
SURFACES O N W H I C H T H E L A G U E R R E L I N E S 

F O R M A N H E X A G O N A L T H R E E - W E B 

A B D U L K A D i R O Z D E G E R (*) 

The aim of this paper is lo study those surfaces on which the L A G U E R U E iines (G-lines) 
form an hexagonal three-web. The following results have been obtained : 

Tn I. a necessary and sufficient condition, for the G-liues of a pseud o-spherical surface to 
form an hexagonal thrce-web, is given. Furthermore, the three families of G-lines together 
with the two families of asymptotic lines form an hexagonal 5-web on such surfaces. 
Tn 2. a criterion for the surfaces of constant mean curvature on which the G-lines form an 
hexagonal three-web is also given. 

In 3. a theorem concerning the surfaces on which the two families of G-lines form an iso-
thermally orthogonal net having a mean curvature W, of the form W— W [ U(u) + K(i')] s 

where u and v are the isothermic parameters of these G-lines is proved. A characterization of 
DuPiN's Cyciides by means of G-lines is given in 4. and it is shown that the G-lincs on 
D U P I N ' S Cyciides form an hexagonal three-web. 

In 5. the developable surfaces on which the two families of G-lines together with a family 
of lines of curvature form an hexagonal three-weh are considered and it is shown that any 
cone satisfies this condition. More generally, two families of G-lines together with a family of 
lines of curvature will form an hexagonal three-web on the tangential developable ofaspace 
curve if and only if there exists a relation, between p and T, of the form 

— = (ps + q)"'3 {p ,q ^- const.), 

p , i and s being, respectively, the curvature, the torsion and the arc length of the space 

curve. Finally, in 6. a result concerning parallel surfaces is mentisoned 

0. Laguerre Lines (G-Lines). 

A_ G-line on a surface is defined as follows [ ' ] : L e i S be a real surface and let C be 

•a line drawn on S. C is said to be a G-Iine i f and only i f at every poiu t P on C, the normal 

plane of S containing the tangent line PT to C, cuts the surface S i n a line superosculated by 

its circle o f curvature at P. 

F r o m the above definition, one can see that a line C on. S w i l l be a G-line i f and only i f the 

relation 

(O.D £ = ¿ . - 2 6 ^ = 0 ( f t . = ^ ) . 

holds a l l along C, [ ' , 140], where £ is L A G U E R R E ' S direction funct ion 'and Qn, Qg, tg and s 

are, respectively, the normal curvature, the geodesic curvature, the geodesic torsion and the 

arc length of C. 

N o w , let a G-line on a surface S be given i n function of any parameter / , by 

H = H ( / ) , v = v ( / ) 

(*) The Author wishes to thauk Professor F . §EMIN for his guidance and'help in the preparation of 
this thesis. 
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;/ and v being the parameters on S. Then the differentia! equation ( 0 . 1 ) can be expressed in func­
t ion o f the coefficients o f the two fundamental forms o f S and their partial derivatives, namely 

[La — 2{LT\, -I- M r \ [)} du* + 3 {£„ — 2 ( L r ] ± + MrU)\du*dv 

( 0 . 2 ) 

-V 3 [Ntt~2[MrW +Nriz))ttudv* -1- [Nv — 2{MrU +NrU))dv* = 0 , 

where L , M and N are the coefficients o f the second fundamental fo rm of S and rfj (/, j , k = 1,2) 
are its C H R I S T O F F E L symbols [A, 1 0 7 ] . 

The differential equation (0 .2) being o f the first order and th i rd degree, in general, three 
G-lines pass through each point o f the surface. Therefore i t w i l l be convenient to study the three-
web formed by its G-lines on a surface and see under what conditions this three web wi l l be 
an hexagonal one. I t is, however, difficult to f ind a genera! solution for this problem and we 
have had to l i m i t our analysis and consider only special classes o f surfaces. 

1. The pseudo-spherical surfaces on which the G-lines form an hexagonal three-web. 

The G-lines on a pseudo-spherical surface do not , in general, fo rm an hexagonal three-web. 
The fo l lowing theorem gives us a necessary and sufficient condit ion for this to occur. 

Theorem 1.1. The necessary and sufficient condition for the G-lines on a pseudo-spheri­
cal surface to form an hexgonai three-web is that o)(u,v) be a function of f satisfying the differential' 
equation 

d*m 
dt< 

-|- a e* sin to = 0 , (a = const.) 

where co(u,v) is the angle between the asymptotic lines of the pseudo-spherical surface and 
uv = E e t , (s = T 1). 

Proof. The differential equation o f the G - l ines o f any surface is (0.2). Suppose that the 
asymptotic lines o f the surface are taken as parametric lines. Then, i f we make L — 0, 7Y = 0 
in (0.2) we obtain the differential equation 

(1.1) r^du" + 3 r ? 2 du*dv + 3P\tdudv* + r \ t dr* = 0. 

N o w let the surface be pseudo-spherical : then its asymptotic lines form a T C H E B Y C H E F 

net [ 3 , 180], and therefore the coefficients, E(u, v) and G(u, v), o f the first fundamental fo rm 
of the pseudo-spherical surface, are o f the f o r m E = E(u) and G = G(v). Then, by a suitable 
transformation o f the parameters [ 4 , 150], the first fundamental f o r m of the surface reduces to 

(1.2) ds* = du2 + 2 cos <u du dv + dv*. 

We then have 

E = G = 1 , F = cos (•}, 

and for the G A U S S I A N curvature K, o f the pseudo-spherical surface, we f i n d • 

0-3) * = _ _ J _ . i ^ . . 
sin co audv 

Setting the above values for Ffj i n (1.1) this equation reduces to 

0 . 4 ) ^ l ^ + ^ ^ O . 
au av 
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Solving this differential equation i n — a n d putt ing p(u, v) = 4 ~ = — " V ~-> we see 
• du du * co„ 

l ha t the three families o f G-lincs on a pseudo-spherical surface are given by 

dv — p(it, v) da — 0 , 

(1.5) dv—jp(tt>v)du = 0 , 

dv — j ' 2 p(n, v) dtt = 0 , 

where j is a complex cube root o f uni ty. 

We now introduce the three differential forms 

« i = # • ( « , v).{dv—pdii) , 

a* = f 3 («, i') • (dv~~j . p du) , 

o-j = gs (u> v) • (rfv — 7 2 . j? rfw) 

3 
w i t h ^ O, i') ^ 0, (/ — i ,2 ,3), and determine ^ ; (/i, v) so as to satisfy the condi t ion ^ o f —• 0. 

i = l 
3 

Then the normed differential forms satisfying the condit ion ^ — 0 are 

/ = ] 

d* = —- p du + rfv , 

(!,6) „ a*2 =-~p p du+Jdv, 

OH ~ — J / 7 ^ " + j 2 dv. 

The three families o f G-lines which are given by (1.5), w i l l f o r m an hexagonal three-web, 
i f and only i f the dependency j ' , o f the three-web is an exact differential [ 5 , 164]. 

Fo r the element o f area, Q, o f the three-web, we can take the exterior product 

[a* , o*2] ~ il ~j (j— l)p (it, v) [du , dv]. The exterior differentials o f the differential forms 
(1.6) differ f rom Si by scalar functions, say lii(u,v) ( i = 1, 2, 3), and the //,-'s satisfy the relation 
3 

y\ /(,• — 0. Denot ing exterior differentiation by b , we obtain 
( — 1 

fa o\ - . , P \ - r Q - K Si , h ot = — Si = A , « 

and hence 

y ( y - D J> ' • y — l p 

O n the other hand, y is defined as y / ; z o* — / ^ c ' , [ 6 , 163]. Inserting the above 

values for / f j , h% , o * and in the expression of y, we f i n d that y = (In p)„ dv. The condi t ion 

that y be an exact differential is 

(1.7) " ( I n / > ) H W = 0, 

and therefore the function p (//, c) is o f the form ^ («, i') = Z ( / / ) . £ (c). Since, (//, v) = — "sj^ , 

we sec that the function O J (», v) satisfies the partial differential equation 

,(1.8) • ^ — 2 , (») . S, (v) - 0 , [ 5 t (v) = Ss (v), ZL («) = — Z ' (w)l. 
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The general solution o f the differential equation (1.8), is o f the form 

(1.9) v(u,v)=f[X(u) + i*(v)} 

Therefore our problem reduces to the problem o f determining the three arbitrary functions. 
/, X and ft, appearing in (1.9) so as to satisfy the differential equation 

(1.10) ^ _ ^ L . ^ = a , 
Sin co d/idv t 

which is found by put t ing K — const = a i n (1.3). I f we put t = A(«) + the differential equa­
t ion (1.10) takes the f o r m 

( M O ' ) . roo.<W = - ^ p 

where / * ( , ) = \ ' { u ) = ^ , j* ' (v) = ^ and K = a < 0. 

Using the property o f equation (1.10') and making the necessary calculations we first f i n d 

(1.11) A(H) = k In ( A /( + c 2 ) , (c\ , = const.) 

and 

(1.12) n(v) = k In (c Bv ~\- c.^ , (c 8 . c 4 = const.). 

Therefore t ~ A(i/) -{- /x(v) = k { I n [ ( c ^ - j - c 3 ) (c3i> + c,J]}. I t is clear that we can make 
r s = c± = 0 by choosing a suitable or igin on the pseudo-spherical surface. Accord ing ly 
t = /t In c, c 3 + A: In i iv and hence we get 

(1.13) <M(«,V) = co { I n I I V } . 

Final ly the differential equation (1.10) reduces to 

(1.14) ^ T i i ' s i n f f l ( i ) f 0 , (f = ln«v) 

and thus the p roo f o f the theorem is completed. 

N o w , let us determine the G-lines for these pseudo-spherical surfaces. Using the value o f 

(o (u, v), which is given by (1.13), we f ind that p(u, v) = — . Substituting this value for 

p(u,v) i n (1.5), we obtain the three differential equations 

dv + *\— du = 0 , dv +j. "V — da = 0 , dv +j* , V — du = 0. 
* u u u 

Integrating these differential equations, we f ind the three families o f G-lines o f the surfa­
ces under consideration, namely 

„ija + v 3 ' " = kL = const. , 

(1.15) H , ' ' + ) V 1 " = * - , = const. , 

«?" -\-fv,/a =ka = c o n s t . , 

I t can be easily seen that the three families o f G-lines, given by (1.15), together w i t h the two-
families o f asymptotic lines for these pseudo-spherical surfaces f o r m an hexagonl 5-web. Moreo­
ver, we see f rom (1.13) that the family <x>(u, v) = const, together w i t h the asymptotic lines f o r m 
an hexagonal three-web o n these surfaces. 
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2. Surfaces of constant mean curvature on which the G-iines form an hexagonal three-web. 

On a surface o f constant mean curvature the three families o f G-Iines cut each other at an 
angle of 120° , [ ' , 145], but they do not , i n general, form an hexagonal three-web. We shall 
now prove the fol lowing theorem : 

•Theorem 2.1. The G-lines of a surface of constant mean curvature will form an hexagonal 
three-web if and only if the surface is applicable to a surface of revolution. 

Proof. Let S be a surface o f constant mean curvature and let 5 be referred to its min imal 
lines. Then, since E = G = 0 and F=fc 0 , the C H R I S T O F F E L symbols T y ( / , / , k ^ 1 ,2 ) take 
the form 

( 2 . 8 ) r h = r j 8 = r u = r B a = o , r [ L = ( i n f ) a , r u = (inF)v. 

On the other hand, the G A U S S I A N curvature K and the mean curvature W o f S, are o f the 
fo rm 

( 2 . 9 ) K = + W , W = ^ = const. 

r r 

Using the M A I N A R D I - C O D A Z Z I relations, we f ind that 

( 2 . 1 0 ) ¿ „ = 0 , J V U = 0. 

By virtue o f ( 2 . 8 ) , ( 2 . 1 0 ) and ( 0 . 2 ) the differential equation o f the G - l ines o n S reduces to 
( 2 . 1 1 ) L ^ ] n ~ ^ du'—N (^In—-^ </v3 = 0 . 

I f we assume the G- l ines to fo rm an hexagonal three-web on &', we f ind that 

( 2 . 1 2 ) 

3 

where we pu t \ / -JT • ~, = p (u,v) i n ( 1 . 7 ) . 

W i t h the a id o f ( 2 . 10 ) , i t is easy to see that the condit ion ( 2 . 1 2 ) may be writ ten in the form 

LN 

, LN \ a(u) 
In-

•—F'' 

and therefore we obtain 

t N 
-t^L = T[«(u) + / i (v ) ] = K — , ( W = c o u s l . ) 

where a{t<), 60')» a(w), /?(»), and T[a(u) + £(v)l are arbitrary functions. 

Therefore the min imal lines u = const., v = const, and the family K = const, f o r m an 
' hexagonal three-web on S. But this means that the surface S is applicable to a surface o f revolu­

t i o n ['",341. 



72 A B D U L K A D I R O Z D E G E R 

Conversely, we assume the surface S to be applicable to a surface o f revolution. In this 
case the minima! lines u = const., v = const, together wi th the family K — conts. form an hexa­
gonal three-web on S. Consequently, K must be o f the form K = K\_U(u) + V(v)], U(u) and 
V{y) being arbitrary functions [ f ' ,29]. 

Therefore since, by (2.9), F2 — — J{[U^)''^-'V(v)]—W2 W C S C C ^ f i e x a g ° n i i l i t y 

condition, (2,12), is satisfied,. This means that the G-lines o f S form an hexagonal three web. 

The G-lines o f a min imal ruled surface (right helicoid) fo rm an hexagonal three-web be­
cause every min imal ruled surface is applicable to a surface of revolution. The helicoid 

x - - H cos v , v = if sin v , z = cv — c f V - ^ — • — ~ r • ~ , being a minimal surface, gives 
J * ir — i- ii 

a second example for the above theorem ; since every helicoid is applicable to some surface of 
revolution. 

3. Surfaces on which the two families oi G-Hnes form an isothermally orthogonal net 
and have a mean curvature of the form W= W[V(u + V(y)\ u and v being the isothermic para­
meters of these G-lines. 

I f a surface is referred to its orthogonal parametric lines, the three directions of G-lines, 
through the same point on the surface, are given 106] by 

(3.1) (;•( — 2 f / ) c o s V + 3 (r2 — 2 g t) c o s > sin tp - f 3 (r, + 2g t) cos <p s i n V 
- I - 0", + 2 g - O s i n V = 0, ' 

where g and g are the geodesic curvatures of the parametric lines, / is the geodesic torsion of the 
parametric lines v =^ const, and r L , r s , r , , r a are the invariant derivatives of. r and f respec­
tively. 

V p ,i„ Since = y — • —— i n an orthogonal coordinate system the equation (3.1) takes 
-CH till 

the fo rm 

(3.2) E** (i\ — 2gt) du* + 3 E V(?(ra — 2gt) du2 dv-\-lG V~E (f, -(- 2gt) du efr4 

+ G ' " ( r , + 2gt)dva = 0. 

The necessary and sufficient conditions for the lines v = const, n =const . and u + v = 
const, to be the G-lines o f the surface, are, according to (3.2) 

(3.3) ri—2gt = 0 , 

(3.4) r , +2gt = 0 , 

and 

(3.5) VE~(rt — 2 gt) = VG~(ri + 2gt) 

respectively. By using the conditions (3.3), (3.4) and (3.5) we f ind that 

VE ( r , + r , ) = V < f Q-L + rJ. 

This equality may be wr i t ten as 

(3.6) V E W2 = VG Wi , f Wy = , W. = 

V VE ' VG 

where Wv and Wt are the invariant derivatives o f W i n the direction o f the parametric lines. 

We now prove the fol lowing theorem : 



H E X A G O N A L T H R E E - W E B 73 

Theorem 3.1. If the two families of G-lines of r. surface form an isotiiermally orthogonal 
net, then the three families of G-iines of such a surface will form an hexagonal three-web, if and • 
only if the surface has a mean curvature W, of the form W = W[U(tt) -|- V(v)], where u and v 
are the isothermic parameters. 

Proof. Let the two families of G-lines which are assumed to f o r m an isothermaily or­
thogonal net, be taken as parametric lines on the surface. Then the conditions (3.3), (3.4) and 

(3.7) (^%r) - 0 , F = 0 
\ E fnv-

are satisfied. 

Suppose that the G-iines form an hexagonal three-web on the surface in question. Then, 
the lines v = const., u = const, and u + v = const, may be taken as the three families o f 
G-!ines and therefore (3.5) and (3.6) are, also, satisfied. Wi th the aid o f (3.6) and (3.7), we f ind 
that 

>-4) 
and therefore we have 

(3.8) W = WW(u) + V(v)]. 

This means that the family o f curves for which W = W\U(u) -f- V(y)) = const, forms an 
hexagonal three-web w i t h the two families o f G-lines which were assumed to f o r m an isother­
maily orthogonal net. 

Conversely, we assume the mean curvature, W, to be o f the fo rm W = yV[(J(u)+ K(v)] 
and prove that the three families o f G-lines f o r m an hexagonal three-web. Let the two families 
of G-lines which are assumed to f o r m an isothermaily orthogonal net be taken as the line* 
v = const, and u = const. I n this case the conditions (3.3) and (3.4) are satisfied. We then f ind , 
f rom (3.2), that the differential equation o f the th i rd family o f the G-lines is 

. EVG~(r,— 2 gi)du + GVE~(rL + 2gt)dv = 0 . 

Using the relations (3.3) and (3.4), this differential equation may be writ ten in the fo rm 

E VG~ IV, du + G V~E Wi dv = 0 , 

and then we f ind 

(3.9) E Wv du + GiVadv^Q. 

Since W — W{U{u) - ( - V(v)] and the parametric lines fo rm an isothermaily orthogonal 
net, the differential equation (3.9) takes the f o r m A' (u) du + B' (v) dv = 0, and therefore 
we obtain 

A{u) + -B(v) = Const. 

as the third family o f G-lines. Bu t the families v = const., it = const, and A(u) + B(v) = const, 
fo rm an hexagonal three-web. Hence the p roo f o f the theorem is completed. 

4 . Dupin's Cyclides. 

We first prove the fo l lowing theorem concerning D U P I N ' S Cyclides. 

Theorem 4 . 1 . The necessary and sufficient condition that the two families of G-lines of a 
surface coincide with the lines of curvature is that the surface be a Dupin's Cyclide. 



74 A B D U L K A D I R O Z D E O E R 

Proof. Suppose that the two families of G-h'nes on a surface coincide wi th the lines of 
curvature. I f we refer the surface to its lines of curvature, then at any point on the surface the 
directions of L A G U E R R E are given, 291]. by the equation 

(4.10) r , c o s V + 3 t*s c o s V sin <?> - I irL cos <p s i n V + ''2 s i n V = 0, 

cp being the angle between the tangents of a G-Iine and v = const. 

N o w , since the two families of G-lines coincide with the lines of curvature, the equation 

(4.10) w i l l be satisfied for <p — 0 and <p = i i / 2 - I n this case we have 

(4.11) r , = 0 , f , = 0 , 

at every poin t of the surface. But these conditions characterize D U P I N ' S Cyclides [ '", 141]. 

Conversely, we assume that the surface in question is a D U P I N ' S Cyclide and refer i t to its 
lines of curvature. Since rL = 0 and r2 — 0 for a D U P I N Cyclide, we f ind f rom (4.10) that the 
L A G U E R R E directions, at any point on the surface, are given by the equation 

( r a cos (p + r± sin f) . sin <p cos y = 0 

Therefore the two directions of L A G U E R R E coincide w i t h y> = 0 and <p = ~ ; that is, wi th 

the lines of curvature. This proves the theorem. 

Theorem 4,2. The G-lines on Dupin's Cyclides form an hexagonal three-web. 

Proof. Le t us refer a D U P I N Cyclide to its lines of curvature. By theorem (4.1) the two 
families of G-lines on a D U P I N Cyclide coincide wi th the lines of curvature. On the other hand, 
the lines of curvature on a D U P I N Cyclide fo rm an isothermally orthogonal net. Therefore the 
two families of G-lines which are coincident w i t h the lines o f curvature, also fo rm an isothermally 
orthogonal net. Furthermore, f rom (4.11) we see that the principal curvatures r, r are of the form 
r = r ( v ) , f = r ( / / ) . Therefore the mean curvature, W, of a D U P I N Cyclide takes the form 
1W = r(u) + r(v). Consequently, D U P I N ' S Cyclides satisfy a l l the conditions of theorem (3.1) 
and therefore the G-lines on D U P I N ' S Cyclides form an hexagonal three-web. 

5. Developable surfaces. 

Let S be a developable surface and let S be referred to its lines of curvature. Then F = 0, 
M = 0 and by a suitably chosen transformation of the parameters u and r , the coefficients of 
the first and the second fundamental f o r m of S may be put into the fo rm [ n , 232], 

(5.1) G = 1 , V~E = e - v . / ( w ) + l(u) , N - 0, 

where / ( « ) and X (u) are arbitrary functions of // alone. 

Furthermore, K = r f = 0 (r = 0) and _r = . Jf the rat io of the two functions f(u) 

and X («), appearing i n (5.1), is constant, the developable surface is a cone ; if f(u) = 0, the 
developable surface is a cylinder [ " , 232]. 

W e now prove a theorem concerning cones. 
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Theorem 5.1. The two families of G-Hnes together with a family of lines of curvature 
{different from the generators) on a cone form an hexagonal three-web. 

Proof. I f a surface is referred to its lines o f curvature, the differential equation o f the 
G-liues takes the form 

•(5.2) E*l* i\ du* + 3 E v'G~r.i dus dv -|- 3 G dit dy* + dv* = 0, 

where r, , r.2, f, and T\ have their usual meaning. Since f = 0 (/• *fc 0) for a developable sur­
face, the differential equation (5.2) reduces to 

(5.3) (VE~ r, du + 3 Vd~ r s dv). du2 = 0. 

Therefore two families o f G-lines coincide wi th a family o f lines of curvature, that is, w i t h 
the lines u = const. The differential equation o f the t h i r d family of the G-lines is obtained by 

put t ing r. =-• and rt =•• i n the differential equuation (5.3). Namely 
v'E VG 

(5.4) ra du + 3 rv dv = 0. 

Thus we f ind that the two families o f G-lines and a family o f lines o f curvature (different 
from the generators) o f a developable surface are 

du = 0, 

(5.5) c„ du -I- 3 r„ dv = 0 , 

dv = 0 r 

respectively. These three families o f curves w i l l fo rm an hexagonal three-web i f and only i f 

Setting r = — = , 1 , . , . in (5.6), we obtain 
e v ./(«) + Mu) 

(5.7) I («) = a, f(u) -I- bl , . / ' *fr 0 (a,, A, = const.) 

I f bL = 0 we have I (u)lf(u) — a t-—const, and therefore the developable surface is a cone. 
When 6 , ^ 0 , we obtain a class o f developable.surfaces which includes the cones as a particular 
case. I f / = 0, the.developable surface is a cylinder and we see from (5.5) that the three families 
•of G-lines coincide. 

Theorem 5.2. The two families of G-lines together with a family of lines of curvature (dif­
ferent from the generators) on the tangential developable of a space curve will form an hexagonal 
three-web if and only if there exists a relation, between a and t , of the form 

— = (ps -|- a)"'3, (p, tf — const), 

where g, % end s are, respectively, the curvature, the torsion and the arc length of the space curve. 

Proof. The vector equation of the tangential developable o f a space curve, x(s), is 

( 5 > 8 ) ~y(u,s) =7(s) + u7L (s) , ( a< = ~jf) 

The coefficients o f the first and second fundamental forms are 
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(5.9) E = F = 1 , G = 1+Q*U*, L = M ~ 0 , N = QXU. 

The lines o f curvature on the surface (5.8) arc 

(5.10) s = const, II -f- s = const. 

Substituting the values (5.9) i n the differential equation (0.2), we^obtain the differential 
equation o f the G-lines for the tangential developable (5.9), namely 

{-sr* + [ ( l n T) . -T ]*} -* , = a 

Therefore two families o f the G-lines on a tangential developable coincide w i t h the gene­
rators ( j=cons t . ) . The two families of G-lines and a family of lines_pf curvature on a tangential 
developable are, respectively, 

ds ~ 0, (G line = line o f curvature) 

(5.11) du + L6 — 3 w / ( V ) l ds = 0, 

da + ds = 0, 

where f(s) - ^ I n ~j . I f we put - « , / , (f= — y ^ r ) . i n (5.11), we f ind tha t 

u = ^~ — 6 —. (ca --= const.) Since, by (5.11)! and (5.11),, s = const. = c, and n + c. = const-
V <P -

— c a we obtain f rom (5.11) 2 that 

(5.12) r 3 = (c, — f , ) . tp' (c,) + 6 y (c,). 

The'three-web, given by the web function (5.12), w i l l be an hexagonal one i f and only if/ 

dciHc2 \ dcsfdc2J 3c, 3c 

This condit ion may be wri t ten as (6<j? — c^/f = a<p" (a = const). Integrating this-
differential equation we have 

¥ — b.'+ k (a -\ - s)n (fo, k = const.) 

or we f ind 

( ~ f ~ ) = 9 ? f = 6/c(ff - j- J ) 6 = ( p i + g ) s , (p,q ~ const). 

Therefore we obta in the required condit ion 

which proves the theorem. 

We remark that when p = 0 , we obtain the tangential developable o f a general helix. 

6, Paralel surfaces. 

Let S be a surface and let S* be a surface parallel to S. D A R B O U X has proved that:: 
The G-lines of S correspond to those of S*. 
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According io ihe above theorem, i f the G-lines o f a surface S form an hexagonal three-web, 
the G-lincs on al l surfaces which are parallel to S w i l l also fo rm an hexagonal three-web. 

Therefore a l l surfaces which are parallel to a surface on which the G-lines fo rm an hexago­
nal threc-web, may be added to the class o f surfaces on which the G-lines form an hexagonal 
three-web. 
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İ S T A N B U L T E K N I K Ü N I V E R S İ T E S İ (Manuscript reeeived August 21, 1969) 
M A K I N A F A K Ü L T E S I , 

İ S T A N B U L , T Ü R K I Y E 

Ö Z E T 

Bit makalede L A G U B R R E çizgilerinin (G-çizgİleri) bir üçlü altıgen doku teşkil ettiği yüzeyler 
araştırılmış ve aşağıdaki neticeler elde edilmiştir : 
1. de basit vc negatif Gauss eğriliğini haiz yüzeylerin G-cizgiferinin bir üçlü altıgen doku teşkil 
etmeleri için gerek ve yeter bir şart verilmiştir. Fazla olarak, böyle yüzeyler üzerindeki üç G-çiz-
gisi ailesi ile iki asimptotik çizgi ailesi bir 5-li altıgen doku teşkil ederler. 
2. de, üzerinde G-çizgilerinin üçlü altıgen bir doku teşkil ettikleri sàbit ortalama eğriliğini haiz 
yüzeyler için bir kriter verilmiştir. 
3 . de, üzerinde iki G^çizgisî ailesinin dik izometrik bir sistem teşkil ettiği ve W ortalama eğri­
liği W = W [U(ıı) + V(v)J şeklinde olan yüzeylere ait bir teorem ispatlanmıştır. Burada ıı ve v 
izometrik bir sistem teşkil eden iki G-çûgisi ailesinin parametreleridir. 
4. de D T J P F N Sikhdlerinin G-çizgileri yardımıyle bir temsili verilmiş ve D U P I N Siklidicrİ üze­
rindeki G-çizgilerinin bir üçlü altıgen doku teşkil ellikleri gösterilmiştir. 
5. de, üzerinde iki G-çizgisİ ailesi ile bir eğrilik çizgisi ailesinin üçlü altıgen bir doku teşkil ettik­
leri açılabilir yüzeyler gözönüne alınmış ve konilerin bu şartı sağladıkları gösterilmiştir. Daha 
genel olarak, bir uzay eğrisinin teğetleri ile teşkil edilen açılabilir yüzeyin iki G-cizgisi ailesi ile 
bir eğrilik çizgisi ailesinin bir üçlü altıgen doku teşkil etmeleri için gerek ve yeter şartın 

~ - — İP* + g ) s ' 3 (.l'.l = sâbit) 

den İbaret olduğu İspat edilmiştir. Burada p , T vc s, sırasiylc, uzay eğrisinin eğriliği, burulması 
vc yay uzunluğudur. 
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