SURFACES ON WHICH THE LAGUERRE LINES
FORM AN HEXAGONAL THREE - WEB

ApDULKADIR OzDESER (%)

The aim of this paper is lo study those surfaces on which the Lagugere lines (G-lines)
form an hexagonal three-web. The following resuits have been obtained :

Tn 1. a necessary and sufficient condition, for the G-liues of a pseudo-spherical surface to
form an hcxagonal three-web, is given. Furtherrﬂure: the three families of G-lines together
with the two families of asymptotic linés form an hexagonal 5-web on such surfaces.

Tn 2. a criterion for the surfaces of constant mean curvature on which the G-lines form an
hexagonal three-web is also given.

In 3. a theorem concerning the surfaces on which the two families of G-lines form an iso-
thermally orthogonal net having a mean curvature W, of the form W-—=W[UQ@) + K1),
where & and v are the isothermic parameters of these G-lines is proved. A characterization of
Dupin's Cyclides by means of G-lines is given in 4. and it is shown that the G-lincs on
Durmd’s Cyciides form an hexagonal three-web,

In 5. the developable surfaces on which the two families of. G-lines together with a Family
of lines of ¢urvature form an hexagonal three-weh are considered and it is shown that any
cone satisfies this condition. Mare generally, two families of G-lines together with a family of
lines of.curvature will form an hexagonal three-web on the tangential developable of a space
curve il' and only if. there exists & relation, between p and «, of the form '

o .
— = (ps + g¥*"% {(p,q = const},

@, t and 5 being, respectively, the curvature, the torsion and the arc length of the space
curve, Finally, in . a result congerning paraliel surfaces is mentisoned

0. Laguerre Lines {G-Lings).

A G-line on a surface is defined as follows [']: Let § be a real surface and let C be
a line drawn on S. Cis said to be a G-line if and only if at every poiut P on C, the normal
plane of S containing the tangent line PT to C, cuts the surface § in a line superosculated by
its circle of curvature at P. :

From the above definition, one can see that a line C on  will be & G-line if and only if the
‘relation :

. . ' . dQn
(0-1) G:Q#_zegtg‘:e (9"7d5'>

holds all aloﬁg C, [', 140], where ¢ is LAGUERRE’s direction function'and g,, Q> Ty and s
are, respectively, the normal curvature, the geodes:c curvature, the geodeslc tOrslon and the
" arc length of C.

Now, let a G-line on a surface .$ be given in function of any parameter ¢, by

u=uft)y , v=yv{)

(*) The Authar wishes to thauk Professor. F, SsmiN for his gnidance and "help in the preparation of
this thesis.
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68 . AppUiLkapiR OZDEGER

« and v being the parameters on S. Then the differentiat equation (0.1) can be expressed in func-
tion of the coefficients of the two fundamental forms of § and their partial derivatives, namely

(Lo —2(L LY, + MT3) died +3{Ly—2(LT), + MT;) du? dv
©02) _
F 3Ny —2(M I, + NT2,) Y dud® + Ny —2(M '}, + NI'E))dv® =

where L, M and N are the coefficients of the second fundamental form of Sand I'§ (7, /, k = 1,2)
are its CHRISTOFFEL symbols [?, 107].

The differential equation (0.2) being of the first order and third degree, in general, three
G-lines pass through each point of the surface, Therefore it will be convenient to study the three-
web formed by its G-lines on a surface and see under what conditions this three web will be
an hexagonal one, It is, however, difficult to find a general solution for this problem and we
have had to limit our analysis and consider only special classes of surfaces.

1. The pseudo-spherica) surfaces on which the G-lines form an hexagonal three-weh.

The G-lines on a pseudo-spherical surface do not, in general, form an hexagonal three-web.
The following theorem gives us a necessary and sufficient condition for this to occur.

Theorem 1.1, The necessary and sufficient condition for the G-lines on a psendo-spheri-
cal surface to form an hexgonai three-web is that o(u,v) be a function of ¢t satisfying the differential
equation

d?w
d 2

- aetsinw =0, (a@=const)

where w(u,v) is the angle between the asympitotic lines of the pseudo-spherical surface and
av=cet, (g =TF 1), :

Proof. The differential equation of the G-lines of any surface is (0.2), Suppose that the
asymptotic lines of the surface are taken as parametnc lines, Then, if we make L =0, N =0
in (0.2) we obtain the differential equatlon

(t.1) B + 3T, ditdv + 3T dudv + Iy dvt =0,

Now let the surface be pseudo-spherical : then its asymptotic lines form a TCHEBYCHEF
net [%, 180}, and therefore the coefficients, E(u, v) and G(u, v), of the first fundamental form
of the pseudo-spherical surface, are of the form FE = E(4) and G == G(v). Then, by a suitable
transformation of the parameters [*, 150], the first fundamental form of the surface reduces to

1.2) ds® = du® + 2 cos w du dv + dv®.
We then have

E=G=1 , F=cosw,

‘ 1 dw 1 dw
=It, =0 3 I3 TR e T e 32— — -
iz 12 11 sinc  oa’ 22 sing By

and for the Gaussian curvature K, of the pseudo-spherical surface, we find -

1 e
(.3 K=—ne G

Setting the above values for I'% in (1,1) this equation reduces to

(1.4) _ %"_dﬂ+~4pa—o
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Solving this differentigl equalion in E{% and puiting p(x, v) = g—; = — a\/%:-, we see
" that the three families of G-lincs on a pseudo-spherical surface are given by
dv—pla,v)due =0
(L1.5) dav—jipuv)du =0 ,
cdv—Jrpl,v)du =0
where j is a complex cube root of unity.
We now introduce the three differential forms
a, =g (w,v).(dv—pdu) ,
Oy = L2 G, v) . (dv“"‘j-pd”) >
o, = g; (V) . (dv —j2 . pdu)
: 3
with g; (, =0 0, (7 = [,2,3), and determine g; (i, ») S0 as to satisfy the condition Y ¢; = 0.
. i=1

3
Then the normed differential forms satisfying the condition ¥} o} =0 are
i=1

o*;_:~pdu+dv R
(1.6) ' i oy — —fipdu + jdv,
- Oy = —j pdu+ v

The three families of G-lines which are given by (1.5), will form an hexagonal three-web,
if and only if the dependency y, of the three-web is an exact differential [%, 164). ’

For the- element of area, 2, of the three-web, we can take the exterior product

{65, 03] = £ =j(j—1)p () [du, dv). The exterior differentials of the differential forms

(1.6) differ from & by scalar functions, say fi; (u,v) (( = I, 2, 3), and the Ji;’s satisfy the relation
3

» Ir; = 0. Denoting exterior differentiation by b , we obtain

i=1
b =—F _o—h 0, batﬂ.—j-—p—"Q:h!}
T iU—Dp ! i1 p '
and hence
1 P J P
W= ", fy==— .
N TTES T P i—1p

On the other hand, y is defined as y = F.z af — k05, [° 1631 Inserting the above

values for /1y, &, , 6: and a: in the expression of ¥, we find that y = (In p), dv, The condition
that y be an exact differential is '

(1.7) . _‘ npy, =0,

and therefore the function p (#, ¥) is of the form g (i, ¥) = Z (&) . § (¥). Since, p (#r, v) = — ‘ % ,
: L4

we sec that the function o (u, v) satisfies the partial differential equation

(1.8) . %‘%yZi(u).S, (P)% =0, [5,(N=80),Z @=—2Zl
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Thé general so]ut_ion of the differential equation (1.8), is of the form
(1.9) w (1, v) :f{l(u)l—}- p(n}

Therefore our problem reduces to the problem of d‘etermirﬁng the thiee arbitrary functions
£, % and g, appearing in (1.9) so as to satisfy the differential equation

1 %
1 - ot _
(1.10) . K sinw  dudy, @

which is found by putting K — const = a4 in (1.3). If we put + = i(s) 4- (), the differential equa-
tion (1.10) takes the form

@ sin j ()

(.10 . | Ay . vy = — NN

)
1’(u):%, y'(v):nd—“ and K =g < 0.

where f¥ (t)_ = — dv

Using the property of equation (1.10") and making the necessary calculations we first find -

(1.11) M) =Fkin(e n+e) , (e, ¢c; —const)
and
(1.12) _ p(v) =kln(ev - ¢)) , (6. ¢, = const.),

Therefore ¢ = () -+ p(v) =k {In [{c,r + ) (eav + €)1} 1t is clear that we can make
cp =¢, =0 by choosing a suitable origin on the pseudo-spherical surface. Accordingly
t=klne,¢; +klnuv and hence we get

(1.13) i,y = ofInav .
Finally the differential equation (1,10) reduces to

d? w1}
de*

(1.14) +aetsinw(t) =0, (r=Inuv)
and thus the proof of the theorem is completed.

Now, let us determine the G-lines for these pseudo-spherical surfaces, Using the value of

w (#, v), which is given by (1.13), we find that p(u, v) = — B\/—;— Substituting this value for

plu,v) in (1.5), we obtain the three differential equations
dv +“\/!_‘:du —0 , d+i. a\/%—duﬁo . dvt gt ,“\/{ndu =0.

Integrating these differential equations, we find the three families of G-lines of the surfa-
ces under consideration, namely
w4yt = = const. ,
(1.15) - w4 jy? =k, = const, ,
a7t = g, = const,

1t can be easily seen that the three families of G-lines, given by (1.15), together with the two-
families of asymptotic lines for these pseudo-spherical surfaces form an hexagon] 5-web, Moreo-
ver, we see from (1.13) that the family (i, ¥) = const. together with the asymptottc lines form
an hexgagonal three-web on these surfaces.

A

g
E
4




HEXAGONAL THREE-WEB 1

2. Surfaces of consiant mean curvature on which the G-lines form an hexagonal three-web.

On a surface of constant mean curvature the three families of G-lines cut each other at an
angle of 120°, [', 145], but they do not, in gencral, form an hexagonal three-web. We shall
now prove the following theorem :

-Theorem 2.1. The G-fines of a surface of constant mean curvature will form an hexagonal
three-web if and only if the surfuce is applicable to a surface of revolution.

Proof. Let .S bea surface of constant mean curvature and let S be referred fo ifs minimal
lines, Then, since E =G =0 and F=a0, the CHRSTOFFEL symbols ' (7, f, k = 1,2) take
the form

(2.8) [, =Ty =T, =T, =0 , I't, =(nF)y, I'y=(>nF),.

" On the other ha.nd, the Gaussian curvature K and the mean curvature W of S, are of the
form : '
LN M
(2.9) ) K=_ T + Wt s W= T = const.

Using the MAINARDI-CopAazzZ1 relations, we find that
2.10) L,=0 , N,=0.

By virtue of (2.8), (2.10) and (0.2) the differential equation of the G-liﬁes on S reduces to

: RNy EN g
@.11) | L(]n F,)ﬂ du ——N(ln N)pdv —o.

" 1f we assume the G-lines to form an hexagonal three-web on 8, we find‘that

N
3 L F/,

(2.12) In -f_V_ : T =0,
-(lnj_v')v L
L
3 L (1“??7>a .
where we put N7 F. =1p (u,v) in (1.7).
(ln—N-)v

With the aid of (2.10), it is easy to see that the condition (2,12) may be written in the form
( LN )
TR b0

and therefore we obtain

%: Tl @)+ f0) = K— W* , (W = coust.)

where afs), b(v), alr), (), and T[a() + S are arbitrary functions,

Therefore the minimal lines # = const., v = const. and the family K = const. form an
" hexagonal three-web on 8. But this means that the surface S is applicable to a surface of revolu-
tion ['%,347. ’

d
.
!
:
L
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Conversely, we assume the surface S to be applicable to a surface of revelution. In this
case the minimal lines # = const., ¥ = const. together with the family K = conts, form an hexa-
gonal three-web on §. Consequently, K must be of the form K = K{U(x) + ¥ (v)], U(x) and
V(v) being arbitrary functions [*,29]. ‘

Liu) . : ' ,
Therefore since, by (2.9), F? = — —wi)——hi(v)— we sec that the hexagonality
KIU(w) -+ V(v)]—W :

condition, (2,12), is satisfied,. This means that the G-lines of § form an hexagonal three web.

The G-lines of a minimal ruled surface (right helicoid) form an hexagonal three-web be-
cause every minimal ruled surface is applicable to a surface of revolution. The helicoid
. \/u? 4 e du . .. .
X¥TmHCOSY, p=MHSIDy, Z=ep=oC f T being a minimal surface, gives .
a second example for the above theorem ; since every helicoid is applicable to some surface of
revolution. .

3. Surfaces on which the two families of G-lines form an isothermally orthegonal net
and have a mean curvature of the form 1= WU (x + V(¥)] « and v being the isothermic para-
meters of these G-lines. -

If a surface is veferred to its orthogonal parametric lines, the three directions of G-lines,
through the same point on the surface, are given [, 106] by

3.1) (r,—2gt)cosp + 3(r,—2g 1 cos’psing + 3(F, + 2 g¢)cos g sin?p
4 (F, + 25 sin'g =0,
where g and F are the geodesic curvatures of the parametric lines, ¢ is the geodesic torsion of the
parametric lines » = const. and r,,#,,F,,F, are the invariant derivatives of. r and 7 respec-
tively, .
dv

Since tg g = \/—E— - gy Iman orthogonal coordinate system- the equation (3.1) takes

" the form

(3.2) E¥*(r,—2g1)du® + 3 E\/E(i"2 25t dutdv4 3G \/_E_-(‘f-lL b 2gt)dy dr?
‘ + G F, 250 =0, '

‘The necessary and sufficient conditions for the lines v = const, n =const. and v + v =
const. to be the G-lines of the surface, are, according to (3.2)

(3.3) r—2g1—0 ,
(3.4) Fo+2gi=0 ,

and

(3.9 VE (r,— 230 =VG (7, +2g1)

respectively. By using the conditions (3.3), (3.4) and (3.5) we find .that

VE s +7) = VG (r,+ 7))

This equality may be written as

(3.6 VEW,=VvVG w, , (Wl=‘2“_, W2="j_,é"_),

where W, and W, are the invariant derivatives of W in the direction of the parametric lines,

We now prove the following theorem
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Theorem 3.1. If the two families of G-fines of « surface form an isothermally orthogonal
net, then the three familics of G-iines of such a surface will form an hexagonal three-web, if and -
only if the surface has a mean curvature W, of the form W = W [U(u) - V(¥)l, where u and v
are the isothermic parameters.

Prbol‘. Let the two families of G-lines which are assumed to form an isothermally or-
thogonal net, be taken as parametric lines on the surface. Then the conditions (3.3), (3.4) and

o .
3.7 (]n—) =0 , F=0
@7 E

are satisfied.

Suppose that the G-iines form an hexagonal three-web on the surface in question. Then, g
the lines v — const., # — const. and r + v = const. may be taken as the three families of '
G-lines and therefore (3.5) and (3.6) are, also, satisfied. With the aid of (3.6) and (3.7), we find

that
Gy W,
Iu—) = ( in ”f) =0,
( E U . WE prd/d
and therefore we have

(3.8) : W= Wil + V(.

This means that the family of curves for which W = WU -+ V(¥)) = const. forms an
hexagonal three-web with the two families of G-lines which were assumed to form an isother-
mally orthogonal net.

Conversely, we assume the mean curvature, - W, to be of the form W = WU+ V()]
and prove that the three families of G-lines form an hexagonal three-web. Let the two families
of G-lines which are assumed to form an isothermally orthogonal net be taken as the lines
» = const. and & = const. In this case the conditions (3.3) and (3.4) are satisfied. We then find,
from (3.2}, that the differential equation of the third family of the G-lines is

EVG (r,—230du + GVE 7, +2g0)dv =0,
Using the relations (3.3} and (3.4), this differential equation may be written in the form

EVG W,du +GVE W, dv =0,
and then we find

(3.9) EW,de + G Wy dv = 0.

Since W = WI[U{uw) + V(v)) aﬁd the parametric lines form an isothermally orthogonal
net, the differential equation (3.9) takes the form A" (u) du + B" () dv =0, and therefore
we obtain ’

Ay + B(v) = Const,

as the third family of G-lines. But the families v = const,, # = const. and A4(#) + B(v) = const.
form an hexagonal three-web. Hence the proof of the theorem is completed.

4. Dupin’s Cyclides.
We first prove the following theorem concerning Dupin’s Cyclides.

Theorem 4.1. The necessar vy and sufficient condition that the two famifies of G-lines of o
surface coincide with the lines of eurvature is that the surface be a Dupin’s Cyelide,
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Proof, Subpose that the two families of G-hnes on a surface coincide with the lines of
curvature. 1f we refer the surface to its lines of curvature, then at any point on the surface the
directions of LAGUERRE are given, [°, 291]. by the equation

4.10) r,cos’y -+ 3r, cos’e sin g - 37, cos g sin’y 4 7p sin‘p = 0,
¢ being the angle between the tangents of a G-line and v = const.

Now, since the two families of G-lines coincide with the lines of curvature, the eciuation
(4.10) will be satisfied for ¢ = 0 and ¢ = 2/2.1n this case we have

@.11) Fo=0 , Fy=0 ,
at every point of the surface. But these conditions characterize DupIN’s Cyclides ['°, 141].

Conversely, we assume that the surface in question is a DupiN®s Cyclide and refer it to its
lines of curvature, Since r; == 0 and 7, = 0 for a DupiN Cyclide, we find from (4.10) that the
Lacuerre directions, at any point on the surface, are given by the equation

(rycosg + 7 sing).singcosg =0

Therefore the two directions of LAGUERRE coincide with ¢ = Qand ¢ = - ; that is, with

the lines of curvature. This proves the theorem.

Theorem 4.2. The G-lines on Dupin’s Crelides_form an hexagonal three-web.

" Proof. Let us refer a DupiN Cyclide to its lines of curvature, By theorem (4.1) the two
families of G-lines on a DuUPIN Cyclide coincide with the lines of curvature, On the other hand,
the lines of curvature on a DupiN Cyclide form an isothermally orthogonal net. Therefore the
two families of G-lines which are coincident with the lines of curvature, also form an isothermally
orthogonal net. FurtHermore, from (4.11) we see that the principal curvatures r, ¥ are of the form
r=r(v), ¥ = F(u). Therefore the mean curvature, W, of a DupriN Cyclide takes the form
2W. = F (i) + r{v). Consequently, DupN’s Cyclides satisfy all the conditions of theorem (3.1)
and therefore the G-lines on DupriN’s Cyclides form an hexagonal three-web.

5. Developable sarfaces.

Let § be a developable surface and let .S be referred to its lines of curvature. Then F = 0,
M = 0 and by a suitably chosen transformation of the parameters # and v, the coefficients of
the first and the second fundamental form of § may be put into the form [*!, 2321,

(5.1) G=1, VE=e¢=v.fl)+ M), N=0,
where f(&) and A () are arbitrary functions of 1 alone.

1 .
Furthermore, X =r7 =0 = 0) and » = - If the ratio of the two functions f(u)

and 2 (u), appearing in (5.1), is constant, the developable surface isa cone ; if f(uj = 0, the
developable surface is a cylinder ['!, 232].

We now prove a theorem concerning cones.
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Theorem 5.1. The two families of G-lines together with a family of lines of curvature
{different from the generatorsy on a cone form an hexagonal three-web,

Proof. If a surface is referred -to its lines of curvature, the differential equation of the
G-lines takes the form

(5.2) E3p gt + YENGr, dtdy 43 G \/Efl dudy® + G*F, v =0,

where r, , r,, 7, and 7, have their usual meaning. Since 7 =0 (# 92 0) for a developable sur-
face, the differential equation (5.2) reduces to -

(5.3) WE r,du 4 3VG rydv). du® = 0,

Therefore two families of G-lines coincide with a family of lines of curvﬁture, that is, with
‘the lines # = const. The differential equation of the third family of the G-lines i3 obtained by

putting », = Lf”_— and r, = ‘_:/E'—__ in the differential equuation (5.3). Namely - '
VE e :

5.4) rgdu 43, di =0,

Thus we find that the two families of G-lines and a family of lines of curvature (different
‘from the generators) of a developable surface are

du =0,
(5.5) Fudu & 3r,dv =0,
dv =0,

respectively. These three families of curves will form an hexagonal three-web if and only if

ry .
(5.6) . ( 1n ﬁ;)"" =0 -
S U
v. fay + M)

i . .
Setting r = - = in (5.6), we obtain

(5.7) : Ay =a, fy b, , A 550 ,b = const,)

If 5, = 0 we have 4 ()/f (1) = a,—~=const, and therefore the developable surface is a cone.

When 5,950, we obtain a class of developable surfaces which includes the cones as a particular
case, If f = 0, the developable surface is a cylinder and we see from (5.5) that the three families
-of G-lines coincide. : :

Theorem 5.2. The two families of G-lines together with d family df lines of curvature (dif-
- ferent from the generators) on the tangential developable df a space curve will form an hexagonal
three-web if and only if there exists a relation, between ¢ and © , of the form
e _ . .. _ gy318 g —
;’ - (PJ -l q) 1 (Pa‘? - const),
where g, % whd s are, respectively, the curvature, the tersion and the are length of the space curve,

—
Proof. The vector equation of the tangential developable of a space curve, x (s}, is

~ Lo - dx
(5,8) _ y i s) = x(s) + N:I: (), (a‘ - _d.;-)

The coefficients of the first and second fundamental forms are

I
id
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(59) ‘ E=F=1, ¢G=1+¢g, L=M=0, N=gzu
. The lines of curvatuve on the surface (5.8) arc

(5.10) . _ § = const, it -+ § = const.

Substituting the values (5.9) in the differential equation (0.2), we obtain the differential
equation of the G-lines for the tangential developable (5.9), namely

(- o (o) o

Therefore two families of the G-lines on a tangential developable coincide with the gene-
rators (s=const.}. The two families of G-lines and a family of lines of curvature on a tangential
developable are, respectively.

ds = 0, (G line = line of curvature)
(5.11) din + 6 —3ufis)lds =0,
' du + ds = 0,

. T g 8 . }_ rpfr X X
where f(s} = | In ?) . If we put <) =%, f= -5 ?), in (5.11}, we find that .
5 .

= ‘-T-c-‘,’-—— 6 i, (ey = const.} Since, by (S.II)1 and (5.11); s = const, = ¢, and u + ¢, = const..
[r q’ . N

== ¢, we obtain from (5.1I), that
(5.12) ) 03 =(ca—e). 9" (€)) + 6@l

The-three-web, given by the web function (5.12), will be an hexagonal one if and only if”

a* ( 'c}c,,,"ac',) o2 (ln (6¢mb[:p’)" + € 9?.”) —o.

de, de, n dcgfdc,/ e, 0c, @

This condition may be writlen as (6¢ — ¢, qﬁ’):’ =ap” (a= const). Integrating this
differential equation we have :

¢ =btkiat s (b k=const)
or we find

(i) — " = 6k(a - $P = (ps + ¢, (p, g = const).

T

Therefore we obtain the required condition

i e . 5 jo
il RS
wliich proves the theorem.
We remark that when p = 0 . we abtain the tangential developable of a general helix.

6. Paralel surfaces.

Let S be asurface and let §* be a surface parallel to S, DarBoux has proved that:
* The G-lines of S correspond. ro those of S§*.
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According to the above theorem, if the G-lines of a surface § form an hexagonal three-web,
the G-lines on a1l surfaces which are paralilel to § will also form an hexagonal three-web. '

Therefore all surfaces which are parallel to a surface on which the G-lines form an hexago-
nal threc-web, may be added to the class of surfaces on which the G-lines form an hexagonal

three-web.
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OZET

Bu makalede LAGUERRE gizgilerinin (G-gizgileri) bir iiclii altigen doku tegkil ettigi yiizeyler
aragtmlmig ve agagidaki neticeler elde edilmistir ;

1. de basit ve negatif Gauss efrilifini haiz yiizeylerin G-cizgilerinin bir iiclii altigen doku tegkil
etmeleri i¢in gerek ve yeter bir gart verilmistir. Fazla ofarak, béyle yiizeyler tizerindeki ii¢ G-giz-
gisi ailesi ile iki asimptotik ¢izgi ailesi bir 5-1{ altbigen doku teskil ederler.

2. de, iizerinde G-gizgilerinin ii¢lil altzgen bir doku tegkil ettikleri sabit ortalama egriligini haiz
yiizeyler icin bir kriter verilmigtir.

3. de, iizerinde iki G-gizgisi ailesinin dik izometrik bir sistem teskil ettigi ve W octalama egri-
ligi W = W U@} + V(¥)] geklinde olan yiizeylere ait bir teorem ispatlanmigtir. Burada ur ve v
jzometrik bir sistem tegkil eden iki G-¢izgisi ailesinin parametreleridir.

4. de DUPIN Sikhdlerinin G-gizgileri yardimayle bir temsili veriimiy ve DUPIN S]khdlcrl iize-
rindeki G-gizgilerinin bir iglii altigen doku tegkil ettikleri gdsterilmigtir.

5. de, iizerinde iki G-gizgisi ailesi ile bir egrilik gizgisi ailesinin ii¢lit altigen bir doku tegkil ettik-
leri agilabilir yiizeéyler gdzdniine alinmiy ve konilerin bu gart1 sagladiklary gdsterilmigtir, Daha
genel olarak, bir uzay efrisinin tegetleri ile teskil edilen agrlabilir yiizeyin iki G-cizgisi ailesi ile
bir egrilik gixgisi ailesinin bir figlii altigen doku tegkil etmeleri i¢in gerek ve yeter sartin

pe

e g3 (pg = sabiny

den ibaret oldugu ispat edilmigtir. Burada p, = ve s, sirasiyle, uzay egrisinin egriligi, burulmast
ve yay vzunlugudur,




