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For the norma! elliptic ruled quintic surFace R» in four dimensions, we construct 
first a coordinate system such that the surface is invariant under a group of 20 
permutations of the coordinates. In terms or this ive obtain the GRASSMANN coordina­
tes of the general plane cutting R3 in a cubic curve, and of the general generator, 
as elliptic functions of order five, and two parametrisations of the surface itself in 
elliptic functions of two variables. This leads to a set of cubic equations for the 
surface, and the quintic equation of the primal generated by the planes of the cubic 
curves on it, depending homogeneously on the two paramers i . = p ' (n) , u = p'(2t7), 

where a is a primitive fifth part of a period of the elliptic functions ; and also to 
explicit equations for the CREMONA transformation by cubics through R°, and its 

inverse by quadrics through a norma! elliptic quintic curve. 

1. Some preliminary properties of 'R^. 

I t is familiar [ a ] that the general normal elliptic ruled quintic surface ' i ? a

6 i n four dimensi­
ons (which we denote for brevity by i i 5 ) has on i t an elliptic co 1 family o f elliptic plane cubics 
[Cs], each o f which is the residual section o f R" by the prime jo in ing any pair o f an involut ion 
among the generators ; the planes o f the curves {C} generate a quintic pr imal , and are 
a system dual to that o f the generators o f R*, each consisting o f a l l lines (planes) that meet 
five general planes (lines) o f the other. I t is also k n o w n [ a ] that i f 2Q is the lattice o f periods o f 
the appropriate elliptic functions, we can assign to each generator a parameter n» .{mod 2i2), 
and to each C 3 (and its plane) a parameter w (mod 2Q), i n such a way that wr i t ing = for cong­
ruence (mod 2Q) 

(i) Five generators / ( i f f ) (/ = 0 , 1 , 2, 3, 4) belong to a linear complex not containing 
al l the generators, i . e. meet a plane which is not that o f one of the cubics {C3}, i f and only i f 

( i i ) The cubic C (w) and two generators / (»•,), ! ( i f 2 ) are a pr ime section of Ri i f and only 
i f wL + iv a + u ^ 0. 

( i i i ) The unique intersection o f the cubics C(uL), C ( « 2 ) is on the generator l(w), where 
w = «£ + ut . 

(iv) Parametrising each curve C(w) by assigning to each point o f it the parameter w o f the 
generator / (H>) through that point , the points' wL , w2 , n>a o f the curve C («) are collinear i f 
•and only i f wL + wa + >i>3 = «. 
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As every point o f R° lies on two of the curves {C}, and every two of these curves meet in 
one point , we can assign to each point, of the surface the unordered pair («, « ' ) o f parameters 
of the two curves C(u), C(u') through i t , so that the equation, i n terms o f this parametrisa-
t ion , o f the generator / (w) is u + «' = w. There is also on R3 what is called the focal curve, the 
envelope o f {C2}, w i t h equation u — u', o f order ten, quadrisecant to the generators, and 
touching each curve C (u) i n the point {//, /;)• We now prove : 

Theorem 1. The plane n joining the intersections by pairs of three aibics C (u;) ( / ' = 1,2,3) 
contains the generator / ( iv) , where w + ut + us + f/a = 0 ; and conversely, every plane through 
a generator meets the surface residually in three points, the intersections by pairs of three curves of 

in. 
Proof. Let H'F = it j + uk, where, / , / , k is any permutation o f 1, 2, 3 ; the plane a con­

tains the points wj , of the curve C (if;) , and hence also the th i rd point w collinear w i t h 

these, where by (iv) w -} + wk + w = w,- , i.e. w + ifi -|- iij + uk = 0. Thus .t contains at 

least three points o f the generator / (iv), its intersections wi th the three curves. Conversely, the 

primes through a generator trace residually on R" a net o f elliptic quartics, algebraically equi­

valent to [CJ} + { / }, and hence of grade 3, since { C 3 } , {/) fo rm a base for algebraic equival­

ence of curves on R5 , w i t h intersection matrix ^ ^ 0 ) ' * ' e ' a Q ^ P ^ a n e : r t r o u g h / (u1) 

meets Ra residually in three points ; i f one o f these is (ul, « 3 ) , since « contains the points 
n> f wa = »1 + u2 o f C (w,), i t contains also by (iv) the point w., = — w — w9 ~ ut + w s , 
where ut + »2 + ua + w ~ 0 ; i.e. - i contains the point (ul, na), and similarly i t contains the 
poin t ( » , , us). This completes the proof. 

We now recall the familiar figure of fifteen planes and ten nodes o f the SEGRE cubic p r i ­
mal [ ' ] ; the planes n{- (where ij is any o f the fifteen unordered pairs o f six symbols 0, .1, 2, 3 ^ 5 ) 
meet by sixes i n ten points, associated w i t h the ten bisections (ijk, Imri) o f the six symbols ( i . e. 
partit ions o f them into an unordered pair o f unordered triads), ;iif- containing each of the four 
points (ijk , Imii) for which i,j are in the same t r iad ; the five planes atj , n i k , n ; i , stim , n i n 

are associated, which means that every line meeting four o f them meets all five, and they are the 
common members o f six linearly independent linear complexes o f planes ; the lines meeting these 
five planes are an co 2 system { ; } , and include a pencil in each of the other ten planes, that in 
xjk having its vertex at (ijk, Imn). Each o f the six systems {;} generates the same cubic pr imal ; 
and the lines common to the system {/'} and any linear complex not containing all o f them 
generate an R" , five o f whose cubic curves C3 are i n the five associated planes ntj,..., u i n , and 
which has one generator i n each of the other ten planes. A n y set o f five (distinct) associated 
planes determines the whole figure uniquely and any two such figures are projectively equiva­
lent; the ten points are the intersections o f the five planes by pairs, and the other ten planes 
j o i n sets o f four o f the ten points. We now p r o v e : 

Theorem 2. On R' five cables C( / / f ) (/ = 0,...,4) lie in five associated planes if and only 

4 

// ^ iii = 0 ; and in this case the other ten planes of the SEGRE configuration are those joining 

/=0 
the intersections by pairs of sets of. three of the five cubt'es. 

+ 
Proof. Let ^ H,- = 0. Denote by the plane o f the cubic C («,-), by P i y - the point 

=o 
(itf, uj) which is the intersection w i s , n , s , and by -.T{} the plane Pim Pmk Pkl > by Theorem 1, 
ttij contains the generator / ( i i ' i j ) , where if,-. = — (uk + i<i + w m ) = + u • ; and this gene-
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rator also contains P f y. Associating P{j w i t h the bisection (ij5, klm), we see that all the point 
- plane incidences o f the SEGRE configuration are verified,, and the direct theorem is proved. 
The converse is t r iv ia l , since the f i f th associated plane o f four given planes is unique. 

We note also that R" has a curve C 3 i n each of the planes -iti- a A i , and a generator 
/(»' ; '•) i n each of the other ten planes ; and that all its generators meet n o s JE j ; j and are thus 
' i i the system {5} associated wi th the SEGRE figure. The generators are thus the intersection o f 
five linearly independent linear complexes, four o f which intersect i n the line system {5}, and 
they are those lines o f {5} that meet the plane o f any o f the curves.{C a} other than C (u0)C(uA). 

2. A self - dual configuration associated with R3 . 

N o w let a be a pr imit ive f i f th o f a period in the period lattice 2Q, i . e. let 5a (but not a) 
be an element o f 2Q ; then 0, a, 2a, 3a, 4a f o r m a subgroup of order 5 in the additive group of 
residue classes (mod 2Q). There are six such subgroups, the 24 mutually incongruent p r i m i ­
tive fifths o f periods being the four n o n zero elements i n each of these, i n Theorem 2, let ttt = io 

. 4 

(/' = 0 4), satisfying ^ u{ ~ 0 ; then treating i as a residue class (mod 5), 

i=0 

" i - i + " f + t = "i-i + "H-a = 2 « i • 

i.e. 

wit =H wu = 2u0 , w02 S wti = 2ift, wtt == wM = 2 » , , 

Wei = W o i ^ ' 2 « 8 . wao = wt2^2u.„ 

and the ten lines i n which R" meets the ten planes n ( - . (i,j = 0 4 ) coincide by pairs in 

1» = / ( 2 « 0 ) = f*U A 8 = "41 

/»* = l(2uL) — PQ? P 3 I = «02 «8-1 

= l(2u2) = -P.> PiU = «1B 
= l(2ut) = A . POL «01 

-!(2iO A , = ^ao 

Theorem 3. The five lines (I) are five associated lines ; the ten further lines which with these 
make up the fifteen line figure, consisting of six associated sets of five, dual to the SEGRE figure of 
fifteen planes considered above, are the lines l}-k = P{ j where / + /e = 2i (mod 5) ; and the fifteen 
points in which these lines are concurrent by threes [ I ] are the ten points P;., and five points P u , 
(i = 0,...,4), where Pi{ = ((/,•, w,-), the point of contact of C (us) with the focal curve u ~ u' enve 
lope of the family { C 3 } on R*. 

Proof. T w o of the planes ( / , / = 0 5) meet i n a l ine i f and only i f they have no 
common suffix ; three planes nki, n m n l ie in a prime, and meet by. pairs i n three lines and 
al l three i n a point , i f and only i f (ij, hi, mn) is a syntheme, i . e. a par t i t ion o f all six symbols 
in to an unordered tr iad of unordered pairs. The point Poa is the intersection o f ; i 0 5 , a l t , n2& , 
since i t is o n the curve C(u 0 ) i n JE03 , and on the generator / ( 2 I I 0 ) = stiL . ; r s a . Moreover 
on C (((„), P,,,, is collinear w i t h P0l P0i , and also w i t h P„2 P 0 8 , by ( iv) . Similarly, for i = 1, 2, 
'3;4, :cPiiX= Jti& ; l i s , and i n i t is collinear w i t h each of the pairs P-j P i k for which j + /c = 2/ 
(mod '5) / s ince this congruence is unaltered by the cyclic permutation o f 0 , 1 , 2, 3, 4. Thus deno­
t ing Pij P i k byljk, fo i ' all i, j , k satisfying j + k ~ 2i (mod 5), we see that the fol lowing i 5 triads 
oi i i r ies 'are •'concurrent i n ' t h e points n a m e d : " " 1 
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' « A . 1 As Poo Al5 A 2 A l : A i Ar A i : P n 

As 2̂0 A* A l Aa • *̂02 A . /« Ao P3i 

A a A i A- ^ « / « ' - I hi A l Ao A l P«> 

K'i A2 '01 i*aa 'a; '40 A , As A l A S Pni 

As Ae A 2 i > l 4 A* A, A 3 
p 

1 aa A", A , Aa P12 

which is the complete system of concurrences for the fifteen line figure. This proves the theorem. 

We note that the nomenclature is not symmetrical wi th respect to all permutations o f the 
symbols 0,1,2,3,4,6. We have however the fol lowing correspondences between the ten bisecti­
ons (ijk, Imn) and ten of the fifteen synthemes, the bisection representing a point in the fifteen 
plane figure, and the syntheme representing the same point in the fifteen line figure : 

' (05,12,34) : (145,023) (05,13,24) : (235,401) 

(15,23,40) : (205,134) (15,24,30) : (345,012) 

(2) (25,34,01) : (315,240) (25,30,41) : (405,123) 

(35,40,12) : (425,301) (35,41,02) : (015,234) 

(45,01,23) : (035,412) (45,02,13) : (125,340). 

The remaining five synthemes 

(3) (05,41,23) , (15,02,34) , (25,13,40) , (35,24,01) , (45,30, 12) 

corresponding to the points P*f (j = 0 , 1 , 2, 3, 4) fo rm what we may call a block o f synthemes, 
i . e. a set o f five synthemes no two of which have a common pair, so that between them they con­
tain all the fifteen pairs. There are six such blocks ; every syntheme belongs to just two blocks, 
and every two blocks have just one syntheme i n c o m m o n ; the group Sa o f all permutations, on 
0, 1,2, 3, 4, 5 also permutes the six blocks i n every possible way ; and the subgroup of Sa that 
stabilises a given block, say (3), is isomorphic w i t h the symmetric group 5 S , being the image un­
der an outer automorphism of Sn o f the subgroup Ss that stabilises one o f 0 , 1 , 2, 3, 4, 5 ; we 
may denote this subgroup of Sa, which stabilises the block (3) o f synthemes, by . The whole 
configuration constructed in Theorem 3 is invariant under S/, which permutes the five synthe­
mes o f the stabilised block (3) i n ail possible ways, and also stabilises the correspondence (2) bet­
ween the remaining ten synthemes and the ten bisections. 

The configuration is also self d u a l ; for no t only by (1) is each line l i 3 the intersection 
o f two of the fifteen planes, 

A i : «11 • «23 > A i = «02 • n3i ' A i = « 13 • «41) ' A i = «2-1 • «01 ' A i = «30 • « 1» > 

but also, as was seen i n the proof o f Theorem 3, each plane ; t i 3 is the j o i n of two intersecting lines : 

«05 = Aii Aa i « 1 5 = Aa A-i * «as = Aa Ao * «as = A i A i » « i s = Ao As* 

The fifteen primes o f the fifteen plane figure (each containing three o f the fifteen planes) are 
the ten primes Xij , dual to the points P-y, and each containing six o f the fifteen lines), and five 
further primes 2a , each containing the t r iad o f lines corresponding to one o f the synthemes (3). 

We shall see later that the P s , related as described to the configuration, wi th a given lattice 
of periods 2Q, and the multiples o f a given f i f th o f a period corresponding i n the specified 
way t o the five lines and five planes, is unique. Ant ic ipa t ing this result, we see that i f we set up 
duali ty in space, i n which / f s corresponds to n where i ^ 2j (mod 5), / (w{) corresponds to the 
plane o f C (w-) (/ = 0, 1, 2, 3, 4), and hence / (w) to the plane o f C (w) for a l l w. Thus as P f i is 
the l i m i t i n g intersection o f Xjs, w i t h an ult imately coincident plane, in the elliptic family o f 
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planes containing the curves { C 3 } , Xu is the l imi t ing j o i n o f l i u to an ult imately coincident 
generator, i . e. 2a is the pr ime containing the pencil o f tangent planes to BJ' at points o f l i s . 

We have kept i n the suffix 5 to emphasise the symmetry o f the configurat ion under S" 5 ; 
but as the l ine system ( 5 ) is singled out as containing the generators o f R5, we shall f rom 
now on wri te n,- , /,• for JT,-- , / i 5 respectively. 

3. Introduction of coordinates 

The simplest representation o f the fifteen plane figure in terms o f coordinates is by the use 
of six linear forms in the homogeneous coordinates, whose sum is identically zero, and any five 
which can be taken to be the coordinates themselves ; i f these are x 0 , x , , x 2 , x„ , x , , x- , the 
equations o f the fifteen planes are 

X . - f Xj = xk + X[ = x„, + xn = 0 , 

where Uj, kl, mn) runs over all the fifteen synthemes on 0 , 1 , 2 , 3, 4 , 5 ; and the fifteen primes 
each containing three o f the planes are x- + Xj ~ 0 , where (Jj) runs over the fifteen pairs. The 

5 

equation o f the SEGRE cubic primal containing the fifteen planes is ^ x - 3 = 0 , or indeed the 

i = 0 

vanishing o f any symmetrical cubic fo rm i n (x„ x ; ) since in virtue o f the relation x F = 0 , 

these all reduce to constant mltiples o f any one o f them. The common point o f the three planes 
in x 0 + -Yt = 0 is ( 1 , —• 1 , 0 , 0 , 0 , 0 ) , i . e. the fifteen common points o f these triads o f planes 
are the intersections o f all but two of the primes Xj = 0 ( 1 = 0 , . . . , 5 ) . The ten points o f concurrence 
by sixes o f the fifteen planes (nodes o f the SEGRE cubic primal) are ( 1 , 1 , 1 , — 1, — 1, —• 1) 
in all ten bisections, the six planes through any one o f these points being given by the six synt­
hemes in which each pair has one symbol i n common w i t h each t r iad in the bisection. The six sets 
of five associated planes correspond in this nota t ion to the six blocks o f synthemes on the coor­
dinates, and the coordinates accordingly to the six blocks o f synthemes in the nota t ion o f the 
last section. Thus as the subgroup of S„ under which the configuration described is invariant, 
was i n the previous nota t ion that which stabilises a particular block o f synthemes, i t now stabi­
lises one o f the six linear forms, say x 5 , which we accordingly suppress, and take ( x 0 x 4 ) as 
homogeneous coordinates. Tak ing the five planes o f the curves C (uf) ( V = 0 , 1 , 2 , 3 , 4) to be those 
represented by the synthemes in the block ( 3 ) , we have for the equations o f these planes, and 
the coordinates o f their points o f intersection by pairs : 

x 4 + xL 
= x 2 + x3 = 0 A s 0 , - 1 , 1 , 1 , — D A t ( 1 , 1 , - 1 , - 1 , 1 ) 

x0 
+ x2 = *3 = 0 A * ( — 1 , 1 , - 1 , 1 , 1 ) A 2 ( 1 , 1 , 1 , - 1 , - 1 ) 

«2 + Xl = X 4 -1- x0 
= 0 A * . ( 1 , - 1 , 1 , - 1 , 1 ) A . ( - 1 , 1 , 1 , 1 , - 1 ) 

+ *4 = xa + x, = 0 A L ( 1 , 1 , - 1 , 1 , - 1 , ) A , : ( — 1 , - 1 , 1 , 1 , 1 ) 

3ll x„ + x0 
= X, + X, = 0 A , ( — 1 , 1 , 1 , - 1 , 1 ) A o • 0 , - 1 , - 1 , 1 , 1 ) 

The remaining ten planes are identifiable from the points in each as 
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«23 XL +- X, = X 3 + xt 
= 0 « 4 i : x L -\- xa 

= x a + x d = 0 

«81 X.j \- xa 
==X 4 + x0 = 0 «02 • x a - - x 4 = x3 + x0 

= 0 

« 1 0 xa -f x 4 = x0 + X, = 0 «18 : x„ -1- x u = x± + * i = 0 

«0 1 x 4 - f x 0 
x-i = 0 « 2 1 : x4 -\-x, = xu + x. - 0 

«12 X 0 + x, - x, + Xa = 0 JTSO , x0 -f- x 2 = xL + xs - 0 

and the remaining points P 0 0 , . . . , P 4 4 as the vertices o f the simplex o f reference. The fifteen 
lines are 

h xL =--x„ = — x a = X., h. x , = *2 = — x B 
= — x 4 Xt = — x 2 = x 8 x 4 

x 2 = --X- , = — x 4 = x 0 h± x 2 = x H = — x 4 = — x 0 hi x 2 = — x a = x 4 = — x 0 

(5) • h x 3 = -- x 4 — x u = x t /io x 3 
= x 4 = — X 0 

= — Xi x 8 = — X.i = x 0 = — Xi 

h • x 4 = -- Xo = — X, = x 2 A l x 4 = x 0 = — XL = — x 2 A l Xi =— x 0 = XL =— x e 

h x 0 -XL =—xt = xa / » x u = X! = — x 2 = — x 3 ho X 0 = — XL = X , = — x 3 

The ten primes, each containing six o f these lines, are S2» : x 4 = x t = 0, 2 . u : x 2 = x B = 0, 
and those obtained f rom these by the cyclic permutation o f 0 , 1 , 2, 3, 4 ; and the five primes 

2u are given by the vanishing o f the sum of a l l the coordinates except x - (/ = 0,.. . ,4). 

The whole figure o f fifteen points, fifteen lines, fifteen planes, and fifteen primes, is clearly 
invariant under a i l permutations o f 0 , 1 , 2, 3, 4, i.e. in the notation before we suppressed x- , 
under the subgroup Sr, that stabilises the symbol 5 i n Sn ; this is what we expect, as i n the nota­
t ion o f the last section the figure was invariant under the subgroup 5" s o f Sr, that stabilises a 
particular block o f synthemes ; and as the pairs i n each notat ion correspond to the synthemes 
i n the other, the individual symbols in each correspond to the six blocks o f synthemes in the 
other. 

I n its relation to Rs however, the figure is only invariant under the subgroup S^DS'^ o f S 
that stabilises bo th the particular symbol 5, and the block (3) o f synthemes, which we may deno­
te by 5'. I n bo th notations i n fact both the symbol 5 and the block 5' of synthemes are singled 
out, one by the symmetry o f the 15 point, 15 line, 15 plane, and 15 prime figure, the other as de­
not ing the particular sets of five associated lines and five associated planes i n the figure that are 
generators 'of R°, and planes o f cubic curves on R". B u t 5 S n S'B stabilises also a particular 
one-one correspondence between the individual symbols and the blocks o f synthemes ; each 
symbol 1 = 0 , 1 , 2, 3, 4 determines uniquely the pair (/5), the syntheme in the block 5' conta­
ining this pair, and the other block containing this syntheme, which we denote by / ' ; conversely, 
each block 1" determines uniquely the syntheme common to this block and 5' and the symbol 1 
that is paired w i h 5 in this syntheme. Thus S-^S'^ permutes the symbols 0, 1, 2, 3, 4 and the 
blocks 0', 1', 2', 3', 4 ' i n the same way, and f rom now on the two notations are equivalent. 

5 S O S'b is o f order 20, and contains the cyclic group CB generated by the cyclic permuta­
t i o n (01234) o f the five symbols ; there are 36 such subgroups C- i n SB, one for each pa i r / ' , / ' . 
The other elements o f Sn D S's are 

(1243) (2304) (3410) (4021) (0132) 

(1342) (2403) (3014) (4120) (0231) 

(23) (41) (34) (02) (40) (13) (01) (24) " (12) (30) 

where (ijld) denotes the cyclic permutation o f i, j,k, /, and (//) (k!) the simultaneous interchange 
o f the two pairs. The three rows o f the table are the cosets o f C 5 i n SG f l S's , and are also 
conjugacy classes i n SL O 5" s . We note that regarding the five symbols as residue clases (mod 
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5), these permutations are the linear transformations of / into at + b, where a =fi 0,.b are also 
residue classes (mod 5) ; the subgroup C 5 consists of the translations, of ( i n t o / + b, and the 
three coscts correspond to a = 2, 3, 4 respectivciy. The subgroup C 4 generated by (1243), the 
first column of the table,,is induced on the nota t ion by replacing a by 2a, 3a, 4« respectively, 
which doubles, trebles, or quadruples each symbol (mod 5). 

The elements o f the subgroup D3, union o f C 5 w i t h the last coset, applied to the coordina­
tes, represent projective transformations o f Rr' i n to itself, replacing it, w by + u + ia , + w + 2ia 
respectively, for i = 0, 1, 2, 3, 4. 

4. Parametrisatlon of the planes - i (ti) 

Tn terms o f this coordinate system, we shall now parametrise the surface R". The first step 
: is to obtain the Grassmann coordinates o f the plane - i (») containing the curve C(n), as elliptic 

functions o f u. As well as the familiar WEIERSTRASS function riH, we shall make use o f the quasi -
elliptic function £a, m the modif ied fo rm C 0 " ^ C" — where 2<a = 5a, and 2n is the per iod 
constant o f lit associated w i t h the period 2o> o f n u, i. e. C (« + 2<w) ̂  C" + 2ij, so that £„ it is 
simply periodic, satisfying £ u {it + 5a) = Co« identically i n w. (Owing to unavailabili ty 
o f type, we use the German u i n pla^e o f the more usual symbol for the WEIERSTRASS Func­
tion). Wc shall define also U,-H = p (it — ia), ^tt =-• £„ (« — to), for / = 0, 1, 2, 3, 4 (wr i t ing 
P 0 i i for pi / when the symmetry o f the formulae demands i t . ) We define also the constants 

« = P (o), -p = V (2o), i = p ' (<0, P = V <2a)t 9 = io (*), f = C (2a). 

O n account o f the addit ion theorems there are a number o f relations between these. I n the first 
place, from the addit ion theorem 

1 / p'u — p'i> 
p ( W + v) -I pu -[• = — ——-

for p;f, on put t ing (ti, v) = (a , 2a) and (a , 3a) we obtain 

and adding and subtracting these, 

(6) A * + pa = 6 ( * + / ? ) ( * ~ , A A * - < 4 — A ' -

Next, from the addi t ion formula for C», which is satisfied also by C0", as the linear terms in the 
latter tr ivial ly cancel, namely 

. , , , . . 1 p'w — p'v 

c 0 a, + v ) - C o « - c „ v = T • ^ r ^ - . 

again put t ing («, v) = (a, 2a) and (o , 3o) we obtain 

whence 

(7, 30 + , - ^ . i - * - - ^ . 1 0 » - ^ ± i . > 0 , „ £ £ . 
W e have also a relation which w i l l be useful i n the sequel 
(8) 5 (Xv H- ,»9) = y = 3 (/?3 — a*).. . 

We note that the substitution o f 2a for o. interchanges (x , fi) and permutes (J., fi, — X, —• y.) 
and (6, — 8, — rp) cyclically, and thai the relations (6), (7), (8) are invariant under this subs­
t i tu t ion . 
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Now. the intersection o f the generator /„ w i t h the curve C(u), i.e. wi th the plane n (u), 
has coordinates (f(tt), 1 , — 1 , - 1 , 1), where f(u) is an even elliptic function o f order 2, since 
each point o f the line corresponds to two values + w (mod 2Q) ; f(u) is infinite at P o u ( « = 0), 
and has the values 1 at P 4 1 (it = ± <*) and — 1 at P a 3 (w = + 2o). This means that 

/ 0 0 = 
2pw —(ot + p) 

The corresponding functions on / ( , / 2 , / 3 , / 4 are similarly infinite at u = o , 2d , 3o , 4(i res­
pectively ; thus the coordinates o f the intersections o f .i(u) w i th the five lines / 0 , l t , /., , /, , /, 
are the rows o f the matr ix 

(9) 

2p 0 u — (x + /?) 

a - B 

« — p ^ —- « 

2 P ! » —(x + ,3) a — £ 
a — p 2p 2 w — (x H 

, ? _ « « — ^ 

/ J - « 
/ ? — a 

2ps // —(x -|-
2 p 4 « — (* + 

These five points are o f course cop lanâ r . To verify this analytically by showing that a l l the quar-
tic minors i n the matr ix vanish identically İn it would probably be excessively laborious, but is 
not necessary. 

We are now in a.position to prove 

Theorem 4. The GRASSMANN coordinates p;j of the plane a (it) containing the cubic curve 
C(n) on P 5 are proportional to 

Pia 00 =—Pzi ( « ) = * (PG« — f>) I (Po« — «) = O — P) ( d u •— Ç4u — 9 — <p) 
P s ı O O =—PİS 00 = A ( p . » —/O / ( P , « — « ) = (a — P)(Ç2u~ C 0 H — 6 — rP) 
P40 («) = — P u * («) = i (P .« — W / (P t« — * ) = ( a — /O (C ö — CıH — Ö — y) 
/»oı I H ) = — 0 0 -1 ( P 3 « — /î) / (p 3ii — « ) = (x~p)(Cj.u— C 2 « — 0 — y) 
P ı ı 00 = — P Î . O O = * (ViU — P) / (P. ,« — «) = i* — /'D ( C „ i ' — Caa • 9 •— ç0 

P 4 ı 0 0 = — P u O O = / » ( P D " — a ) / ( » u « — /*) = U — / 0 ( C S " — Cs"— 6 + v) 
Po 2 00 ^ — P Î O («) = P-ÎPu" — «) / (P ı« — P) = (a — /-O ( f 1 « — C B " — 9 H- 9 ' ) 
Pı» («) = — P a t 00 = M P Ü « — «) / (P 2 « — 0) = ( * — W (Co " — C 4» — e + V) 

Pu 00 ^ — P i s 00 = f*(Pa« — a ) / ( P 8 « — B) = (« — /?) (C, H — C„« — 0 + 9-) 
Puo 00 = — P « 3 00 = MP.!" — * ) / (P.i« — P) = (QL~P) (C 8 w — f l M — 6 -h y) 

Proof, The coordinates ptj are proport ional to the cubic minors formed f rom any three 
rows of the matr ix (9), since for general u no three o f the five points are collinear ; or equally, 
o f course, as the matr ix is symmetrical, f rom any three o f the five columns. The ten-by-ten matr ix 
o f cubic minors is symmetrical and o f rank 1, so that the ten diagonal elements are propor t ional 
to the squares o f the ten elements i n any one r o w or column. This means that the coordinates />fy 
that we are seeking are propor t ional to the square roots o f the ten diagonal minors o f (9). I n par­
ticular, the minor 

(10) 

D2S (M) = 2p u u — (« -I- p) 

« - / ; 
a — B 

<x, — p a —- p 

2 p l W — (a + 8) P ~ K 

p^% 2piU — <at + B) 

is clearly an elliptic function o f u, w i t h at most double poles at the points u = 0, + 0 ; i t has 
no pole at the or igin however, since the expansion of the diagonal elements at the or igin 
gives 
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2 „ - a — (* + /?) 

« —- /? 
x - P 

z~P 

a •— p — 21 » + ... 

P-y. 

= — Uz + O («2). 

x — p -f 2AH 

T h e coefficient o f p ^ i is not zero at u = (f, so that there is in fact a pole o f order 2 there, and 
s imilar ly at // = — a. A t « ~ 2a the corresponding expansion is 

a H- 2 / t (H — 2 o ) + . . . 

a — p a — /Î — 2 i (H —2t f ) + . . . /Î — « 
/ î _ . s c _ 2 , t ( i i — 2 Ï ) + „ . 

C7(B — 2a) 5 , 

so that />.,;, (¿0 has a double zero at ti — 2a, and similarly at it ~ — 2a. These double poles 
and zeros, and the value •—8A2 at the origin, show that 

M w \ V" — * 

O m i t t i n g the factor — 8, which wi l l clearly be present in the same way in all the cubic minors to 
be considered, this gives the square o f the first expression for p.}„ (//) in (10). The second ex­
pression follows f rom the fact that p.2a (it), being an elliptic function o f order 2 w i t h poles at 
i, =+ a, must be o f the form A (C 0 (« — a) — Co (» + 0 ) + C), for some constants A, C ; since 
i t vanishes at it — 2a , C = — (6 + <p) ; and since its value at the or igin is I , 

A (39 + y ) = — A , / i = a — fi, by (7) 

The expressions for />. J ((«) arc obtained from these by the substitution o f 2a for a, which 
as we have seen simultaneously substitutes p, a, — 6, ¡.1, — X for a, /?, 9, A, /* respectively, 
and permutes the suffixes 1,2, 4, 3, and the corresponding rows and columns o f the matrix 
(9), cyclically. Finally, the remaining coordinates are found f rom these two by the substitution 
o f u — a, u —2a, it —3a, it — 4a i n turn for it, corresponding to the cyclic permutation o f 
the suffixes 0 , 1 , 2, 3, 4, and o f the corresponding rows and columns o f the matrix (9). This comp­
letes the proof o f Theorem 4. 

The second forms o f the coordinates Pi;- (it) in (10) are most convenient for differentiation, 
since for any constants, a, b the functions C0 (« — «) — Cn (« — b) and £ (it — a) — f (;/ — b) 
differ only by a constant, and C't = — p u. We thus have immediately 

p„'(u) = (x — J ? ) ( P 4 B — p , a ) p 4 1 » = ( * — / * ) (P t« — 

P u » = (« — /0 (P»« — Ï V ' ) 

P i o » = O — /*) (PiP—Pa*0 

p 0 [ » = ( * — J?) (p,w — PJ«) 

P u » = C« — 0) (P,H — Po") 

P o / ( « ) = fa — 0) (P„w — Pi" ) 

P u » = (a — P) CPi« — Po") 

P u » = (a — P) (PoU — Pi" ) 

P«o'(«) = (« — •*) ( p . « — p a « ) 

(11) 

Though i t is not strictly necessary, i t is instructive to verify the GRASSMANN equations, 
which are the necessary and (provided the whole matrix is not zero) sufficient conditions for a 
skew symmetric matr ix ptj. (fj = 0,...,4) to be the GRASSMANN coordinates o f a plane (or a line) 
in four dimensions. These are the vanishing o f the five Pfaffian forms P0 P 4 , where 
A = P - i u P u + P31P2-1 + P i -Pan and P j . . . . .P.! are obtained f rom this by the cyclic permutation 
o f 0, 1, 2, 3, 4. We shall wri te these 

(12) 
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where denotes for / = 0 4 the summation over the appropriate three permutations of the 

four suffixes other than i . I t is obviously sufficient to verify one o f these relations as an identity 
in it, since whatever function o f u P0 may be, P l , P 2 , P.d , P.t are the same function o f 
ii—a, ii — 2a, it —3a, u— 4a respectively. 

N o w from the first fo rm o f (10), p2V(it) piA (a) = — I f i . PmQt) has simple poles at 
« = o, — ° n and simple zeros at u = a, — 2a ; and p u (it) has simple poles at it = 0, a, and 
simple zeros at u = — a, 2a. Thus the product pa t (u) p2Jjt) has a double pole at the origin and 
simple zeros at it — + 2a, the other pole o f each factor being cancelled by a zero o f the other. Its 
expansion at the origin has the leading term ( a — P ) 2 u ~ z , the residue o f each factor there 
being — ( x — /?), by the second f o r m o f (10). Thus p„ t (u) p21 (it) = (a—/>)a (pa — [•) ; 
smilarly p^ (it) pUi(ti)=^—(&— /?)a (pit — «) ; and consequently 

^oPjk («)Plm ( » ) = — If* "I' ( « - P)* (Pll — P) — (X — 0 ) 2 (pi/ —X) 

— <V + ( a—/? ) B = 0 

by (6). Thus, identically i n w, 

^iPjkOdPhn(M) = 0 (/ = 0,...,4) ; (13) 

and hence also, identically i n a, 

%i(Pjk (")pim'(u) +Pjk'(ii)Plm(u)) - 0 (/ = 0,...,4) (14) 

^iiPjk 00 Plm" («) + 2pJk' (u)pim' («) + p y f c * (w)/» . m («)) = 0 (/ = 0,...,4). (15) 

I t is perhaps also wor th verifying that (10) gives the correct values for the coordinates o f 
the planes n{ = n (ia) (/ = 0 4 ) , whose equations are known. A t it = 0,pl2 (tt),plS 00, 
Pn («X Pai 00 n ^ v e simple poles w i t h the residues a —• / i , a — /?, /? — a, /? — a respectively. 
Thus for the plane ;i<„ 

Pit - Pit ' P24 : Pn • any other pr-y = 1 : 1 : — 1 : — 1 : 0 , 

which agrees with the values found f rom the quadratic minors o f the coordinate matrix 

/ 0 1 0 0 1 \ 

\ 0 0 1 1 0 J 

o f the primes xi -|- x4 — 0 , x2 + x a = 0 which intersect in . T 0 . 

5. Parainetrisation of the surface 

The ordinary expression x{ = (py-, q\m + q -k pim) (i = 0,...,4) for the coordinates 

o f the poin t of intersection of two planes w i t h Grassmann coordinates p^ , q;j, where is the 

summation defined in (12), gives us at once for the point ( i i , it') on the surface 7 i 8 , which is the 
intersection o f the planes n (it), .t ( » ' ) , the coordinates 

Xi (it, u') = (Pjk(i*)Pl>>>W) +Pjk (u')Plm(ti))- (' = 0,...,4) (16) 

For constant. u', these are functions o f u o f order 5, w i t h simple poles at the points // = ia 
(i = 0,...,4) ; all five o f these functions o f u however have double zeros at u = it', by ( 1 3 ) , ( 14 ) ; 
thus the quotient o f any two o f them, or i f we prefer to keep the coordinates homoge­
neous symmetrical the quotient o f each over the sum of a l l five, is a function o f order 3, i n 
accordance w i t h the fact that C (u'), o f which these functions o f // furnish a parametrisation, is 
a cubic curve. 
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N o w for any constant v, as u varies, the point (u -|- v, u — V ) describes a curve quadrisecant 
to the generators, and bisecant to the curves { C s } , and hence o f order 10. i n fact, i t meets the 
generator / (w) i n the points 

' ^ y w + v i i ' — v ^ and (~ w + v + a>it y i v — v H to- j 0'— 1, 2, 3), 

where co 2, w a are the three pr imit ive half periods, i . e. any two of 2o>, , 2tu, , 2t»a generate 
3 

the period lattice 2Q, and o>£ = 0 ; and i t meets the curve C ( « ) in the points (it, it + 2c). 

Three o f these curves we shall now parametrise, namely those for v = 0, + a and + 2o, the 
first being the focal curve, envelope o f the family C. 

Theorem 5, The coordinates of the point (it, it), the point of contact of C(u) with the focal 
curve, are proportional to 

X0 00 = ( « - / 0 P , » -f a - - c ^ + a + p) ( f 8 f f -- f » + (OC3 - fh 1 io 
Xv («) i - a - - / • ) (Ca« — - f . u ) + (X2 - /?*) / io 
X,(u) = (*-- 0 ) T V ' - - ( 1 - - p ) (Ci« — " + ( * 2 — Pz) / io 
X9(u) = (a a - - p ) ( £ 4 H ~ C A M ) + (A + M X C . H - / i 3 ) / io 
Xt (it) = (a - / 0 P , < H - p ) (C0tf — t,H) + a + rt(cBH- £ » + ( * a — /* 3)/io 

Proof. We cannot o f course simply substitute u' = u i n (16), since this makes all the coor­
dinates vanish, by (13). Bu t putt ing u' = it + v, and expanding as power series i n v, we have 
by (13), (14), and (15) 

xt (it, u + v) = £ • (pjk (u) p t m

 0 (it) + p j k " (u)plm(u)) v a i - O ( v 9 ) 

= - 2 2 i P ; * ' < * W («) - v1 + O (»") (i = 0,...,4), 

so that in the l i m i t as v tends to zero, the coordinates o f (u, u) are propor t ional to 

^iPjk 00 Plm 00 0' = 0,. . . ,4). Taking the derivatives i n the form (11), omi t t ing the factor 

(a — (!) common to all o f them, and removing a further factor — 2 which w i l l appear in the 
course o f simplification, we define 

— 2 X U («) = (« — ft)'2 (p„' (u)Pu' (H) + pat ( « ) p a / 00 + / V 0 0 P » i («) ) 
= (P4ff — P I » ) ( P » K — P > « ) + ( P D « " P 4 « ) ( P 0 « — PIK) + (P 8 H — Pott)(V0u~ p , H ) 

= p 4 H p!W + Putt p , H — Pi« p 3 H — p 2 H p 4 « + P„M Po« 

— P i « p e i ( H- p aw p 4 " — p 4 « P 0 « — P 0 « p t « + p t p 2 « (18) 

and — 2.Y t 0 0 — 2X+ (it) consist o f the same ten terms, w i t h the obvious cyclic changes 
of sign. 

N o w Pitt Pjtt has double poles at u = io Ja , and is thus a linear combination o f p fif, py» 
f jH, Cjti, and a constant term. I n fact, as p 4w has the expansion p 4 « = B + p, (u — o) + 0 (« — o)2 

at u = o , P j H P i i i has the expansion p , « ? , , « = /? (« — o)"^ 2 + p ( « — o ) — ' + 0 (1) there, 
and similarly pLi< p 4 f i = B (u + o ) ^ 2 — fi(u H- o ) _ l + 0 (1) at « = — a ; thus 

P i i i p j U = 8 (p,H + P 4 H ) + A * ( d « — Ci«) + C 

where C is a constant, to be determined by comparing the values o f bo th sides at the or igin , 
which gives C = a-~2xp + 2pB. p2itpsu is found from this by the substitution o f 2o for 
a, w i t h the corresponding interchanges o f the constants, and the other products f rom these two 
by the cyclic permutation o f 0, 1, 2, 3, 4, We obtain 
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p L « p 4 « = + — £ 4 a ) + C, p 2 « p s « = <* ( p s « + p a a) - * ( d ' < -
p 2 « P 0 « = P ( P a « + P « « ) + ;* (C a « — C U M ) + C p a i / p 4 « = a ( p 3 « + p.,w) - * ( e 8 » - - f ^ ) - f - D 

Pa« P L « = / H P S « + P L ' < ) + P ( £ 3 « — C,«) + C, p 4 a p „ a = « ( P i " + P„») - A ( C 4 « - - t0u) + D ( 1 9 ) 

p + a p.,a = PiVSi-l^u) -h ft(£Lu — C,ff) + C, VunPiU = a ( P 0 « + P ,«) - A ( i u « -

P„» P3w = P ( P 0 » + P9w) + i * ( C o » --C-jU) + C, p , a p 2 « = « ( p , w — P S M ) - C 2 » H *>j 

C = « 2 -- 2 x « - t - 2 / * 0 , X) = ^ _ 2 x i ? — 2 ; . v . 

Substituting f rom ( 1 9 ) i n (18) we have 

~2X0 (it) = 2(p — « ) p 0 a + 2 (A — it) (C 4a — d » ) - I - 2 (A + ( f ,w — C 3 ») i - C — D , 

which as 

C — D = a.2 — p-> + lily + ftQ) = (3- — <t s)/5 

by (8), verifies the expression for X,t (u) i n (17). The others arc obtained from this by cyclic per­
mutat ion o f 0, 1, 2, 3, 4, and Theorem 5 is accordingly proved. 

The general linear combination o f Xu (a) Xx (i/) has double poles at u = 0 , a , 2a , 
3a, 4a , and is thus o f order 10, which accords wi th the fact that the focal curve, o f which these 
functions supply the parametrisation, is o f order 10. Each o f the individual functions (») 
however is o f order 6, having a double pole at u = f<r only, and simple poles at the other 
four points ; thus for a = 0, a, 2a, 3a, 4a respectively the five functions are propor t ional to 

( 1 , 0 , 0 , 0 , 0 ) , (0, 1 , 0 , 0 , 0 ) , (0 ,0 , 1 ,0 , ) , ( 0 , 0 , 0 , 1,0), ( 0 , 0 , 0 , 0 , 1) 

confirming that these five points on the focal curve are the vertices P,,- ( ; = 0,...,4) o f the simplex 
of reference. 

The tangents to the focal curve at the points P i £ (/ =0 , . . . , 4 ) are easily found. For that at 
P u 0 for instance, x Y x ± are propor t ional to the values at a = 0 of the derivatives o f 
Xt (a) , . . . , X± 00 each o f which contains a term i n p„a and no other term which is inf in i te 
at if = 0 ; thus for the tangent, x.t are proport ional to the coefficients o f p 0 « in the deri­

vatives o f the four functions, i . e. to those o f — C 0 " i n the functions themselves. The tangent to 
the focal curve at P 0 0 is accordingly 

x, : x, : x, : x., = (A — p) : — (A + /*) : (I + p) : (p—l). (20) 

This is seen to lie i n the plane n u : xL + xs = x2 + x„ = 0, as we expect, since the focal cur­
ve, being the envelope o f the family { C 3 } , touches at P 0 0 the curve C(0) , ly ing i n the plane - i 0 . 

We next prove 

Theorem 6 . The coordinates of the point (a + a, u — a) are proportional to 

Y0 (¡0 = ( * ~P) ( P 0 » + P , « — P 2 « — P U " + P 4 « ) f 2A ( f ^ — + £ „ « --C,a) — K 

r , 0 0 = (a — P) ( p , i i + p»ii — — p 4w + Vv") + 2A (C,w — £B« + C . jH-~C0u) — K 

(a - / ? ) (p 2t/+p sa — p 4a — p „ i / + p , M ) -1- 2^ (Csti — C.,u + t 0 " -- C , a ) — K 

n ( » ) = ( * — W ( P . H + P i a — p 0 a — p , « + P ,u ) - - 21 (C 4a — C„« + f ,H -- C B « ) — K 

( * - - / ? ) ( p 4 a + p 0 « — p l U - ~ pBa + p 3«) - - 2A (C ua — C,a + C2« -- f s « ) — K 

and those of the point (u + 2a , it •— 2a) are proportional to 

Z0 (it) = ( « - -8) (Po« — P t « + P 2 « + P a " — P*«) — 2I*{CLU + t2u — Cult — C 4 a ) - — L 

Zt (u) = ( * - - / ! ) (p ( i / — p,H + p s a + p4a — p 0 « ) -- 2p (C2it + Csu — C 4a — — L 

Z2 (w) = ( « - (p ,u — p a a + p 4« + Po« — P i « ) -- 2\i (C3if + C 4a — C0» — £ , « ) -

- L Z a (a) = (cc- (P»» — P i « + Po« + P L" — d s « ) --2p(i.yu + C „ H — CiU — - L 

Z± (a) = ( « --p) (p^a — p 0 « + pLa + p„« — p aa) --2ft (£0u + tLi(— C^u — - f i « ) - - L 

, ( (21) 
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where 

K = « (a — /?) + 2lq>, L = 8 (« — /?) + 2/*0. 

Proof. By (16), the coordinates o f (H + a, a — a) are proportonal to the five sums 

2 i (Pj*(" •'• Plm(" — °) + Pjki" — °)Pim(" -H <0) (( — 0,...,4). 

But evidently p{ j(u + a) = p f - , , y - L 0 0 and ^ (« —<J) = / > f + 1 , y + [ (//), f rom the way (10) 
were obtained by the cyclic permutat ion, the suffixes here being again treated as residues (mod 5). 
Thus the first o f these sums, 

Pis ( » + <0l>i4(« — <*) + P u ( « + ° ) P a a (" — « ) + A u O ' + a)p.ii (u — a) 

+ Pui'l + «)i>31 ( « — ° ) + P l 2 <lt + 0)PSi ( « — « ) + />«*(" + « ) P l 2 ( « — ° ) 

= i>i2 00/>i<> 00 + P Q B O O P M O O + P S O ( « ) / > « O ( " ) 

+ P U O O P A I O O + P 0 1 («)P4O ( « ) + P « a ( « ) (22) 

These six terms are functions o f several different types, and require to be evaluated separately. 
p^s" (a) has double poles at u = + d, and double zeros at u = + 2o. A t // = a, 

/>s3 («) = (* — p)((tt - a ) " 1 — (9 + 2 V ) -H O (« - o)) 

= ( « — )?) (H — O ) - 1 + — ^ + ° ( " ~ 0 ) 

so that 

/>2 3

2 («) = (* — (« - <0~a+ (A — «•) (« — ,3) (a - o ) - L + O ( 1 ) . 

Hence 

<* — / D " ' P » * 00 = (* — P) (Pi» + P.") + — fO (t L« — d") — (*a — P2) — (A—jtO (6 + V ) , 

(23) 

the constant term being determined by the zeros. ( I t is easily verified that the derivative also vanis­
hes at these). 

Pa (w) P13 («) = Pai 00 P a i i " ) w a s determined as (a — p)q ( P „ H — /?) i n the course o f veri­
fying the Grassmann relations. We therefore wri te 

(« — P)~lPit OOPie (id = (a — P) P Y « — ( « - /!)- (24) 

P i a 00 Pao 00 n a s simple poles at a = + d, and a double zero at it ~ 0. A t a = 0 , 
PHO 00 = — J 3 1 1 0 P30 00 has residue (8 — a). Thus 

(« — PT1 P20 00 P 3 U 00 - /* ( f 1« — d ") + 2p 9 (25) 

P<i1 00 P4.0 ( H ) i s obtained f rom this last by the substitution o f 2d for a, together wi th 
change of sign ; thus 

(a — p)-lp0l (u)pM (a) = A (£„ a — C 2 a) — 2Ay. (26) 

Ps.i 00Pus 00 has a double pole at a = 2d and simple at u = a , and a double zero at 
a = 3o and simple at a = 4o. A t a = 2a the two factors have residues ± (<x — /?), and at 
u = a pyS (it) has residue (x —- /?) and pai (u) = A. Thus 

(x — (?)- 1
 P t i (it) p05 = — — /?) p f a — A (C, a — £, u) + a (a — /?) + A (9 — v ) , (27) 

the constant term being determined so as to make the function vanish at u = 3d ; i t is easily 
verified that the derivative also vanishes, here, and that the function also vanishes at a = 4cr, 
using (6), (7). 
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Finally />, ,( / /) /> a j (a) is obtained f rom this last by substituting 4<i (or — <;) for a, which 
interchanges the suffixes (14) (23) by pairs, leaves a , 8 unchanged, and changes the sign o f 
X, ft, 0, <p. Thus 

(* — f>)-'Pi-A'')P^(it) = — (a —/J) p a a + MZtU — Ctu) + * ( « — | i ) • + — <p). (28) 

Adding up now the r ight hand members o f (23) (28), we obtain the value o f Yn (it) in 
(21) as that o f (ct •— /J)—1 times the r ight hand member o f (22) ; the constant term being 

— K = (at — ft) (a. — 28) + X (0 — 3?) + Í* (30 + ? ) — 2Ay = — * (x — /f) — 2 ^ , 

since by (7), (6) 

( 9 _ 3y ) = ^ (30 I- y) = ^ =- - (« - ,?)' . 

Z 0 (a) is obtained f rom Ya (it) by substituting 2o fo r a, and changing the sign th roug­
hout ; and Y¡ (a), Z ; («) ( i = 1,...,4) f rom these two by the usual cyclic permutation. Theorem 
6 is thus proved. 

We note that K + L = — (x* — /J J)/5, by (8). Thus tr ivial ly 2X¡ (it) = 7 ,00 + Z¡ (it) 
(i = 0 f . . . ,4) , expressing the collinearity o f the points (a , it), (u + a , u — o), (u h 2o, a — 2a), 
which are all on the generator / (2a), As a simple extension o f this we now prove 

Theorem 7. The coordinates of the point (a H- v, « — v) o f JR5 are proportional to 

2p v . X{ (a) —- Wi (u) (i = 0,...,4), 

where X¡ (ti) (/ = 0 , „ . , 4 ) are as defined i n (19), and 

Wi (it) = pYi 00 + «Zf (a) (/ = 0,...,4), 

Yi'(«). - ^ i 00 0" = 0,...,4) Ae/flp « j <fcy?n«/ w (21), (21 ' ) . 

Proof. Evidently these coordinates are propor t ional to Yt (a) + f{v) Z{ (a), where / ( r ) is a 
function o f v (mod 2Q), o f order 2, zero at v = + a, infinite at v = + 2a, and w i t h the value 

1 at v = 0. This means that / (v) = ~ , and the coordinates in q uestion are proportional t o 

(Vv—B) Y{ (a) + (pv — « ) Zi (u) (i = 0,...,4), 

which is the theorem. 

6. Grassmann coordinates of the generators 

The generators l(w) o f Rr' f o r m of course a system o f lines dual to the system jt (it) o f pla­
nes ; and i n dealing wi th these, in order to utilise as much as possible o f the work already done, 
i t is convenient to introduce temporarily a new coordinate system (y0,...,yi), whose relation 
to the whole figure is dual to that o f the coordinate system (*„ , . . , . . x j , so that instead o f the 
points Pa (i = 0,...,4) being the vertices o f the simplex o f reference, the primes Sa ( ' = 0,...,4) 
are its faces. As the equations o f these primes, i n the original coordinate system, are the vanis­
hing the o f sums o f a l l but one o f the coordinates, we wri te 

(29) 
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A n y permutation on (xu x:i) clearly induces the same permutation on (y0,...,y+) ; thus the 
whole figure is st i l l invariant under the group SaD S'^. We must bear in mind however, that as 
the lines /„, / , , / a , /„, / 4 are the generators /(0), /(2o), /(4a), /(<J), /(3o) respectively, the cyclic 
permutation o f 0, 1, 2, 3, 4 applied to either system o f coordinates cooresponds to the substi­
tu t ion o f w — 2a, not w — a, for w, and consequently induces the cyclic permutation o f 0, 2, 
4, 1, 3 on the functions Cfw or p^v. We now prove 

Theorem 8. The Grassmann coordinates of the generator l(w) of R" are proportional to 

\ 

(30) 

<it» ( i f ) - C, 11' - c 4 
W - 2 ( 0 -<p) «.n ('") = c , IV t* ii> + 2 ( 6 1 <?') 

<7fl.i ("•) = c 5 
w w — 2 (9 - y) <7os (»0 = Co 11' c , iv -1 2 ( 6 + V) 

«40 ( i f ) = Co - c 8 
w — 2(9 ~ v ) f/ia ("0 = c 2 

11' - - c , if + 2 (0 + v) 

<7ui (if) - = c 2 
w - C o w - 2 ( 0 - 9 » ) 9s4 ( i f ) = •si I t ' ­ c a w + 2 ( 9 + 

i / is 0i') = C4 11' — c 2 
w — 2 ( 9 — <P) Î 3 0 (» ' ) = d l l ' — Co w + 2 ( 0 + 

Proof. The prime yti— J'I • I-J '4 + — = 0> or x} |- -v4 =^ 0, contains the plane 
3 i 0 , and the lines L , fs , or / ( + 0 ) ; the prime >>„ - f yl — y.i —ya + y^ = 0, o f - r 4 + xa — 0, 
contains :i0 and the lines / , , / . L , or / ( + 2a) ; and the prime y0 = 0 contains . i ^ and the line 
/ 0 , or / (0) . Thus the prime jo in ing nn to the generator / (w) is / ( i v ) .}•„ — yt + _y2 + yb — y 4 ^= 0, 
where / (n0 is an even elliptic function of 11', o f order 2, infinite at w — 0, and w i t h the 

values 1 at w — + a and —-1 at w = + 2a , i . e. f'(w) = — ' • -• • ^— • Thus the 
- a — fl 

equations o f the five primes jo in ing ((w) to the five planes . - i 0 , ni are 

( 2 p „ H> — a — /0 yo i- (jî — «) y, + (« — /*) y* i - (« — />') y» f (.! — * ) ^ 1 = 0 

( 8 - « ) y 0 + ( 2 p 2 w — « — / î ) j . l + ( « — * ) + ( * — | î ) y , +• u - /?)^4 - 0 

— •5)^a + (/5 — «) j ' i + (2 P 4 i f — x — H) y, (j3 - a) -f (X — / ' ) X i = 0 

( « - / ? ) n + (x — 8)yi + + (2 p , w — a. — B)yt -f (A — «) A 0 

+ (* — f>) + (a — B) ; ' , + (/i — a) .v a + (2 p„ w •— a — / ' ) 3̂ 4 = 0. 

The matr ix o f coefficients in these equations however is what the matr ix (9) becomes, on 
applying the cyclic permutat ion (1243) to both rows and columns. Exactly as i n Theorem 4, the 
GRASSMANN coordinates rtj o f I(w), relative to the coordinate system (y,„ yml\ are propor-
tonal to the square roots o f the diagonal cubic minors of this matrix, which we have already 
found ; and as the permutation (1243) is equivalent to doubling each o f the symbols (mod 5), 
we can write, interpreting the suffixes as residue classes, r{j ~ p 2 i , tj ( i f ) , i . e. 

<\» = P-ti (M>), r a 4 = pts ( i f ) , r 4 „ = p 3 0 {w)f i\n = pat (iv), r , e = p.ilt (iv) 

(31) 

''41 = P-6-î (" '), r w =pul ( i f ) , r 1 3 =p.n (w), r 2 4 - pia (w), r 1 0 = pw (w). 

N o w the coordinate systems (JCU, xj, ( y u , y * ) being related as in (29), the GRASSMANN 
coordinates q,-j o f any line wi th respect to the system (x0, . . . , x 4 ) are linear combinations o f its 
coordinates r^- w i t h respect to the system (^ 0 , ..^yj, w i th a matrix of coefficients which is the cubic 
adjoint, i . e. the ten-by-ten matrix of cubic minors, of the matrix of coefficients in (29). These 
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cubic minors are easly found, comparatively few needing to be actually calculated, on account 
of the symmetry o f the matr ix i n the ordinary sense, as well as its cyclic symmetry. Put t ing i n 
the values o f rt-y- f rom (31), and a constant o f proportonal i ty Q to which we shall give 
a convenient value later, we have 

Q 

^ B O ? ) _ ~~ 2 1 0 0 1 0 1 —1 _ 1 3 ~~ ~~ P i iOf) " " 
1 2 1 0 0 1 0 1 —1 _ 1 PllO?) 

tf-ioOf) 0 1 2 1 0 „ 1 1 0 1 —1 PBO(HO 

? o i ( w ) 0 0 1 2 1 —1 — 1 1 0 1 PUICW) 
1 0 0 1 2 1 _ 1 - 1 .1 0 Ps*(w) 

i . i i ( ' f ) 0 1 —1 —1 1 2 0 1 1 0 ' PsaCw) 
1 0 1 —1 —1 0 2 0 1 1 POJCV) 

— 1 1 0 1 „ 1 1 0 2 0 1 P«I(W) 
<7«(w) — 1 —1 1 0 1 1 1 0 2 0 P«(H») 

- 1 „ 1 - 1 1 0 0 1 3 0 2 - — PiqOf) -

I n the ten sums on the r ight , when we express Pij(u) i n the second fo rm given in (10), most of 
the terms cancel, and on put t ing @ = 2(x —• 8) we quite staightforwardiy obtain (30). 

We verify, as we did for the coordinates o f n(u), that for w = 0, 2a, 4a, a, 3a, (32) gives 
the coordinates o f the lines l0 , /, , ls , /3 , l± respectively. F o r w ~ 0, o40(w), <7 0 l(it ')j <7o2("0> 
<?*o0")> which all contain a term i n GQw, have simple poles w i t h residues 1, — 1 , 3, — 1 
respectively, and the other g,-y(iv) are a l l finite, i . e. for the line / 0 

tf-io : 9oi : ?o 2 : tfao : any other q i } = 1: — 1 : 1 : — 1 : 0 , 

agreeing w i t h the coordinates o f lg as found f rom those o f any two of 

P 0 0 : (1 , 0, 0, 0, 0), P2S : (1 , — I , 1 ,1 , — 1), P u : ( 1 , 1 , — 1, — 1, 3). 

The coordinates o f lL , h , h > U a r e similarly given by the poles o f c/ij(w) at w = 2a, 4a, a, 3" 
respectively. 

W r i t i n g the GRASSMANN coordinates o f any line or plane, regarded as a vector in a ten d i ­
mensional space, i n the order 

(Paa >Psi ,Pio >Poi -Pia iP-it >Poa >Pis ,Pa-i ,Pao), 

we define the twelve vectors 

p 0 = ( 0 , - 1 , 0 , 0 , 1 ; 0 , 0 , 1 , - 1 , 0 ) 

P l = ( l , 0, — 1 , 0, 0 ; 0, 0, 0, 3, —1) 

p 2 = ( 0 , 1 , 0, — 1 , 0 ; — 1 , 0, 0, 0 ,1 ) 
p 8 = (0, 0, 1, 0, — 1 ; 1, — 1 , 0, 0, 0) 
p 4 = (— \, 0, 0, 1, 0 ; 0 , 1 , - 1 , 0 , 0 ) 

a = ( 1 , 1 , 1 , 1 , 1 ; 0 , 0 , 0 , 0 , 0 ) 

By Theorem 4. a coordinate vector for the plane .i(w) can be taken to be 

POO = Pdo u + pLCL u + p , C f u + p 3 C 8 u + pj.t u — a (6 + v ) — b (0 — q») 

and by Theorem 8, one for the generator !(w) is 

q 0 = (0, 0, 1 , - 1 , 0 
q , = (0, 0, 0 , 1 , - 1 
q 2 = (—1 0, 0, 0, 1 
q s = ( 1 , - 1 , 0 , 0 , 0 
q 4 = ( 0 , 1 , - 1 , 0 , 0 

0, 1,0, 0, —1) 
— 1 , 0 , 1 ,0 ,0) 
0, — 1 , 0 , 1,0) 
0, 0, — 1 , 0, 1) 
1,0, 0, —1 ,0 ) 

b = ( 0 , 0 , 0 , 0 , 0 : 1, 1, 1 ,1 , 1) 

(33) 
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q(ii') = q0Cu w -\- q ^ a w + q.2t4w + q 3 t i i f + q 4 t a w — 2a (0 — <p) - I - 2b (0 + rp), 

"Now the condi t ion for a plane w i t h coordinate vector p and a line wi th coordinate vector q to 
intersect is the vanishing o f the scalar product 

p - q = Y i P i i q i i = Q-

tbe summation being over the ten pairs ij. F rom (33) we have at once 

P i . q^ ~ P; . a — P i . b — . a = q^ . b — a . b = 0 ( r , j = 0,...,4), 

a . a = b . b, 

whence, identically in (u, if) 

P(") • q("0 = 0, 

expressing that the plane n(u) meets the generator l(w) for a l l u and if. The vector p ; is the coor­
dinate vector o f the plane , and q; that o f the generator / ; , and the relations pt- . qj = 0 
(i\j= 0,...,4) simply express that all five lines meet all five planes. Also, i t is wor th not ing the 

4 4 

obvious relations ^ p ; = q £ = 0, which express that J I 0 a, are five associated planes, 

,-=0 i=o 
and / , , , . . . , / 4 are five associated lines. 

7. Cubic prima Is containing RF'. 

The generators {/} o f R'" are the intersection o f five linearly independent linear complexes 
o f lines, i . e. are the lines common to an co 4 linear system | L | of linear complexes. I n this system 
arc of course a quadruple inf ini ty o f webs, or co a linear subsystems, and a sextuple inf in i ty o f nets, 
or co 2 linear subsystems, o f linear complexes. The lines common to a genera! web of linear com­
plexes are one system of generators o f a SEGRE cubic pr imal , meeting five associated planes on 
the pr imal , and those common to a general net o f linear complexes are the trisecants o f a VERO-
NFSE surface. (By this term we shall denote the projection into four dimensions o f the normal 
VERONESE surface in five dimensions ; we shall omit the word projected usually associated wi th 
this surface, as we shall have no further occasion to refer to the normal surface). I f a net N o f 
linear complexes is contained in a web W, the VERONESE surface K 2

L whose trisecants are the 
common lines o f N lies on the SEGRE cubic V% generated by the common lines o f W ; for V2* 
has a pencil o f trisecants through each o f its points ; and the generators (of the relevant system) 
of K M

3 are the trisecants o f F / that belong to a linear complex not containing all o f them, and 
hence include either one line or the whole o f each pencil o f trisecants, i . e. every point o f V./ lies 
on at least one generator o f K / . 

Theorem 9. The general cubic primal containing R" is a SEGRE primal VB" , and its inter­
section with the quintic primal Ws" generated by the planes {«} of the curves \C} on R° consists of 
R:' counted twice, together with five associated planes of{n\, RB is the base surface of un oo* linear 
system of such cubic primals, the intersection of two general members of which, residual to R',is 
.a VERONESE surface V£ trisecant to the generators of R". 

Proof. Let Vs

a be a cubic pr imal containing R" ; its intersection w i t h Ws

!' includes R" 
counted twice, since R" is the double locus on f¥B

s , each of its points being the intersection o f 
two generating planes a{u\ * (« ' ) o f WB°. The residual intersection, o f order 5, consists o f five 
o f the planes ; since i f K g * contains a point o f *(») not on P s , i.e. not on C(ii), i t must con-
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tain the whole o f n(u). The complete linear system | Va" | o f all cubic primals through P"' thus 
traces residually on W:s" a linear series o f sets o f five planes n(ut) JT(M3) ; and as one such set 

5 

consists o f ng nA, every such set satisfies ^ w,- = 0, i.e. consists o f five associated planes. 

/ = ! 
Conversely, every set o f five associated planes i n {«} determines a SEGRE cubic containing i t , 
generated by the lines meeting the five planes, among which are the generators o f R:', and hence 
containing jR 3 ; thus | Vv

s | traces on Wa

s the complete series o f sets o f five associated planes in 
( j i ) , o f dimension 4, i.e. \ Va

a \ is o f dimension 4. (We have already seen that there are co 4 webs 
of linear complexes in \L\ ,the common lines o f each web being the generators of a SEGUE 
cubic containing RB.) 

N o w let Va, V\3 be two general members o f j Va \ , and let W, W be the correspon­
ding webs o f linear complexes. As Wt W are both contained i n the co 4 linear system | L | o f 
linear complexes, their intersection is a net N, the common lines o f all whose complexes are the 
trisecants o f a VERONESE surface K a

4 , and include the generators (of the relevant systems) o f 
both V-/, V'a

3. Thus V2* lies on both Va

e and (•",/, and the intersection o f these two cubics 
consists just o f the surfaces R", V2

 L, since their total order is 9. This completes the p roo f o f 
Theorem 9. 

Clearly, some cubics o f | Va" | w i l l meet Wa' i n sets o f five planes not all distinct, as any 
linear series contains some sets not a l l distinct. These cubics are not strictly SEGRE cubics, as 
they do not contain fifteen planes ; they are to be regarded as l imi t ing cases o f the SEGRE cu­
bic, i n which some of the planes coincide. Each is however generated by at least one system of 
co a lines, common to a web of linear complexes, one o f these including the generators {/} o f J?5. 

Similarly, some of the VERONESE surfaces Kg* which are the characteristic system o f j Vt*\ 
are degenerate. Fo r a net N o f linear complexes, though in general it does no t include any that 
are special, consisting o f all lines that meet a fixed directrix plane, may include one, two or three 
special complexes. (There are o f course co 1 special complexes in \L\, whose directrix planes are 
the planes {-i}.) The VERONESE surface corresponding to N breaks up accordingly in to the direct­
r i x plane JJ o f the special complex and a ruled cubic wi th directrix in it ; the directrix planes 
it, nr o f the two special complexes and a quadric meeting it' in lines ; or the directrix planes 

n', n" o f the three special complexes and the unique plane meeting these three in lines, the 
j o i n o f their intersections by pairs. I n particular on the SEGRE cubic pr imal V*a

v f rom which 
we began, containing the planes na,...,ni , there are i n the web | K 2

4 | o f VERONESE surfaces traced 
residually by cubics through R 5 , ten such completely inducibles surfaces, consisting o f four planes 

1 1 i) ' Tnu where ijklm is any permutation o f 01234. 

The ruled quintics | R | w i th generators in the line system {5} on K * B

3 are a linear system of 
dimension 5 ; the Grassmannian o f this line system being the quintic D E L P E Z Z O surface i n five 
dimensions, each o f whose prime sections is the Grassmannian o f an Rb. Some prime sections 
of the D E L P E Z Z O quintic are o f course reducible ; i n particular i t has completely reducible pr ime 
sections, consisting o f five lines forming a skew pentagon, and these correspond to degenerate 
members o f | R \ , consisting o f five planes x k i , " i m , ^m,-, ̂ -y, " y t , where again ijklm is any 
permutat ion o f 01234. 

The characteristic system o f ) R° \ consisting o f sets of five associated lines, every set o f five 
associated lines in the system (5) is the base o f a pencil o f surfaces i n J R \ . I n particular the lines 
la / 4 are the base o f a pencil ( R5 (I: /i) } o f which one member is the particular surface 
Ra we are studying, and two other members are the degenerate qumtics * M n 3 i « „ , JT1 3 and 
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The equation o f the SEGRE cubic pr imal V*a

3 containing the fifteen planes wi th which 
we began is, in the original coordinate system before we suppressed the redundent coordinate 
x- , 

since every point o f the plane x¡ - f xj = x¿. -\- x¡ = x m + xn ^= 0 satisfies also x* V Xja 

— x/c'J -f- xi" - - - Y m

; i -f- .Y„ b = 0. On suppressing .v- this becomes 

V -+• x,8 + *,« + xa* + = (x„ • ] - * , + x, •!• x„ + xJJ , 

i. e. 

** = 2 X i ' X J + 2 2 ** X i X k ^ °' ( 3 4 ) 

the first summation being over the 20 ordered pairs ij, and the second over the ten unordered 
triads ijk. Before f inding the equations o f other cubic pr imáis containing R", i t is convenient to 
prove the following 

Lemma. Tak ing x u , .r, , x. ; as coordinates in .-i„ (with ,YB = — x 2 , x , = — xj the equa­
tion o f the curve C ( 0 ) is 

i(xt - I A V K V — + i'Cv, — — A-,'-'} = 0 , (35) 

and those of C (o ) , . . . , C(4o) are obtained f rom this by cyclic permutation o f x 0 , . . . , x 4 . 

Proof. F r o m (4), the points Pun, P U 1 , P U 2 , Puu , PiU are ( 1 , 0 , 0 ) , ( 1 , ¡ ,—1) , ( 1 , 1 , 1), 
( 1 , — 1 , - 1 ) , ( 1 , - 1 , 1), so that the lines P 0 0 P 0 , P , 0 , P 0 0 P 0 2 P 8 0 , P B l P 0 8 , P s o P ^ P ^ P , * 
Pa, P 1 0 are 

A't + x.2 •= 0, -Yi — J f s = 0, x 0 — x¡ ~ 0, x 0 + Xi =0, xu + ,Y 2 = 0, xa — .Y9 ^ 0 

respectively. O n C(0 ) , // is a no rma l parameter for the point (w, 0), so that the tangent at (iafi) 
meets the curve again at (3/0,0), i . e . P „ D is an inflexion, and the tangents at P 0 I , P o a , P B P , 
Piq are x„ + x, = 0, j t u — xL = 0 , x„ + x , = 0, ,Y„ — x.¿ =• 0, respectively. The cubics i n 
the plane satisfying these contact conditions are a pencil, two reducible members o f which 
are ( x ¡ 4- x,) (x0°- — x2) = 0 and ( x ¡ — x2) (x,¡'2 — x , 1 ) = 0 ; and as from (20) the tangent 
to C ( 0 ) at P 0 0 satisfies X (xL + x 2 ) + p. (xt — x 2 ) = 0, C(0) is the curve o f this pencil given 
by (35), which establishes the lemma, the application of the cyclic permutation being obvious. 

I t may be observed that the two triangles (xt-l x2) (x0*—x1

2)=0and(xl^—x2) (x0

s—x^)=0 
are the traces on . i 0 o f the two degenerate quintic surfaces n21l ziai ;il2 and .-T4[ ; i o a w 1 2 

-''so • I J 1 each case the two planes out o f the five that have 0 for one o f their suffixes meet 
rfu only in points, and the other three meet i t i n lines, forming the degenerate cubic curve i n 
question. We now prove the main result o f this section : 

Theorem 1 0 . The surface R:', together with the degenerate VERONESE surface consisting 
of the planes ¡i{j , , , u m form the complete intersection of the cubic primal <P* = 0 
with the cubic primal <l'ij = 0 where 
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* H = X(xl+xi)(x2 + xa) (xa+xj + [t (x^x.+Xz+xJ ( x 3 + x 0 ) ( x ( 1 + X . , ) 

*04 i-ixt + x^ixs + Xi) (Xi + Xa) + t*(x3 + xa + Xi+x0){x.L+xi)<xl+x„) 

040 - * i ^ + A - J + ( x 0 + X , ) + ( x 3 + X 4 + X 0 + X , ) ( X „ - | - X . , ) ( x ê + X 4 ) 

<f„, = A Î X J + XU) (x„-fX,) ( x , + x 2 ) + ft ( x ^ - f X u + x ^ x . , ) ( X , + X 3 ) ( X B - I - X U ) 

'PIS = i (A-O+AC,) ( x ^ X g ) ( x 2 | - x a ) H- /t ( x „ + : t i + x 2 + x s ) ( x 2 + x 4 1 ( x . t + x , ) 

041 = ^ ( ^ I + A - 2 + X 3 + X J ( x + + x u ) ( x 0 + x t ) — ( x 2 + x 4 ) C x . L + x t ) ( x , + x 3 ) 

0 0 ! = A Cï-j + ^ a + A ' l ( X t + X ^ — f l ( x a - i - X „ ) (XQ+XJ) ( X 2 + X 4 ) 

#10 = A ( * u + * 4 + *0 + * l ) ( X , + X , , ) ( X 2 + X 3 ) — fi ( X 4 + X , ) U V l - * i ) ( * s + *o) 

0 2 4 A ( X i + X o + X ^ X , ) ( * 2 - f - x 3 ) ( x a + x 4 ) — fi ( x 0 + x a ) ( X 2 + X j ) ( x . r t - X i ) 

030 = 1' (x„ + xl+x2+xa) ( x a + x 4 ) ( x 4 + x 0 ) — fl (xL + X3) ( x 3 + x 0 ) ( x 0 + x 2 ) 

Proof. -Pii = 0 contains the planes j r ; y , , "t, x m for aîl X, fi ; for instance <p2iS is a 
linear combinat ion (wi th quadratic coefficients) o f xL -{- x a , x 3 + x 4 which vanish on «,„ ; o f 
x , + x 4 , x 2 + xA which vanish on .T u ; o f x„ -|- x 2 , x a + xt which vanish on J I ( ; and o f 
x0 + x a , xL + x.j which vanish on " 4 ; the proofs for the other cubics 0 f J - are exactly the 
same, and obtained by applying the usual permutations to the coordinates. 

Further, i n 0 O i > 0 o s , 0 3 o i » the o n r y f ° u r ° f the * e n cubics which do not vanish 
identically on nQ , i f we substitute — x 2 , — x , for xa , x 4 respectively, we obtain in each case 
either plus or minus the left hand member of ( 3 5 ) . Thus each of the primais — 0 either 
contains the plane « u , or cuts it i n the curve C ( 0 ) ; similarly each of these ten primais either 
contains the plane nk or cuts i t i n the curve C(ko), by the usual cyclic permutation. Thus each 
o f these primais contains at least five points on every generator o f R5, one in each of the planes 
nn JT4 and hence (being a cubic) contains Rs. Theorem 1 0 is thus proved. 

I t is wor th remarking that whereas both terms in 0 ; j vanish on the four planes , 
"ft > x-i , , the term in each of these cubics which has the coefficient X vanishes also on the 
five planes JT2U , -T U 4 , i t i 0 , « , M , J t , a , and that which has the coefficient ft vanishes also on 

> n n 2 > " i 3 > a24 > ^\i'>- Thus al lowing X, ft to vary, <P;> = 0 represents a pencil o f cubic 
primais, tracing on 0 * = 0 , residually to the fixed degenerate VERONESE surface, the pencil 
[R5 (X ; /i) } o f surfaces in | R° |, w i t h the base lines / „ , . - . , / . ! , including the Rs we are studying, 
and the two degenerate surfaces consisting o f these pentads o f planes. Each o f the twenty 
terms, cofficients o f X, ft i n <f>,j , represents three o f the fifteen primes 2n , 2{j , of Section 
2, each cut t ing 0 * = 0 i n three planes ; and these nine planes are i n each case just the four 
composing the degenerate and the five composing the degenerate R" . 

W e confi rm also the uniqueness anticipated at the end o f section 2 i n the fol lowing 
Corrollnry. Given the configuration o f Section 2, the period lattice 2Q, and chosen f i f th 

part 0 o f an element o f 2Q, the surface R5 such that the planes JI 0 , ni shall be those o f the 
curves C ( 0 ) C ( 4 a ) respectively, is uniquely determined ; for the configuration determines 
the coordinate system, and relative to this coordinate system the equations o f R5 depend only 
on the constants X = p ' ( s [ 2Q), ft = p '(2« 12Q). 

W e have now to consider two five dimensional vector spaces over the complex numbers : 
( 0 8 } , consisting o f a l l cubic forms 0 i n the coordinates that vanish on ; and {/>(«)}, consis­
t ing o f a l l elliptic functions 

8. Cubics through R" in relation to Wa*. 

4 4 
( 3 7 ) 
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w i t h at most simple poles at it = is (i = 0 , . . . , 4 ) ; the condition in parentheses in (37) being clas­
sically necessary and sufficient for p(u) there defined to be an elliptic function. Our objective o f 
course is to obtain a linear mapping o f these two vector spaces on each other, which shall express 
the fact that the projective model o f the linear system traced on Wa" , residually to R5 counted 
twice, by thecub ics 2> = 0, for all i> in , is the Grassmannian curve o f {;t|, parametrised 
in Theorem 4 i n terms o f [p(u)}. 

I n dealing w i t h {/>(«)}> ° r any similar vector space of elliptic functions wi th assigned poles, 
it is convenient to speak of any individual element o f the vector space as having au s - pie root at 
a point which is an /• - pie pole o f the vector space ( i . e.of its general element), i f in fact i t has an 
(*• •— s) - pie pole there, or an (s —- r) - pie zero, or a non zero finite value for 5 = r ; at a point 
that is not a pole o f the vector space, an s-ple root w i l l mean the same thing as an s-ple zero. 
(This is analogous to the way in which, i n dealing wi th the vector space of polynomials/(A-) o f 
degree n, we regard one which is actually o f degree n — s as having an s —• pie root at inf ini ty , 
as wel l as its ordinary roots or zeros elsewhere). W i t h this convention, every element o f (p(ii) } 
has five roots, w i t h due allowance for coincidence in multiple roots ; and the points o f 

intersection o f the Grassmannian curve of { n ) w i th the prime qtj p{j = 0, or the pla­

nes common to [n] and the linear complex w i t h this equation, arc given by the roots o f 

^P<?iy Pij (")• 1 ° particular, i f ijklm is any cyclic permutation either of 017.34 or o f 

02413 , aspki (it) has simple poles only at it = ja, ma, simple zeros at u = ka, la, and a non 
zero finite value at it = ia, its roots arc simple at it = ia and double at u = ka, la ; and i t 
represents a set o f five associated planes consisting o f counted once and nk , n / , each twice. 
I n the same wav, a constant element o f { p(ii)}, having simple roots at the five poles o f the 
vector space, corresponds to the set o f planes « 0 > . . . t j t 4 . 

The planes {--i} being common to five linearly independent linear complexes, there are o f 
course five linearly independent linear identities between the ten functions Pij(tt). These are first 
o f all those expressing that « («) meets /„ , . . . , / 4 , o f which only four are linearly independent 
(the five lines being associated), namely q{ . p(it) = 0, where q 0 , . . . , < i 4 are defined in (33), i . e. 

P-loill) ~Po,(") + Poi(n) ~ PaaOO 0 
POL(«) — Pis(u) + P i a ( « ) — P 4 i ( " ) = 0 

PiaOO —-P a B C«) + P2i(u) — Poa(«) = 0 ) ( 3 8 ) 
Piu(n) — Pa-ti1') + P»»(")~ Pis(w) = 0 

P»Ju) — i>4»(«) + Pu(u) — P21OO = 0 
and since further, f rom the second form of (10), and f rom (7), 

Piate) + P B * 0 0 H-PioOO - I - J V ( M ) + P I , ( » ) = 5 ( 5 — « ) ( 6 + = 2 I — ft \ 
Pui'O + P«>(«) + P i « 0 0 + P M ( U ) +P>,O («) = 5 ( # — «) (6 — <p) = I + 2 ft f 

we can take the equation o f the remaining linear complex, which defines {n\ among the co 2 pla­
nes meeting / 0 , . . . , / 4 , i n the f o r m 

(X+2p)(pr6 +p3i +pw +pol +p i a ) = (2X — ft)(Pil +pa9 +pl3 +p.li+peQ). (40) 
We remark also that f rom these relations, either o f the pentads p i a ( H ) > P 3 i ( " ) > Pio (»). 

PoiO'X Pis («) and Pii(n)>Po2(u)P\B(")>P2i(M),Puo(11) * s linearly independent, and can be used 
as a base for {p(u)}; we have i n fact 

(2X — fi) / />4 i0<) 

[ p " ( « ) I ( f t - x x x ;. p - 1 If p_i0(u) I ( 4 i ) 

\ P2i0') I \ P — ^ — * * A i / \ PoA") i 
V PBOCO/ \ A ft — X p~X l I I \ / ) I 2 ( H ) / 

and inversely 
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- I —ft —X~ft ft \ / p j , («) \ 

H Â — ft —X — f i \ P o t ( u ) \ 

p p —X — fi P i a (u) (42) 

P i ( P / \ P u («) / 

- ; - — P P P / \ P 3 0 (") / 

Turn ing now to {'[>*}, we have of course five linearly independent linear identities between 
the ten elements 0,-y, six between these and tfi*, since { i > 3 } , l ike [/7(H)}, is five dimensional. I t is 
easily seen from (36) that 

0 , 3 — 3>ai = ;- C*« + * « ) ((*o + •*.) ( x , + A-.,) — (A-8 H- x 4 ) (A-, + A' 0 ) ) 

+ P (A', + A',) + A 2 ) + JCj) — (x, + A-A) (A', + A",,)) 

034 — <i»n = ^ ( * i + ATj|) ((jT a + #4) ( r 4 H- A' 0) — (A-0 + A' T ) (A-, - I - X.,)) 

-\- ft ( x 4 ! A'i) ( (A 1 + A' S ) ( x a -1- jr„) — ( .r u + xt) (x., + x,)), 

and 

so that applying the cyclic permutation 

- ~ 0 Ï ( + i ' n - 0 i , = 0 

0 a 4 — 0 a o + 0-iO — 0 3 » - 0 

030 — 0 4 1 H- 0 m — 034 = 0 

0 4 , 012 ~ 04U = 0 

0o I - 0 , „ + — 0,11 = 0 

of which only four are linearly independent; and also from (36), (34), 

041 + 002 + 0 i 3 + 024 + 0ao = ( 2 X — P ) 0 * / 

028 + 084 + 0.10 H- 0 o i + 0 u = & + 2 ft) 0 * . \ 

(43) 

(44) 

Comparison o f (43), (44) w i t h (38), (39) suggests, for any constant Q, an obvious 

I ( 0 * ) = e } ( 4 5 ) 

{ 0 " i -v- {p ( i i )} , i n which 

X (041) = e p M (") = e p j i 00 

1 ( 0 0 2 ) = i i P a i 00 ? (034) = epo2 00 

? ( 0 1 : 1 ) = S P l O ( « ) 5 < * « ) = QPm 00 

= fiPoi 00 M<A„) = Q Pi 1 00 

1 (*uu) = QPiZ 00 I (012) = e p I D O ) 

We now prove 

Theorem 1J. The mapping \ : {0 ; I J -1- {p(ii}} defined in (45) has the properly that if 
<p is any element of {'i>M), the cubic primal 0 = 0 cuts W%, residuaily to P 6 counted twice, in 
the planes n (u) corresponding to the five roots u of the element % (<l>) of{p(it)\. 
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Proof. That there is some non singular linear mapping y' : \P'S} {/?(«)! Slaving this 
property is obvious, since, as was remarked above, the projective model o f the linear system 
traced by the p r imá i s <P = 0, for all # in {0s}, on Wa

z, is the Grassmannian curve o f {«}. 
Clearly also, y> is determined to wi th in a coefficient o f homogeneity, i.e. the mappings y> having 
this property are a l l the scalar multiples o f any one o f them. 

We begin by showing that the planes o f {JI} that lie on the primal <p,ja •= 0 corrsepoud 
to the roots o f pn(ii), i.e. are J I u counted once and JÍ 4, >tL each counted twice, so that ip (<P-!S) is 
a constant multiple o f />,,(' ')• N o w i f / is any line ly ing on <pia = 0, not a generator of Jib, but 
of the system containing the generators o f j R 5 , the five planes o f {•<) that meet / are those that 
lie on 0 s i = 0. We f i n d the coordinates q¡j o f a suitable line / as follows : 

Putting x1 + x.L = 0 in <P.,a = 0, i t becomes 

(x2 + xa) (X (xv + xt) (xa + x j + ft (xa + xü) (xtí + x 2 ) ) = 0, 

indicating that this prime cuts <?>28 = 0 in « 0 together wi th a quadric surface ; i t cuts P" i n the 

curve C(0) together w i t h the generators ! 2 , la . One system of generators o f the quadric is 

xl + x.t = ( x 0 4- x , ) — k(x8 + x.L) = X(xt + x 2 ) + kft(xa 4- x0) = 0 (46) 

w i t h variable parameter k ; and o f these, the lines k = <x>, k = 0 are / 2 , / 3 by (5). Thus for any 
other value o f k, the line (46) is on <pM == 0, and belongs to the system containing the generators 
of R_", but is not itself a generator. Putting k = 1 for smplicity, we obtain the l ine / ; 

* i + X-i = x0 - f x.¡ — xa — x A = fix0 ~|- XXÍ + Xxt + fixa = 0, 

whose Grassmann coordinates are the cubic minors i n the coefficient mat r ix 

0 1 0 0 1 \ 

1 0 1 — 1 — 1 

H X X fi 0 I 

of its three equations. These minors are 

(</?«' asf <ha> </oi) tfi2 j Q±\> 9u2) Í i 8 ' Q24,* tfao) 

= (X — p , p — X , X + n , X + p, 2ft; 0, — {X + ft), p — X, 2ft, 0) ; 

I 

and substituting these values in the condit ion ^j<JijPij («) — 0 f ° r / to meet ;t(«), i t is at 

once verified that the terms containing £{ u (i = 0,...,4) reduce to 2X (a — 8) ( £ 3 u — £,.«) ; 
the constant term is i n the first instance found as 2 (¡x—8) ((X •— p) (0 — <p) — (X + 2p) (0 + qt)) ; 
but since, f rom (7), (X + 2p) (0 + = (21 — p)(v — y ) , i t reduces to — 21 (a — 8) (8 — v ) , 

so that ^q(jptj(u) = ttpu(u). 

Thus y> (<P2a) is a constant multiple o f p±L (u) ; and i n exactly the same way y> (<PSi), 
V> (0. io). V ((Pot), V (^12) are some constant multiples o f p03 (u), P i a (u), p2i («), p B 0 (ti) respec­
tively. Bu t also, y ; ( # * ) is a constant element of {p (u) }, since its roots are ia (i ~ 0,...,4) ; thus 
the constant multipliers are a l l equal, i . e . y> = \, for some value o f the constant Q i n (45). This 
completes the proof o f Theorem 11. 

Corrollary. The values, on substituting the coordinates o f any poin t i n the plane ;i(w), 
o f all elements o f { 0 s } , are propor t ional to the values at the point u o f the corresponding ele­
ments o f {/; («)}, under the mapping %. 
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9. Equation of W%. 

Wt, generated by the planes is a quintic pr imal , and its generators are the system of 
planes dual to those o f R" as system of lines. Before actually f inding the equation o f this pr imal , 
i t is convenient to take a look, i n general terms, at the k i n d o f equation we may expect. 

Each R" o f the pencil {R5 (X ; p)} on V*a

a, obtained by varying the ratio I : p, i n the cubic 
equations <p~jj = 0 , determines o f course a W\, which we denote by W%(X : ft), and which varies 
w i t h the parameter X : ft i n a system {rVg(X : p)}. A n y plane -T meeting /„,. . . , / .! (other than 
xu,....fij) is a generator of one member o f the system {W§(X : ft)} ; for the lines meeting JE,,,...,,-^, 
it are the generators o f a unique P 3 , which is one o f the pencil {R5(X : ft)}, since this pencil 
consists o f all R"'s on F ' V that have / „ , . . . , / 4 as generators ; and ; i is a generator o f the 
corresponding W%(X : ft). Since through a general poin t P o f space there pass two planes it, it' 
meeting / „ , . . . , / 4 , two members o f \W%(X : ft)} also pass through P, one w i t h it and one w i t h 
n' as generators. Thus the equation o f W\(X : ft) must be homogeneously quadratic in (X , ft), 
as well as quintic in the coordinates. Only i f P is on V*/, n and it' arc two planes n(u), n(u') of 
one WHiX-.ft), and P i s the point ( H , H ' ) O I I R" (X : ft) ; i n this case the two members o f 
{fy$(X : ft)} through P coincide. 

T o the degenerate members o f the pencil {Ri(X : ft)}, which occur for X = 0 , ft = 0 , and 
consist o f the pentads o f planes :i%a , xa_,, =T40 , it0l , n l 2 and , ir.02, itia , it.2i, i t a o , coor-
respond degenerate members o f {Wl{X:p)\, consisting o f the pentads o f primes i \ n , 2'o» > 
¿ -13 , 2 « , i'uo a n d i ' « » i ' B i » 2 A 0 , i ' o i > 2 „ respectively. Fo r by (4), (4'), (5), i ' . , , : 
x a + x a = 0 contains n l s , na_l, meets n2a i n the line l i L = P 4 ( ] Ptn , and meets sti0 , x o l i n 
lines throngh P 4 0 , P 0 1 respectively ; thus any plane through / 4 , i n 2 ; 4 1 , l ike (which is in 
fact one o f this pencil) meets n l 2 , n23 , r r 3 4 i n lines and ; t U i , J I 4 U i n the points P 0 l , PiQ , and 
hence meets every generator o f the degenerate R5 nsa n a i itxo iet(l n l 2 , as these generators are 
a pencil i n each of the five planes, those i n J*ui , Jt 4 l ) having their vertices at P u l , P 4 U . The 
planes meeting a l l the generators o f the degenerate R", and cutt ing the degenerate Rd i n degen­
erate plane cubic curves, are thus a pencil i n each of the five primes 2!Xi 2'„2 2 ' i a S-21 2!aii , which 
accordingly constitute the coorrespnding Wv

b . 

Bearing in mind that the equation o f must be invariant, not only under the cyclic per­
muta t ion o f x u , X ! , x 2 , x a , x 4 , but also under that o f x t , x 2 , x 4 , x 3 accompanied by the 
substitution o f (ft,—X) for (X , ft) , we see that there are two a p r io r i possbilitics for the fo rm of 
the equation : 

(a) X2 F + X ftG + ft*H = 0 , (b) X2F + X ftG — ft'H = 0 , 

where 
F = ( x 2 + x 8 ) ( x 3 H- x 4 ) ( x 4 + x 0 ) (x„ + x , ) ( x , + x j ) = 0 

H=(X4L + X X ) ( X 0 + x2) (xL + x 3 ) ( x 2 + x 4 ) (xa + x 0 ) = 0 

are the equations o f the two singular Wa % and G is invariant under the cyclic permutation o f 
*o ^ l , ^ , x3 , x±, and i n case (a) is changed in sign, but in case (b) is left unchanged, by 
that o f X [ , x 2 , x 4 , x a . We shall f ind that the actual case is (b). We prove i n fact 

Theorem 12. The equation of Wa, generated by the planes {«} of the curves {C3} on P 5 , is 

X2F—X pG — p*H = 0 , (48) 

where, F, H are as defined in (47), and G is the symmetric quintic form in the coordinates 

G =
X x t * x j + 2 E X * ' X J X K + 4 Z xi'xj*xk +

7
 Z x ? x i X k x % + 1 2 x ° X i X z x » % i ' i 4 9 i 

2 0 3 0 3 0 2 0 
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the summation being over all distinct monomials obtained by permuting the coordinates, and the 
number under each summation sign indicating the number of terms in the symmetric sum. 

Proof. is the locus o f double points o f W./', each point o f Rr' being on two generators 
o f W/'; and W/' is the only quintic pr imal Slaving R:' as locus o f double points, since any such 
primal must meet each plane (u) at least in the curve C(u) counted twice, i.e. at ieast in a sextic 
curve, and hence must contain the whole of u (u). We therefore show that the quintic pr imal 
(48) has R:' as locus o f double points, by verifying the identities 

or indeed any one o f them ; since the left hand member, equated to zero, is the equation o f a sextic 
pr imal wi th Rr' as locus o f double points, and the identity shows that this pr imal breaks up into a 
pr ime and the quintic (48), which can thus only be Wa

B. i n the product 0 i 3 0 4 1 the coefficients 
o f X'1, ft" arc immediately seen to be ( X [ - H Y . , - K Y U + x±) F, —• (.Y, + x 2 -f- xg + xt) R; the coef­
ficient of Xft is symmetrical i n .Y, , x2 , xs , X+ ; and the verification that i t is in fact equal to 
f / j * s — (,v1 + x.-, -f- x 3 + x + ) G is tedious but perfectly straightforward. Theorem 12 is thus 
proved. 

I t w i l l be seen that the identities (50) and the mapping defined i n (45) provide an explicit 
expression for the k n o w n quadrocubic Cremona transformation in four dimensions [ 4 ] , i n which 
the homaloids are on the one hand quadrics through an elliptic quintic curve ' C 3 , and on the ot­
her hand cubics through an Rs. W e can take (p.2B , pSi ,p.Ui,pUi ,p,., ;px„p02 >Pm >P-u , Pao) as 
linear forms i n the coordinates in the ambient four dimensional space of the Grassmannian 
' C a of {T} , satisfying the linear identities (38) w i t h the argument u omit ted, and (40) ; for 

instance we can take either o f the two pentads (p.20 t p a i ,p.i0 , pin ,p,2) or (p . l t >pa.4 , p i n , p.M, 
p 3 0 ) as the coordinates, the relation between the two coordinate systems being given by (41), 
(42), again o f course w i t h the argument u omit ted ; and we define the further linear form 

P * - 1 (Pu + Pa-i + Pu> + Pol + Piz)!(2X — p) 

O-n H' + Pit -\-P-ii. + P»o)/(* + 2t1)-

Then from (45) we have 

02*0.! , 

# 4 0 * 1 » 

0,110 54 

0120,10 

Xp<l>*a-
Xp 
Xp 
X/i «p*a 

Xpqy* -

(.Y, + x.2 + x3 + x 4 ) (pF-
(x ( > -|- x, -!- xa + xj&'F-
(x„ -!- x , f- x a -I- x.,) ( P F 
( x 0 + x , + x*+xJ(X*F 
(x„ + X l + x 2 + x,}) (VF 

XpG — p"-H) \ 
IttG — pSH) j 
XpG — p-H) \ 
XpG — fStf) I 
XpG — p2H) ) 

(50) 

(P s » \ / 0 4 i \ / A n \ / 0 a B 

P H 4 \ / 0oa \ Poz \ / * 0 i 

Pi0 = I 0 i a . e Pm = * 4 o 

P o l / \ 024 / \ Pi* j \ f / 'ol 
P l 2 / \ *au / \ PBO / \ * i a 

, e/>!!l = 0 * (51) 

as the equations o f the mapping one way ; and since from (50) 

4(2* F— XpG — /*' 

-3 1 
1 —3 
i 1 
1 1 
1 1 

1 
3 

1 

1 
1 
I 
-3 
1 

1 
1 
1 
3 

1 

•1 

1 

-1 ) ) 
the equations of the inverse mapping are 

file://-/-P-ii
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(52) 

Xpp*'* 

where e', l ike Q, is an arbitrary coefficient o f homogeneity. The identities 

Pasi") Aii(») = P 8 i ( « ) Pos(«) = P 4 o ( « ) P i a ( » ) = Poiif*) Pui") = P 1 2 ( « ) P a o ( w ) = P'1 

which are obvious f o r m the first f o r m o f (10), mean that the five quadrics on the r igh t o f 
(52) a l l contain the Grassmannian curve, o f which (10) is the parametrise t ion. 

The envelope G2 + 4FH = 0 of {WaHX : ft)}, of total order 10, consists o f two parts. The 
locus o f double points o f Wa

s being R6, that o f the whole system {W^iX : p)} is V*a

a, {R»(l : p)} 
being a pencil on K * a

s ; this counts twice i n the envelope. The residual part is the quartic p r imal 
M.^, locus of a point P such that the two planes -T, J I ' through P that meet / 0 , . . . , / 4 coincide ; 
since for any point P no t on V*s

a, i f and only i f n, n' coincide, the two members o f { W a ( X : p)} 
through P, one containing each o f these planes, w i l l likewise coincide. 

The quartic p r ima l M.^ is well known [ 1 ] , I t has the fifteen lines /,-, l;j i n (5) as double lines, 
and touches each o f the ten primes 2{j along a quadric surface Qf., o f which the six that arc in 
that pr ime o f the fifteen lines (5) are generators (three o f each system). Ma* is i n fact the only 
quartic pr imal touching these ten primes, or indeed any five o f them that are linearly indepen­
dent, along the respective quadric surfaces Q{j ; for taking five such primes as the faces o f a 
simplex o f reference, the section o f the quartic by each o f these (the corresponding quadric Q{j 
counted twice) determines a l l the terms i n its equation that do not contain a particular coordinate; 
and as the equation is quartic, no term can contain all five coordinates. 

This last remark enables us to verify that the equation o f Ma'1 (in the coordinate system used 
throughout) is 

& - Z *** * / + 2 Z xf x J X K + 2 ZXI X J XK XI = °- ( 5 3 ) 

1 0 3 0 5 

For on s u b s t i t u t i n g — x 0 for x 4 i n & ( i . e . taking ( x 0 , . . . , x u ) as coordinates i n the prime 
2 ia '• A - 4 + X 0 = 0) many terras cancel, and the expression reduces to (x^- f - xa xs-\-xa xt+x± x2)*. 
Moreover, the six o f the lines (5) that lie i n this prime are 

¡1 , XQ — X 2 — X 3 /jg . X 0 — X s — - Xi la '. X0 — X i — — x2 

/ 0 2 . X 0 = X 0 = • X 2 l x o '. X u = Xx ~- X B /j_(t X 0 = Xs ~ X j , 

all o f which clearly l ie on the quadric x ( 1

a + x a x 8 + x 3 X i + xx x.2 = 0, so that this quadric is 
the quadric Qla . Thus 9 = 0 touches 2 l a along the quadric Qia, and similarly i t touches each 
prime along the quadric Q{j ; i . e. 6 = 0 is the equation o f M a \ 

There is thus clearly the identity 

G 2 + 4FH = &*'e, (54) 
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except that, a p r i o r i , there might be a numerical coefficient on one side or the other ; but that 

this coefficient is unity can be seen by giving the value 1 to a l l the coordinates at once, when, by 

merely counting the terms in the symmetric forms, we see that 

F = H - 32 , G = 352, G e + AFH = 128,000 ; <P * = 40. 9 =• 80, </>** (-) = 128,000. 

The quintic pr imal G = 0 cuts each of the ten primes 2{j i n the quadric surface Q;j , to­

gether wi th the three of the fifteen planes JI,- , n;j that are i n 2ij (incidentally, these three 

planes cut Q;j in the six out o f the fifteen lines that are in 2 ; j). G = 0 cuts V*a

a i n the fifteen 

planes J t f ; and i t cuts M 8

4 i n the ten quadrics Q t j . The intersection of F * 3

3 w i t h Mt* 

is a surface o f order 12, having the fifteen lines / f , as double lines, and on which the focal 

curves of the surfaces { ( R 5 (X : p)} form a pencil, w i t h base points at P0„ P ± 1 . The focal 

curve on RL is i n fact clearly its section by Ma'i, residual to the five lines /„ counted 

twice. 
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Ö Z E T 

D ö r t boyutlu uzaydaki beşinci dereceden normal etipeik regle yüzeyleri için öze) 
bir koordinat sistemi o tarzda t an ımlanmak tad ı r k i , yüzey bu koordinat sisteminin koor­
d ina t la r ıma 2 0 perm istasyonun dan o luşan bir grubun dönüşümler i al t ında invaryam kal ­
m a k t a d ı r . Bu koordinat sistemi sayesinde, Rr> yüzeyini kübik bir eğri boyunca kesen genel 
düzlemin ve yüzeyin genel doğuranının GHASSMANN koordina t la r ın ın beşinci dereceden 
eliptik fonks iyonlar ı cinsinden ifadeleri elde edilmekte ve yüzeyin i k i değişkenin eliptik 
fonksiyonlar ı cinsinden i k i farkh parameirelenmesi bu lunmak lad ı r . Böylece, yüzey için bir 
küb ik denklem takımı ve yüzey üzerindeki küb ik eğrilerin düzlemleri tarafından doğuru lan 
hiperyüzey için beşinci dereceden bir denklem elde edilmektedir : bu denklemler, a, eliptik 
fonksiyonların peryodunun ilkel parçasının beş te b i r i olmak üzere , 

X = p ' (o) ve fi = n ' (2a) 

parametrelerine homogen bir tarzda bağl ıdı r lar . Üstelik, R° yüzeyinden geçen kübikler 
iie elde edilen CREMONA dönüşümü ve normal eliptik beşinci dereceden bir eğriden 
geçen kuadriklerte elde edilen ve yukardaki dönüşümün tersi olan dönüşümler in açık 

ifadeleri bu lunmaktad ı r . 


