore the G-lines on D U P I N ' S Cyclides form an hexagonal three-web. 

5. Developable surfaces. 

Let S be a developable surface and let S be referred to its lines of curvature. Then F = 0, 
M = 0 and by a suitably chosen transformation of the parameters u and r , the coefficients of 
the first and the second fundamental f o r m of S may be put into the fo rm [ n , 232], 

(5.1) G = 1 , V~E = e - v . / ( w ) + l(u) , N - 0, 

where / ( « ) and X (u) are arbitrary functions of // alone. 

Furthermore, K = r f = 0 (r = 0) and _r = . Jf the rat io of the two functions f(u) 

and X («), appearing i n (5.1), is constant, the developable surface is a cone ; if f(u) = 0, the 
developable surface is a cylinder [ " , 232]. 

W e now prove a theorem concerning cones. 
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Theorem 5.1. The two families of G-Hnes together with a family of lines of curvature 
{different from the generators) on a cone form an hexagonal three-web. 

Proof. I f a surface is referred to its lines o f curvature, the differential equation o f the 
G-liues takes the form 

•(5.2) E*l* i\ du* + 3 E v'G~r.i dus dv -|- 3 G dit dy* + dv* = 0, 

where r, , r.2, f, and T\ have their usual meaning. Since f = 0 (/• *fc 0) for a developable sur
face, the differential equation (5.2) reduces to 

(5.3) (VE~ r, du + 3 Vd~ r s dv). du2 = 0. 

Therefore two families o f G-lines coincide wi th a family o f lines of curvature, that is, w i t h 
the lines u = const. The differential equation o f the t h i r d family of the G-lines is obtained by 

put t ing r. =-• and rt =•• i n the differential equuation (5.3). Namely 
v'E VG 

(5.4) ra du + 3 rv dv = 0. 

Thus we f ind that the two families o f G-lines and a family o f lines o f curvature (different 
from the generators) o f a developable surface are 

du = 0, 

(5.5) c„ du -I- 3 r„ dv = 0 , 

dv = 0 r 

respectively. These three families o f curves w i l l fo rm an hexagonal three-web i f and only i f 

Setting r = — = , 1 , . , . in (5.6), we obtain 
e v ./(«) + Mu) 

(5.7) I («) = a, f(u) -I- bl , . / ' *fr 0 (a,, A, = const.) 

I f bL = 0 we have I (u)lf(u) — a t-—const, and therefore the developable surface is a cone. 
When 6 , ^ 0 , we obtain a class o f developable.surfaces which includes the cones as a particular 
case. I f / = 0, the.developable surface is a cylinder and we see from (5.5) that the three families 
•of G-lines coincide. 

Theorem 5.2. The two families of G-lines together with a family of lines of curvature (dif
ferent from the generators) on the tangential developable of a space curve will form an hexagonal 
three-web if and only if there exists a relation, between a and t , of the form 

— = (ps -|- a)"'3, (p, tf — const), 

where g, % end s are, respectively, the curvature, the torsion and the arc length of the space curve. 

Proof. The vector equation of the tangential developable o f a space curve, x(s), is 

( 5 > 8 ) ~y(u,s) =7(s) + u7L (s) , ( a< = ~jf) 

The coefficients o f the first and second fundamental forms are 
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(5.9) E = F = 1 , G = 1+Q*U*, L = M ~ 0 , N = QXU. 

The lines o f curvature on the surface (5.8) arc 

(5.10) s = const, II -f- s = const. 

Substituting the values (5.9) i n the differential equation (0.2), we^obtain the differential 
equation o f the G-lines for the tangential developable (5.9), namely 

{-sr* + [ ( l n T) . -T ]*} -* , = a 

Therefore two families o f the G-lines on a tangential developable coincide w i t h the gene
rators ( j=cons t . ) . The two families of G-lines and a family of lines_pf curvature on a tangential 
developable are, respectively, 

ds ~ 0, (G line = line o f curvature) 

(5.11) du + L6 — 3 w / ( V ) l ds = 0, 

da + ds = 0, 

where f(s) - ^ I n ~j . I f we put - « , / , (f= — y ^ r ) . i n (5.11), we f ind tha t 

u = ^~ — 6 —. (ca --= const.) Since, by (5.11)! and (5.11),, s = const. = c, and n + c. = const-
V <P -

— c a we obtain f rom (5.11) 2 that 

(5.12) r 3 = (c, — f , ) . tp' (c,) + 6 y (c,). 

The'three-web, given by the web function (5.12), w i l l be an hexagonal one i f and only if/ 

dciHc2 \ dcsfdc2J 3c, 3c 

This condit ion may be wri t ten as (6<j? — c^/f = a<p" (a = const). Integrating this-
differential equation we have 

¥ — b.'+ k (a -\ - s)n (fo, k = const.) 

or we f ind 

( ~ f ~ ) = 9 ? f = 6/c(ff - j- J ) 6 = ( p i + g ) s , (p,q ~ const). 

Therefore we obta in the required condit ion 

which proves the theorem. 

We remark that when p = 0 , we obtain the tangential developable o f a general helix. 

6, Paralel surfaces. 

Let S be a surface and let S* be a surface parallel to S. D A R B O U X has proved that:: 
The G-lines of S correspond to those of S*. 
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According io ihe above theorem, i f the G-lines o f a surface S form an hexagonal three-web, 
the G-lincs on al l surfaces which are parallel to S w i l l also fo rm an hexagonal three-web. 

Therefore a l l surfaces which are parallel to a surface on which the G-lines fo rm an hexago
nal threc-web, may be added to the class o f surfaces on which the G-lines form an hexagonal 
three-web. 
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İ S T A N B U L T E K N I K Ü N I V E R S İ T E S İ (Manuscript reeeived August 21, 1969) 
M A K I N A F A K Ü L T E S I , 

İ S T A N B U L , T Ü R K I Y E 

Ö Z E T 

Bit makalede L A G U B R R E çizgilerinin (G-çizgİleri) bir üçlü altıgen doku teşkil ettiği yüzeyler 
araştırılmış ve aşağıdaki neticeler elde edilmiştir : 
1. de basit vc negatif Gauss eğriliğini haiz yüzeylerin G-cizgiferinin bir üçlü altıgen doku teşkil 
etmeleri için gerek ve yeter bir şart verilmiştir. Fazla olarak, böyle yüzeyler üzerindeki üç G-çiz-
gisi ailesi ile iki asimptotik çizgi ailesi bir 5-li altıgen doku teşkil ederler. 
2. de, üzerinde G-çizgilerinin üçlü altıgen bir doku teşkil ettikleri sàbit ortalama eğriliğini haiz 
yüzeyler için bir kriter verilmiştir. 
3 . de, üzerinde iki G^çizgisî ailesinin dik izometrik bir sistem teşkil ettiği ve W ortalama eğri
liği W = W [U(ıı) + V(v)J şeklinde olan yüzeylere ait bir teorem ispatlanmıştır. Burada ıı ve v 
izometrik bir sistem teşkil eden iki G-çûgisi ailesinin parametreleridir. 
4. de D T J P F N Sikhdlerinin G-çizgileri yardımıyle bir temsili verilmiş ve D U P I N Siklidicrİ üze
rindeki G-çizgilerinin bir üçlü altıgen doku teşkil ellikleri gösterilmiştir. 
5. de, üzerinde iki G-çizgisİ ailesi ile bir eğrilik çizgisi ailesinin üçlü altıgen bir doku teşkil ettik
leri açılabilir yüzeyler gözönüne alınmış ve konilerin bu şartı sağladıkları gösterilmiştir. Daha 
genel olarak, bir uzay eğrisinin teğetleri ile teşkil edilen açılabilir yüzeyin iki G-cizgisi ailesi ile 
bir eğrilik çizgisi ailesinin bir üçlü altıgen doku teşkil etmeleri için gerek ve yeter şartın 

~ - — İP* + g ) s ' 3 (.l'.l = sâbit) 

den İbaret olduğu İspat edilmiştir. Burada p , T vc s, sırasiylc, uzay eğrisinin eğriliği, burulması 
vc yay uzunluğudur. 
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