SPECIAL CURVES OF A HYPERSURFACE OF A FINSLER SPACE

C. M. PRASAD

The notion of union curves of a Riemannian hypersurface with respect to a vectorfield λ , considered by SPRINGER [5], MISHRA [1], UPADHYAYA [2] and extended by SINHA [4] and SINGH [6] to FINSLER hypersurfaces, has been further specialised recently for Riemannian hypersurfaces by TSAGAS [6] who has considered K_{λ} - curves. An analogue of these is considered here on hypersurfaces of a FINSLER space and some properties of these curves are obtained.

1. Introduction. Union curves of a Riemannian hypersurface with respect to the vector-field λ were studied by SPRINGER [⁵], MISHRA [¹], UPADHYAYA [⁷]. These curves (relative to a congruence λ) were studied by SINHA [⁴] and SINGH [⁸] on FINSLER hypersurfaces. Following the parallel definition, recently G. TSAGAS [⁶] studied the special curves (curves K_{λ}) of the Riemannian hypersurface. In the present paper, we wish to study the special curves K_{λ} in the hypersurface of a FINSLER space.

Consider a FINSLER space F_n of *n*-dimensions with coordinate system x^i (i=1, 2, ..., n) whose metric function F(x, x') satisfies the conditions usually imposed upon a FINSLER metric $[^{2}]$. The hypersurface F_{n-1} with coordinate system $u^{\mathbf{q}}$ (x = 1, 2, ..., n-1) is immersed in F_n and is given by the equations $x^i = x^i (u^{\mathbf{q}})$ such that the rank of the matrix $||B_{\alpha}^i||$ is n-1. Let a curve $C: u^{\mathbf{q}} = u^{\mathbf{q}}(s)$, s being the arc length, be defined in F_{n-1} The components of its unit tangents $x'^i = dx^i/ds$ and $u'^{\mathbf{q}} = du^{\mathbf{q}}/ds$ with respect to F_n and F_{n-1} are related by

The metric tensors $g_{ij}(x, x')$ of F_n and $g_{\alpha\beta}(u, u')$ of F_{n-1} are connected by

(1.2)
$$g_{\alpha\beta}(u,u') = g_{ij}(x,x') B^i_{\alpha} B^j_{\beta}.$$

In the geometry of FINSLER spaces, there exists two types of unit vectors normal to F_{n-1} . One is independent of the directional argument x'^i denoted by n^i and the other one is dependent upon x'^i and denoted by $n^{*i}(x, x')$. These vectors are defined by the equations $[^2]$

(1.3)
$$n_{i}B_{\alpha}^{i} = g_{i\,i}(x, u) n^{i}B_{\alpha}^{j} = 0,$$

(1.4)
$$n^*_{\ i}B'_{\alpha} = g_{i\,i}(x,x') n^{*i}B^j_{\alpha} = 0$$

and are normalised by

(1.5)
$$g_{ij}(x, n) n^i n^j = n_j n^j = 1$$
,

(1.6)
$$g_{i,j}(x, n^*) n^{*i} n^{*j} = 1$$
.

C. M. PRASAD

The vector n^{*i} also satisfies the equation

(1.7)
$$g_{i\,i}(x,x')\,n^{*i}\,n^{*j}=\psi\,.$$

The covariant derivative $I^i_{\alpha\beta}$ of B^i_{α} is given by [2],

(1.8)
$$I^{i}_{\alpha\beta} = \Omega_{\alpha\beta} n^{i} + B^{i}_{\alpha} M^{\delta} \Omega_{\alpha\beta}$$

where

(1.9)
$$M^{\alpha} = \cdots n^{i} B_{i}^{\alpha} , \quad B_{\beta}^{\alpha} = \delta_{\beta}^{\alpha} .$$

 $I_{\alpha\beta}^{i}$ is also given by

$$(1.10) I_{\alpha\beta}^{i} = \Omega^{*}{}_{\alpha\beta} n^{*i}$$

where $\Omega_{\alpha\beta}$ and $\Omega_{\alpha\beta}^*$ are the second fundamental tensor and secondary second fundamental tensor of the hypersurface.

Consider a congruence λ^i on F_{n-1} which is not necessarily normal to F_{n-1} . Since there are two types of normal vectors, we may consider two types of congruences. Let a congruence (independent of $x^{\prime i}$) at any point of F_{n-1} be expressed as

(1.11)
$$\lambda^{i}(u) = t^{\mathfrak{a}}(u) B^{i}_{\mathfrak{a}} + \Gamma n^{i}(u) .$$

These vectors are normalised by the condition

(1.12)
$$g_{ij}(x,\lambda) \lambda^i \lambda^j = 1.$$

The congruence depending upon x'^i at any point of C on F_{n-1} is given by

(1.13)
$$\lambda^{*i}(u, u') = t^{*a}(u, u') B^{i}_{a'} + \Gamma^{*}(u, u') n^{*i}(u, u').$$

Let these vectors be normalised by the equations

(1.14)
$$g_{i\,i}(x,x')\,\lambda^{*i}\,\lambda^{*j}=1\,.$$

Using the equations (1.11) and (1.12), we have

(1.15)
$$1 = g_{ij}(x, \lambda) \lambda^i \lambda^j$$

$$= \bar{\gamma}_{\alpha\beta} t^{\alpha} t^{\beta} + 2 \Gamma \bar{\gamma}_{\alpha} t^{\alpha} + \Gamma^2 \bar{\gamma}$$

where we have written

(1.16)
$$\bar{\gamma}_{\alpha\beta} = g_{ij}(x,\lambda) B^i_{\alpha} B^j_{\alpha}$$
, $\bar{\gamma}_{\alpha} = g_{ij}(x,\lambda) B^i_{\alpha} n^j$, $\bar{\gamma} = g_{ij}(x,\lambda) n^i n^j$.

Again using the equations (1.2), (1.4), (1.7) and (1.13) in (1.14), we have

(1.17)
$$1 = g_{ij}(x, x') \lambda^{*i} \lambda^{*j} = g_{\alpha\beta}(u, u') t^{*a} t^{*\beta} + T^{*2} w$$

In the following section, we shall consider the curves which will be called *special* or K_{λ} - curves.

CURVES OF A HYPERSURFACE

2. Special Curves $(K_{k}$ - curves).

Definition (2.1). A curve on F_{n-1} is said to be a K_{λ} -curve if at any point of this curve, the vector λ^i (or λ^{*i}) tangent to a curve of the congruence lies in the surface determined by the geodesic curvature vectors of K_{λ} (or K_{λ}^{*}) - curve with respect to F_n and F_{n-1} .

Let C: $u^{\mathbf{q}} = u^{\mathbf{q}}$ (s) be any K_{λ} -curve on F_{n-1} , s being its arc length. By its definition, we have

$$\lambda i = r p^i + s q^i$$

where λ^i is the vector at any point p of C and p^i and q^i are the geodesic curvature vectors of C at P with respect to F_{n-1} and F_n , as given by RUND [²],

(2.2)
$$\begin{cases} p^i = B^j_{\alpha} p^{\alpha}, \\ q^i = I^i_{\alpha \mu} u^{\prime \alpha} u^{\prime \beta} + B^i_{\alpha} p^{\alpha}. \end{cases}$$

and r and s are the parameters to be determined. It is also known that

$$p^{\alpha} = \delta u'^{\alpha} / \delta s = \frac{d^2 u^{\alpha}}{ds^2} + \Gamma^{*\alpha}_{\beta\gamma} u'^{\beta} u'^{\gamma}$$

Using the equations (1.8), (1.11) and (2.2) in (2.1) we have

$$t^{\mathbf{a}} B^{i}_{\alpha} + \Gamma n^{i} = r B^{i}_{\alpha} p + s (B^{i}_{\alpha} p^{\mathbf{a}} + \Omega_{\mathbf{a}\beta} u^{\prime \mathbf{a}} u^{\beta} n^{i} + \Omega_{\beta\gamma} n^{\prime\beta} u^{\prime\gamma} M^{\mathbf{a}} B^{i}_{\alpha}).$$

Since n^i and B_a^i are the linearly independent vectors, we have

(2.4)
$$t^{\mathbf{a}} = (r+s) p^{\mathbf{a}} + s \Omega_{a} u^{\prime \beta} u^{\prime \gamma} M^{\mathbf{a}}$$

and

(2.5)
$$\Gamma = s \, \Omega_{\alpha\beta} \, u^{\prime \alpha} \, u^{\prime \beta}$$

The equations (2.4) and (2.5) give

(2.6)
$$r = \left(t^{\mathbf{q}} - \frac{\Gamma p^{\mathbf{q}}}{K_{n}} - m^{\mathbf{q}} \Gamma\right) / p^{\mathbf{q}}$$

where

$$K_{\alpha} = \Omega_{\alpha\beta} \, u^{\prime \, \alpha} \, u^{\prime \, \beta} \, ,$$

Multiplying (2.4) by $\bar{\gamma}_{\alpha\gamma} t^{\gamma}$ and using (1.15), we get

(2.7)
$$(1-2\Gamma\bar{\gamma}_{\mathbf{a}}t^{\mathbf{a}}-\Gamma^{2}\bar{\gamma}=(r+s)\bar{\gamma}_{\mathbf{a}\gamma}p^{\mathbf{a}}t^{\mathbf{\gamma}}+sK_{n}\bar{\gamma}_{\mathbf{a}\gamma}M^{\mathbf{a}}t^{\mathbf{\gamma}}.$$

Eliminating r and s from (2.4), (2.5) and (2.7) and simplifying, we have the required equation of the K_{ij} - curve given by

(2.8)
$$p^{\alpha} - (1 - 2 \Gamma \bar{\gamma}_{\alpha} t^{\alpha} - F^{\alpha} \bar{\gamma})^{-1} \{ (t^{\alpha} - \Gamma M^{\alpha}) \bar{\gamma}_{\beta\gamma} p_{\beta} t^{\gamma} + \Gamma \bar{\gamma}_{\gamma\beta} M^{\beta} t^{\gamma} \} = 0.$$

It may be noted that this equation reduces to a simpler form in a Riemannian hypersurface [⁶]. However, we may note the following :

99

C. M. PRASAD

Theorem (2.1). Let the congruence λ^i be not normal to F_{n-1} . The solutions of the system of n-1 differential equations (2.8) determines a K_{λ} - curve on F_{n-1} with respect to λ^i .

From the equation (2.8), we have :

Corollary (2.1). Each geodesic on the hypersurface F_{n-1} is a K_{λ} - curve.

If we denote the left hand side of (2.8) by a vector T^{α} , we may state that the K_{λ} -curve may be considered as a curve on F_{n-1} such that its vector T^{α} is null at any point of this curve.

The equation (2.8) is not much similar in the form to that of the equation in a Riemannian hypersurface. Now we shall find an equation of K_{λ}^* -curve in F_{n-1} which is very much similar to the corresponding equation on a Riemannian hypersurface.

By the definition of K_{λ}^* - curve, we may write

$$\lambda^{*i} = a p^i + b q^i$$

where λ^{*i} is a vector at P of C and p^i and q^i are given by (2.2) and a, b are the parameters.

The equation (2.9), by virtue of the equation (1.13) and (2.2), takes the form

(2.10)
$$t^{*\alpha} B^i_{\alpha} + \Gamma^* n^i = (a+b) B^i_{\alpha} p^{\alpha} + b I^i_{\alpha\beta} u^{\prime\alpha} u^{\prime\beta}.$$

Multiplication of (2.10) by $g_{ij}(x, x') B_{\beta}^{j}$ and summation with respect to *i* and use of relation (1.2) (1.4) and (1.10) yields the n-1 equations

(2.11)
$$g_{\mathbf{a}\beta} t^{*\mathbf{a}} = (a+b)g_{\mathbf{a}\beta} p^{\mathbf{a}}.$$

Multiplying this equation by $t^{*\beta}$ and summing on β , we have

$$g_{\alpha\beta} t^{*\alpha} t^{*\beta} = (a+b) g_{\alpha\beta} p^{\alpha} t^{*\beta}$$

which by virtue of (1.17) gives

(2.12)
$$a + b = (1 - \Gamma^{*2} \psi)/g_{\alpha\beta} p^{\alpha} t^{*\beta}$$

Multiplying (2.11) by $g^{\beta\gamma}$ and summing over β , we get

$$p^{\mathbf{a}} - t^{*\mathbf{a}}/(a+b) = 0$$

which by virtue of (2.12) takes the form

(2.13)
$$p^{\alpha} - t^{*\alpha} g_{\beta\gamma} p^{\beta} t^{*\gamma} (1 - \Gamma^{*2} \psi)^{-1} = 0.$$

In view of the equation (2.13), the theorems corresponding to the theorems (2.1) and the corollary corresponding to (2.1) are trivial.

Let us consider a curve $C: u^{\mathbf{q}} = u^{\mathbf{q}}(s)$ on F_{n-1} . At any point of C, consider the vector

$$\Gamma^{*a} = p^{a} - g_{\alpha\gamma} p_{\beta} t^{*\gamma} (1 - \Gamma^{*2} \psi)^{-1} t^{*a}.$$

CURVES OF A HYPERSURFACE

Definition (2.2). A curve on F_{n-1} is said to be a K_{λ}^* -curve if its vector $T^{*\alpha}$ is null at each point of this curve.

If K_{T_*} be the magnitude of the vector $T^{*\alpha}$ given by

$$K_{T^*}^2 = g_{\alpha\beta}(u, u') T^{*q} T^{*\beta}$$

then

 $K_{T^*} = k_g \sin \theta$

where $k_g^2 = g_{\alpha\beta}(u, u') p^{\alpha} p^{\beta}$ and θ is the angle between the vectors p^{α} and $t^{*\alpha}$ such that

$$\cos \theta = \frac{g_{\alpha\beta} p^{\alpha} t^{\beta}}{\sqrt{(g_{\alpha\beta} p^{\alpha} p^{\beta})(g_{\gamma\delta} t^{\frac{\beta}{\gamma}} t^{\frac{\beta}{\gamma}})}}$$

REFERENCES

ניו	Mishra, R. S.	÷	Union curves and hyperasymptotic curves, Bull. Cai. Math. Soc., 42, 213-216, (1950).
[2]	Rund, H.	:	The differential geometry of Finsler spaces, SPRINGER VERLAG (1959).
[¤]	Singh, U. P.	:	Union curves, Ph. D. Thesis, (GORAKHPUR UNIVERSITY) (1967).
[+]	SINHA, B. B.	:	Union curves, Ph. D. Thesis, (GORAKHPUR UNIVERSITY) (1962).
[ē]	Springer, C. E.	:	Union curves of a hypersurface, Can. J. Math., 2, 457-460, (1950).
[6]	Tsagas, G.	:	Special curves of a hypersurface of a Riemannian space, Tensor (N.S.), 20, 88-90, (1969).
[7]	Upadhyay, M. D.	:	Union curves of a Riemannian space, Tensor (N.S.), 16, 93-96, (1965).

ÖZET

SPRINGER [⁵], MİSHRA [¹] ve UPADHYAYA [²] tarafından incelenen ve RIEMANN uzayında bulunan bir hiperyüzcyin bir λ vektör alanına bağlı birleşim eğrileri kavramı FINSLER uzayında bulunan hiperyüzeylere SINHA [⁴] ve SINGH [³] tarafından teşmil edilmiştir. Bu kavram yakın zamanlarda TSAGAS [⁶] tarafından daha da özelleştirilerek, RIEMANN uzayındaki hiperyüzeylerin K_{λ} eğrilerinin incelenmesine yol açmıştır. Bu araştırmada, bir FINSLER uzayının hiperyüzeyleri Çin TSAGAS'IN K_{λ} eğrilerinin beazerleri tanımlanmakta ve bunların bâzı özellikleri elde edilmektedir

DEPARTMENT OF MATHEMATICS University of Gorakhpur Gorakhpur india (Manuscript received October 22 nd, 1969)

101