ON THE NORMAL ELLIPTIC RULED QUINTIC SURFACE IN
FOUR DIMENSIONAL SPACE

PaTrick Du VAr

For the normal elliptic ruled quintic surface RE in four dimensions, we construct
first a coordinate system such that the surface is invariant under a group of 20
permutations of the coordinates. In terms ol this we obtain the GRASSMANN coordina-
tes of the general plane cutting RS in a cubic curve, and of the general generator,
as elliptic fuoctions of order five, and two parametrisations of the surface itself in
elliptic functions of two variables, This leads to a set of cubic equations for the
surface, and the guintic eguation of the primal generaled by the planes of the cubic
curves on it, depending homogenecusly on the two . paramers A:—;p’ (o), u=p’ (20},

where o is a primitive fifth part of a peried of the elliptic functions; and also to
explicit equations for the Cmemona teansformation - by cubies through R3, and its
inverse by guadrics through a normal elliptic guintic curve.

1. Some preliminary properties of 'R,°.

It is familiar [?] that the general normal elliptic ruled guintic surface 'R,® in four dimensi-
ons (which we denote for brevity by R®) hason it an elliptic co! family of elliptic plane cubics
[C®}, each of which is the residual section of R® by the prime joining any pair of an involution
among the generators ; the planes of the curves [C¥} generate a quintic primal R,®, and are
a system dual to that of the generators of R®, each consisting of all lines {planes) that meet
five general planes (lines) of the other. It is also known [?] that if 20} is the lattice of periods of
the appropriate elliptic functions, we can assign to each generator a parameter w {mod 202),
and to each C? (and its plane) a parameter #(mod 20Q), in such a way that writing = for cong-
ruence (mod 2£J)

() TFive generators [(wp ({ =10,1,2,3,4) belong to a linear complex not containing
all the generators, i.e. meet a plane which is not that of one of the cubics {C?}, if and only if

4

Z w; =0

i=0

(ii) The cubic C () and two generators / (w,), /(w,) are a prime section of R® if and only
ifw, + w, +u=0,

(iii) The unique intersection of the cubics C(x), C(u,) is on the generator [ (w), where
w=u, + U, .

(iv) Parametrising each curve C(x) by assigning to each point of it the parameter w of the
generator /(w) through that point, the points w,, w,, w, of the curve C (#) are collingar if

and only if w, + w, 4w, =u.
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As every point of R® lies on two of the curves {C?}, and every two of these curves meet in
‘one point, we can assign to each point, of the surface the unordered pair (s, «’) of parameters
of the two curves C (i), C (&) through it, so that the equation, in terms of this parametrisa-
tion, of the generator / (w) is & + #* == w. There is also on R® what is called the focal curve, the
envelope of {C?)}, with equation u —u", of order ten, quadrisecant to the generators, and
touching each curve C (&) in the point (1, &#). We now prove : ) '

Theorem 1. The plane = joining the intersections by pairs of three cubics C(u:) (= 1,2,3)
contains the generator 1), where w + u, + wy + ty = 0; and conversely, every plane through
a generator meels the surface residually in three points, the intersections by pairs of three curves of
(). ' |

Proof. Let w; == uj + iy, where, 1, j, k is any permutation of 1, 2, 3 ; the plane = con-
tains the points w;, wg of the curve C (4, and hence aiso the third point w collinear with
these, where by (iv) w; + owg +w=u;, Le. wt oy i + up == 0, Thus = contains at
least three points of the generator /(w), its intersections with the three curves, Conversely, the
primes through a generator trace residually on R? a net of elliptic quartics, algebraically equi-
valent to {C"} + {/}, and hence of grade 3, since {C?}, {/} form a base for algebraic equival-

: . ey . . 1 % .
ence of curves on R® , with intersection matrix ( X 0) ;ie, any plane :x through 7(w)-

meets R* residually in three points; if one of these is (u,,u,), since = contains the points
w,w, = u, + i, of C(u,), it contains also by (iv) the pointw,=uw —w— 1wy =t + 1y,
where u, + #, + 1, + w==0; i.e =contains the point (4,,#,), and similarly it contains the
point {u, , #g). This completes the proof.

We now recall the familiar figure of fifteen planes and ten nodes of the SEGre cubic pri-
mat ['] ; the planes =z (where jj is any of the fifteen unordered pairs of six symbols 0, 1, 2, 3,4,5) -
meet by sixes in ten points, associated with the ten bisections (jjk, Im#) of the six symbols (i, e
partitions of them into an unordered pair of unordered triads), 5 containing each of the four
points (jfk , Imm) for which £, j are in the same (riad ; the five planes m;;, T3, 250, Ty, 7y
are associated, which means that every line meeting four of them meets all five, and they are the
common members of six linearly independent linear complexes of planes ; the lines meeting these
five planes are an o system {/} , and include a pencil in each of the other ten planes; that in
m ik having its vertex at (ifk , Imn). Each of the six systems {7} generates the same cqbic primal ;
and the lines common to the system {/} and any linear complex not containing all of them
generate an R*, five of whose cubic curves C* are in the five associated planes i g ey Tiny and
which has one generator in each of the other ten planes, Any set of fivé (distinct) associated
planes determines the whole figure uniguely and any two such figures are projectively equiva-
lent; the ten points are the intersections of the five planes by pairs, and the other ten planes
join sets of four of the ten points. We now prove : ‘

Theorem 2.. On-R’ five cubies C(up) (i =0,...,4) lie in five associated planes if and only

4 .

if 2 u; =0 and in this case the other ten planes of the SEGRE configuration are those joining

=0
the intersections by pairs of sets of three of the five cubics,
. 4 o
Proof. Let 2 u; = 0. Denote by =;; the plane of the cubic C (i), by #;; the point

(o , “j) w}'lich i.s the intersection m;;, m,;, and by =, the plane Py, Pmi Py by Theorem I,
m;; contains the generator _!(wf_,), where wij =— g + g+ ) = 0; + 4p; and this gene-
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rator also contains P; ;. Associating P;; with the bisection ({5, kim), we see that all the point
- plane incidences of the SEGRE configuration are verified, and the direct theorem is proved.
The converse is trivial, since the fifth associated plane of four given planes is unigue.

We note also that R® has a curve C° in each of the planes 7, ,..., 5, , aid a generator
I(w;) in each of the other ten planes ; and that all its generators meet =,; ,..., 7,,, and are thus
in the system {5} associated with the SEGRE figure. The generators are thus the intersection of
five linearly independent lincar complexes, four of which intersect in the line system {5}, and
they are those lines of {5} that meet the plane of any of the curves {C?} other than C (i) ,..., C(u,).

2. A self » d&ual configuration associated with R” .

Now let o be a primitive fifth of a period in the period lattice 212, i, e, let 56 (but not )
be an element of 202 ; then 0, ¢, 20, 30, 4¢ form a subgroup of order 5 in the additive group of
residue classes {mod 2(2). There are six such subgroups, the 24 mutually incongruent primi-
tive {ifths of periods being the four non zero elements in each of these. in Theorem 2, let H; =io

4 o :
(i =0,...,4), satisfying E w; =0 ; then treating 7 as a residue class (mod 5),
fe=)

Hp oy g, =ty 4 Uy =201,

Wiy == Wyy =20y, Wep Z5 Wy =20, , Wiy 7= Wy =21, ,

Woy == Woy == 2ity , Wyo = W, == 20,

and the ten lines in which R® meets the ten planes 2y (i, =0,...,4) coincide by pairs in

o = 120 = P, Pyy = m,) . sy
fo=1Qu) = Py Py — mgy . 7y,
Vs =1Qu) = Py Py =y oy
| 1 = 1) = Py Py = a5, .,
l Ly =1{(2u) = Py Py = 7190« e

M

Theorem 3. The five lines (1) arve five associated lines ; the ten further lines which with these
make up the fifteen line figure, consisting of six associated sets of five, dual to the SEGRE figure of,
fifteen planes considered above, are the lines e = Pyj Pigs wheref + &k = 2i (mod 5) ; and the fifteen
points in which these lines are concurrent by threes 1] ave the fen points Py., and five points Py,
(i = 0,...,8), where P;; = (u; , u;), the point of contact of C (u;) with the focal curve w=u" enve
lope of the family {C?} on R,

Proof. Two of the planes a3 (hjf=0,..,5) meet in a line if and only if they have no
common suffix ; three planes. Tip Thels Fann lie in a prime, and meet by. pairs in three lines and
all three in a point, if and only if (i, ki, mn) is a syntheme, i.e. a partition of all six symbols
into an unordered triad of unordered pairs. The point P, is the intersection of =,;, =, , 74,
since it is on the curve C(w ) ins,, ,and on the generator I(2ug) = a,, .y, . Moreover
ot € (i), Pyy is- coilmear with Py, Py, , and also with Py, Py, , by (iv). Sumlarly, fori=1,2,
34, Py =ny Iy, and in % it is collinear with each of the pairs Py ; P,k for Wthh Jt k=2
(mod 5); smce this congruence is unaltered by the cyclic permutat[on of 0,1, 2 3,4. Thus deno-
ting Pl} P; k by l',k, for all r,,r, k sansfymg,r + k=2 (mod 5}, we see that the follong 15 trlads
of lilied are toncurrént . in’ the points named :
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fos fiatas T Poo fog fiales 1 Poy laa fia Tay i Poy
lalales t Py Lo Loy Lo @ Poy Ity lyg o Py,
Foslai fiu 7 P los by by T Pos fas lao fy 1 Py
Aya o byt 2 Pog fs o lat Py fos T lys t Py,
Lol i Poy Tiolor foa 2 Py liolos hat Py

which is the complete system of concurrences for the fifteen line figure. This proves the theorem.

We note that the nomenclature is not symmetrical with respect to all permutations of the
symbols 0,1,2,3,4,6, We have however the following correspondences between the ten bisecti-
ons (ffk, fmn) and ten of the fifteen synthemes, the bisection representing a point in the fifteen
plane figure, and the syntheme representing the same point in the fifteen line figure :

- [ (05,12,34) : (145,023) (05,13,24) : (235,401)

[ (15,23,40) : (205,134) (15,24,30) : (345,012)

2 ] (25,34,01) : (315,240) (25,30,41} : (405,123)
| (35,40,12) : (425,301) (35,41,02) : (015,234)

[(45,01,23) £ {035,412 {45,02,13) : (125,340).

i

The remaining five synthemes
&))] (05,41,23%), (15,02,34), (25,13,40), (35,24,01), (45,30,12)

corresponding to the points Py (f = 0, 1, 2, 3, 4) form what we may call a block of syntheines,
i. €. a set of five synthemes no two of which have a common pair, so that between them they con-
tain all the fifteen pairs. There are six such blocks ; every syntheme belongs to just two blocks,
and every two blocks have just one syntheme in comunon ; the group S, of all permutations. on
0, 1,2, 3,4, 5 also permutes the six blocks in every possible way ; and the subgroup of §, that
stabilises a given block, say (3), is isomorphic with the symmetric group .5;, being the image un-
der an outer automorphism of §; of the subgroup S; that stabilises one of 0, 1,2,3,4,5 ; we
may denote this subgroup of S;, which stabilises the block (3) of synthemes, by S, . The whole
configuration constructed in Theorem 3 is invariant under S, which permutes the five synthe-
mes of the stabilised block (3) in all possible ways, and also stabilises the correspondence (2) bet-
ween the remaining ten synthemes and the ten bisections. ’

The configuration is also self dual ; for not only by (1) is each line 1;; the intersection
of two of the fifteen planes, :

I"l.l.a = Ryl =y G =y, Ly = Tyy - Ty s Iy = Tag - Ty

but also, as was seen in the proof of Theorem 3, each plane :v;; is the join of two intersecting lines :
Fog =L lan s Tas = N hoy s Fps = T T s Fag = Ly don s 35 = lop 11

The fifteen primes of the fifteen place figure (each containing three of the fifteen planes) are
the ten primes 3, dual to the points P; P and each containing six of the fifteen lines), and five
further primes ¥;; , each containing the triad of lines corresponding to one of the synthemes (3).

We shall see later that the R®, related as described to the configuration, with a given lattice
of periods 242, andthe multiples of a given fifth of a period corresponding in the specified
way to the five lines and five planes, is unique. Anticipating this result, we see that if we set up
duality in space, in which fy; corresponds to = ;;, where { = 2j (mod 5), / (w;} corresponds to the
plane of C(wp) (/ = 0,1, 2, 3, 4), and hence / () to the plane of € (w) for all w. Thus as Py is
the: limiting intersection of T 5, With an ultimately coincident plane, in the elliptic family of
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planes containing the curves {C*}, X;; is the limiting join of l;; to an ultimatcly coincident
generator, i.e. Xy; is the prime containing the pencil of tangent planes to R® at points of /;; .

We have kept in the suffix 5 to emphasise the symmetry of the configuration under ST
but as the line system (5) is singled out as containing the generators of R%, we shall from
now on write =2, , f; for ay, , I;; respectively.

3, Introduction of coordinates

The simplest representation of the fifteen plane figure in terms of coordinates is by the use
of six linear forms in the homogeneous coordinates, whose sum is identically zero, and any five
which can be taken to be the coordinates themselves ; if these are x,, x,, x,, X, , X, , x; , the.
equations of the fifteen planes are '

it xi=xptxi=xm +x,=0,

where (§j, kI, mn) runs over all the fifteen synthemes on 0, 1, 2, 3,4, 5 ; and the fifteen primes
each containing three of the planes are x; + x; = 0, where (i) runs over the fiftcen pairs, The
5
equation of the Segre cubic primal containing the fiftcen plancs is Z xi# =0, or indecd the
i=9

vanishing ‘of any symmetrical cubic form in (x, ,..., x;) since in virtue of the rclation 2 x;=0,

) i=0
these all reducc to constant mltiples of any one of them. The common point of the three planes
inx, +x,=0is(1,—1,0,0,0,0) i e. the fifteen common points of these triads of planes
are the intersections of all but two of the primes x; = 0 (1 = 0,...,5). The ten pgints of concurrence
by sixes of the fifteen planes (nodes of the SEGRE cubic primal) are (1,1,1, —1,—1, —1)
in all ten bisections, the six planes through any one of these points being given by the six synt-
fiemes in which each pair has one symbaol in common with each triad in the bisection. The six scts
of five associated planes correspond in this notation to the six blocks of synthemes on the coor-
dinates, and the coordinates accordingly to the six blocks of synthemes in the notation of the
last section. Thus as the subgroup of S, under which the configuration described is invariant,
was in the previous notation that which stabilises a particular block of synthemes, it now stabi-
lises one of the six linear forms, say x; , which we accordingly suppress, and take (%, ,..., x,) as
homogeneous coordinates. Taking the five planes of the curves C (up) (=0, 1, 2, 3, 4) to be those
rcprcéented by the synthemes in the block (3), we have for the equations of these planes, and
the coordinates of their points of intersection by pairs :

Ty iX, X =Xy +xy =0 Py, —1,1,1,—1) P:(,1,—1,—1,1)

‘ Xyt xp,=Xx3Fx, =0 Pi(—1,1,—1,1,1) Po:r(,1,1,—1,—1)
{4) Ayt xrtxg =X +x, =0  Pu,:(,—1,1,—1L1) P (—1,1,1;1,—1)
f Mylx, X =Xt x =0 Py (,1,—1,1,—1) Py (—1,—1,1,1,1)

l_ Ayl Xy X,

X+ x, =0 P,i(—1,1,1,—1,1) P,:(—1,—11,1)

The remaining ten planes are identifiable from the points in each as
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Tag i X, Fx, =x3+x, =0 Ayt X, Xy =x, +x;, =0

Ty 1 Xy B Xy :x4+x0_:0 Fgpl Xy b X=X+ xg =0

4" ]f’r-ll):xﬂ_i_x-l:xu—*_xl:o Ayt Xyt xe=2x+x=0
Ino,:x4+xo;x1+x2=0 Cwg o xx,=x+x,=0'
'lﬂm:xoﬂ—xlxx.,—i-xa:ﬂ Tyy X+ x,=x, 1+ x; =0

and the remaining points Py, ,..., P,, as the vertices of the simplex of reference. The fifteen
lines are ' '

f hixy=—x,=—x,=2x, Iy x =x,=—x;=—x; [ 1x—=—x,=2x3=—x,
I LEXy =Xy =Xy =Xy Dyl Xy =Xy =Xy =X, Dyl Xy m— oy = x, =— X,
‘(5) { Lixg =, =—x, =%, Jgixy =%, =—xy =—x, [ :x="2x =x,=2x
I Lixy=—x0=x,=x, L)1 ix,=xg=x, = x, I, x,=-—x,=2 =-~x§
lh:x0 =X =Xy =Xy Il X=X, =X, =Xyl xo =%, =x,=—1x,

The ten primes, each containing six of these lines, are Xy i, =2, =0, 3, 1x, = x, = 0,
and those obtained from these by the cyclic permutation of 0;1,2, 3,4 ; and the five primes

X4 are given by the vanishing of the sum of all the coordinates except x; (f = 0,...,4).

The whole figure of fifteen points, fifteen lines, fifteen planes, and fifteen primes, is clesrly
invariant under all permutations of 0, 1, 2,3, 4, L.e. in the notation before we suppressed x;,

under the subgroup S; that stabilises the symbol 5 in S; ; this is what we expect, as in the nota- .

tion of the last section the figure was invariant under the subgroup §°; of S; that stabilises a
particular block of synthemes ; and as the pairs in each notation correspond to the synthemes
in the other, the mdmdual symbols in each correspond to the six blocks of synthemes in the
other, S

In its relation to R® however, the figure is only invariant under the subgrou_p S8 of § ‘

that stabilises both the particular symbol 5, and the block (3) of synthemes, which we may déno-
te by 5. In both notations in fact both the symbol 5 and the block 5° of synthemes are singled
out, one by the symmetry of the 15 point, 15 line, 15 plane, and 15 prime figure, the other as de-
noting the particular sets of five associated lines and five associated planes in the figure that are
generators ‘of R?, and planés of cubic curves on R®. Bul S; (M §'; stabilises also a particular
one-one correspondence between the individual symbols and the blocks of synthemes ; each
symbol i = 0,1, 2, 3, 4 determines uniquely the pair (i5), the syntheme in the block 5 conta-
ining this pair, and the other block containing this syhtheme, which we denote by i ; conversely,
sach block i determines uniquely the syntherie commeon to this block and 5 and the symbol f
that is paired wih 5 in this syntheme. Thus ..‘s‘sﬂ..‘s"a permutes the symbols 0,1, 2, 3, 4 and the
blocks ¢, 1, 2, ¥, 4 in the same way, and from now on the two notations are equivalent,

S; M8, is of order 20, and contains the cyclic group C; generated by the cyclic permuta-
tion (01234) of the five symbols ; there are 36 such subgroups ) in S;, one for each pair i, 1
The other elements of S; (S, are

(1243) (2304) : (3410) (4021) (0132)

1342 @409 (3014) (4120) (0231)
@Ey Y ©2) “0) (13) onEy (1200

where (i/kl) denotes the cyclic pf:rmutatlon of i, ],k I, and (i) (&) the simultaneous mterchange
of the two pairs. The three rows of the table are the cosets of C; in S, S5 , and are also
conjugacy classes in S (.8";. We note that regarding the five symbols as residue clases (mod

ST T T T T
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5), these permutations are the linear transformations of 7 into @i + b, where o 5= 0,.5 are also
residue classes (mod 5} ; the subgroup C; consists of the tr'anslationé, of iinto 7 + b, and the
three coscts correspond to a = 2, 3, 4 respectively. The subgroup €, generated by (1243), the
first column of the table,,is induced on the notation by replacing o by 2o, 30, 46 respectively,
" which doubles, trebles, or quadruples each symbeol (mod 35} -

The elements of the subgroup £;, union of C; with the last coset, applied to the coordina-
tes, represent projective transformations of R* into itself, replacing #, w by 4 o + io, +w + 2io
respectively, for i=10,1,2,3,4.

4, Parametrisatlon of the planes = ()

In terms of this coordinate system, we shall now parametrise the surface R?. The first step
‘is to obtain the Grassmann coordinates of the plane = () containing the curve C (u), as elliptic
functions of «. As well as the familiar WEERSTRASS function pu, we shall make use of the quasi -
elliptic function fu, in the modified form £ = Lo — nufw, where 2w = 5o, and 27 is the period
constant of 24 associated with the period 20 ot 1w, 1. e. & (v + 2w) = Lu + 24, so that &, « is
- simply periodic, satisfying {,(u -+ 50} = £, identically in «. (Owing to unavailability
of type, we use the German {1 in’ plaze of the more usual symbol for the WersTrAss Fune-
tion). Wc shall define also ywu = plu —ie), L=, (#—io), fori=10,1,2,3,4 (writing
Pt for pu when the symmetry of the formulae demands it.) We define also the constants

w=poLf=p@0) A=1"(), p =9 (20}, 8 =1L,(e) ¢ = ¢, (20}

On account of the addition theorems there are a number of relations between these. In the First
place, from the addition theorem

1/ pu—pr\®
Plr 4 v) - pu | py = 7 ( ry—— )

for pu, on putting (4, v) = (o, 20) and (o_, 30) we obtain

L d—p , Vb4 e
a“’z.’*"j(m!ﬁ.)» 2x}f,74(0ﬁjﬂi)’

and adding and subtracting these,
©) : Ppt =60+ HE—H,  dp=(x—p.

Next, from the addition formula for {#, which is satisfied also by C,u, as the linear terms in the
latter trivially cancel, namely

Lol +vy—¢Ct,u—12L,v=

1 pu—p'y

2 T puepr
again putting (u, ¥} = (o, 26) and (s , 30} we obtain .
1 mlu, 1l it
’ 8+ 2 = 2 :ﬁt‘zi, ZBmmf?/}—_—_—a—
whence :
i ' Iz 8 A tp A—13p
7 o= - B —3p = —- 106 = ;s
R A R R L R
We have also a relation which will be useful in the sequel
P A2 ,ie'-’ B ' o ;
(8) 5(Ag 4 ub) = 2 f—a J(FE— 2%,

We note that the substitution of 26 for o interchanges (x, £) and permutes (4 , 4, — 4, — )
and (8, g, — 8, -— ¢} cyclically, and that the relations (6), (7), (8) aré invariant under this subs-
titutior. ' '
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Now the intersection of the generator /, with the curve C(u), i.e. with the plane = (u),
has coordinates ( f(#), 1, —1,—1, 1), where f(u) is an even elliptic function of order.2, since
each point of the line corresponds to two values & w (mod 282) ; f(u) is infinite at Py (i = 0),
and has the values 1 at P, (1: =140) and —1 at P,3(w = 1 20). This means that
. . _2pu—(m+ﬁ)'

Sy = Ta—f

The corresponding functions on /,,/, ./, /, are similarly infinite at 4 = ¢ , 26, 30, 40 res-
pectively ; thus the coordinates of the intersections of = (u) with the five lines 4, ,/,, /4, , f; , /,
are the rows of the matrix

C2py u—(x + ) «—g f—a f—a a—p
x—p DG+ H  ap p—a e
€] f—« e—f yu—@+fH a8 f—a
f—a f—a o —f 20, 00— (x - B) o —f

a—f fe fi—a a—B  2pu—(a+p

These five points are of course coplanar. To verify this analytically by showing that all the quar-
tic minors in the matrix vanish identically in ir would probably be excessively laborious, but is
not necessary.

We are now in a.position to prove

Theorem 4. The GRASSMANN coordinates p; i of the plane = (v} containing the cubic curve
C@)y on R® are proportional to

Doy () =— Py (&) = L (pet — ) | Pyu— 55) ={—MNEu — i — 0 — @)
p:u(”) =—pwy=12 (pr" — ) l"(pnu_ a) = (x — 5 (Cg ll*-cnu-—e—— r,f;)
Py =—pu @) =2 pu—BD|p—2) =@ —HNCu—Lu—0—g)
[’t.)l (W) =P ) =P — P (P — ) = (¢ — N, u—Lu—0—g)
Pra) =—pa () =2 W —pBy [ (pt — ) = {2 — Ny u—Lyu—0—g)
(03 py ) —— P () = Pyt ) [ Byt — B = (2 — ) (G u— Lt — 0 + )
Pog () ===poy () = ppyur — ) [ (P — ) = e — (L u—Lp— 08 -+ g
g () =— Py, () = ."»(P-.g“) «) / (pgu_‘ﬁ) =(z— ﬂ) (Cu y— C4.u — 8 4 (p)
P ) =—pp ) =Py —a) [P — =@ — N u—Lu—0+¢)
Pao () =—pos W) = ppu— 2} f(pu—F =(@—HNUC,u—Lu—0-+g)

Proof. The coordinates p; ; are proportional to the cubic minors formed from any three
rows of the matrix (9), since for general # no three of the five points are collinear ; or equally,
of course, as the matrix is symmetrical, from any three of the five columns. The ten-by-ten matrix
of cubic minors is symmetrical and of rank 1, so that the ten diagonal elements are proportional
to the squares of the ten elements in any one row or column. This means that the coordinates p; ;
that we are seeking are proportional to the square roots of the ten diagonal minors of (%), In par-
ticular, the minor

Dy () = | 200 u— (@ - f) “—p a—f
a—f Wu—@+fH  p—a
e p B—a  2pu—(@+p

is clearly an elliptic function of &, with at- most double poles at the points # = 0, &+ 7 ; it has
no pole at the origin however, since the expansion of the diagonal elements at the origin
gives
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22— + ) +... o—f
a—pf x—fF-—2ut... fl—a
w— fi f—u x-—f 4 2+

=—8i2 1+ O (.

The coefficient of p,« is not zero at # = ¢, so that there is in fact a pole of order 2 there, and

simifarfy at # =— 6. At u = 26 the corresponding cxpansion is
B—a 4 2p(n—26) +... & —f a—
x—f % -— 24 (u— 26)+... f—a
& —f A—uw B —2p(e—27) + ...
= O (g — 26)%,
so that D,, (#) has a double zero at u = 20, and similarly at # -- — 20. These doublc poles

and zeros, and the value —84% at the origin, show that

D (t) ==— 822 ( bu—f )2

bt — %

Omitting the factor — 8, which will clearly be present in the same way in all the cubic minors to
be considered, this gives the square of the first expression for p,, (#) in (10). The second ex-
pression follows from the fact that p., (i), being an elliptic function of order 2 with poles at
u == ¢, must be of the form A4 ({; (0w — 6) — & (i + a ) + C), for some constants 4, C ; since
it vanishes at w = 26, C =— (0 + @) ; and since its value at the origin is 4,

A+ = —4, A=a—f, by (D

The expressions for p, (u} arc obtained from these by the substitution of 2¢ for ¢, which
as we have seen simultancously substitutes fi, o, g, — 8, g, — A for «, #, 0, ¢, 4, g respectively,
and permutes the suffixes 1,2, 4, 3, and the corresponding rows and columns of the matrix
(9), cyclically, Finally, the remaining coordinates are found from these two by the substitution
of y-—o6, u—20, 1t— 30, u —4do in turn for u, corresponding to the cyclic permutation of
the suffixes 0, 1, 2, 3, 4, and of the corresponding rows and columns of the matrix (9). This comp-
letes the proof of Theorem 4.

The second forms of the coordinates p; ; (#) in (10} are most convenient for differentiation,
since for any constants, a, b the functions &, (st —a) — &g (et —B) and & (r—a) — & (4 — )
differ only by a constant, and £« = — pu. We thus have immediately

Poa’ ) = (2 — B (P p—pw)  puo’0y = (2 — ) (P — Py
Py = (@ — B Py — Py Py (8) = (& — ) (Pt — putd)
P = — N @Pu—pm) P = @ — ) P —Pot) | (1)
Po ') = (2 — By (Pt — pait)  Poy" (W) = (& — FY (Pt — Pu11)
Pial) = (@ — ) (Patt — Poit) Pao’ (1) = (& — ) (pue — por)

Though it is not strictly necessary, it is instructive to verify the GRassMANN equations,
which are the necessary and (provided the whole matrix is not zero) sufficicnt conditions for a
skew symmetric matrix Pij (,j = 0,...,4} to be the GRassmaNN coordinates of a plane (or a line)
in four dimensions. These are the vanishing of the five Pfaffian forms P, ,..., P, , where

Py, = puPuy + Py Py + Pro Pass @and P ..., P, are obtained from this by the cycllc permutation
of 0, 1, 2, 3, 4. We shall write these

Pi= 2‘.;,!.& Pim, =08, (12)

P
i
i

1



44 Patrick Du VaL

where Z,— denotes for § = 0,...,4 the summation over the appropriate three permutations of the

four suffixes other than 7. It is obviously sufficient to verify one of these relations as an identity
in #, since whatever function of # P, may be, P, , P,, P,, P, are the same function of
#—o, y— 20, u-— 30, u-—4¢ respectively.

Now from the first form of (1), p., (i) py, @} = — 4.  p;.(u) has simple poles at
#=0,— o, and simple zeros at # = ¢, — 20 ; and p,, (¢} has simple poles atw = {, o, and
simple zeros at 4 = — o, 2. Thus the product p,, (#) p.,(u) has a double pole at the origin and

simple zeros at & == 4+ 2o, the other pole of each factor being cancelled by a zero of the other, Its
expansion at the origin has the leading term (« — $)u 2 the residue of each factor there
being —(x -~ 5}, by the second form of (10). Thus p,, (@) p,, () = (& — ) (P —f) :
smilarly p,q (¢} py, () = —{z— §¥ (pu — e} ; and consequently
Y02 i@ pim @) = — Mgt + @ — B (P — ) — (2 — B)* (pu —)
= (- ) = 0

by (6). Thus, identically in w,

NP W) Ptn @) =0 (= 0,5 a3

and hence also, identically in w,
Zi(pjk () 1’ (@) + p 1" (W) pig (1)) =0 (i=20..4 s
Z.’(ij () prm” ) + 20 51" @) P’ @) + 2" @Wptm 1)) =0 (1 =0,...,4). (15)

It is perhaps also worth verifying that (10} gives the correct values for the coordinates of
the planes =; = = (ie} ( =0,...,4), whose equations are known. At v =0,p,, W), r,5u),
Po, (i1}, py, () have simple poles with the residues « — 3, « — f, -2, f — o respectively.
Thus for the plane s,

Pig i Pig i Pyt Ps, ¢ any other Pij = 1:1:—1:—1:0,
which agrees with the values found from the quadratic minors of the coordinate matrix
01001
( 00110 )
of the primes x, |- x, =0, x, + x, = 0 which intersect in .

5. Parametrisation of the sarface

The ordinary expression x; = Z" (p}-k Gim + 4 jk Pia) (¢ = 0,...,4) for the coordinates

of the point of intersection of two planes with Grassmann coordinales p;; , g; ;, where zi is the

summation defined in (12}, gives us at once Tor the point (i, &) on the surface R3 , which is the
intersection of the planes = (1), = (#'), the coordinates

x; 0y = 2,- (pjk W pim () + Pk ) iy W)). (= 0,...,4) (16)

For constant. #’, these are functions of # of order 5, with simple poles at the points # = i¢
(i = 0,...,4) ; all five of these functions of # however have double zeros at # = ', by (13), (14) ;
thus the quotient of any two of them, or if we prefer to keep the coordinates homoge-
neous symmetrical the quotient of each over the sum of all five, is a function of order 3, in
accordance with the fact that € (4}, of which these functions of # furnish a parametrisation, is
a cubic curve,
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MNow for any constant v, as i varies, the point (u -|- v, ¥ —v) describes a curve gquadrisecant
to the generators, and bisecant to the curves {C?®}, and hence of order 10. in fact, it meets the
generator #(w) in the points

1
: (—ﬂV—i—V w—v) and (?er v+m,~,;—w—v+w; ) (=1 2,3,
where @, w,, m, are the three primitive half periods, i. e. any two of 2a , 2w, , 2m, generate
3
the peried lattice 202, and Z @; = 0; and it meets the curve C (1) in the peints v, v 1= 2v).
i=1
Three of these curves we shall now parametrise, namely these for v = 0, 4- ¢ and + 20, the
first being the focal curve, envelope of the family C.

Theorem 5, The coordinates of the point (4, v), the point of contact of C(u) with the focal
curve, are proportional to

Xo)=(@—ppu+@A@—w Cu—Lu) + G+ p) Cor— L0 4 (22— 5/ i0
XW=@—Hput@G—p) Cu—=C) + A+ ) Ep—Lu)+ @2 — 49700
X)) =(— ) pyr - G—p) Coue— Lot} + A4 ) (Coue— ) + (2, — 9110 ) (4D
X,y =(a— oy + G —w) Cu—Ca0) + G+ ) Cu—Lou) 4 (@ — 500
Xald=(a—Pypuor + (2 —p) Cott— Cou) + A - o) Con— L) + (22— pP [ 00

Proof, We cannot of course simply substitute ¥’ = » in (16), since this malkes all the coor-

dinates vanish, by (13). But putting ¥’ = ¢ + v, and expanding as power series in v, we have
by 13), (14), and (15)

xp(utv) = Zs(p e @) Pty " () + p " 00 P} ¥2 -+ O (6°)
=2 Zi Pk @) pim’ ). v + O (F) (=0,..9,

so that in the limit as v tends to zero, the coordinates of (m,u) are proportional to

zipjk’ ) prm’ (1) (¢ = 0,...,4). Taking the detivatives in the form (11), emitting the facter

(¢« —p) commoen to all of them, and removing a further factor — 2 which will appear in the
course of simplification, we define

2% () = (@— M7 (" Wpd @) + sy D pe) () + b () Py (W))
= (Pt~ Pyt (Pyrt— Poput) + (Pott — P1) (Porr — Pare) + (Patt — Pott) Wit - Poie)
= p.uP,u + Pyl Pt — Pyt Polt — Pt Pypt + Pau pyut
— Py P A Pt P — P8 Pott — Pt Pyt P Pott (18}
and —2X, (4) ;... — 2X, () consist of the same ten terms, with the obvious eyclic changes
of sign,
Now pupn has double poles at ¥ = /s, jo, and is thus a linear combination of p;n, P
$att, T 5 I and a constant terin, Tn fact, as p, has the expansion p# = f + p (v —0) + 0 (v — 0)2

at w = o, pup,n has the expansion pupu= @ —e) >+ puw—o)—' 4+ 0 (1) there,

and s1rn11ar1y papp=Fu+o)t—pwA 0y "+ 01)at 4 =— o;thus
paep=Fg@u+pw) +pu—Iiuwmy+C

where C is a constant, to be determined by comparing the values of both sides at the origin.

which gives € = a®—2x8 + 28, pyepgu is found from this by the substitution of 26 for

o, with the corresponding interchanges of the constants, and the other products from these two

by the cyclic permutation of 0, 1, 2, 3, 4, We obtain
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pupae=p3putpe) +plu—Lm)+ C pupu = a Qo + paw) — 2 (Lot — L)+ D ]
Patt Pott = f (ot Pott) + 16 (Lot —Lom) + C, Pyt Ptt = o (Pote + ) — ALyt — Lya) - D |
Pt Pott = F(Pau+p ) + g (Eatr— &) + C, paPyit = «(Pype + o) — A& — L)+ D }(19}
PP = F(Pu-tPalt) b p(Ep— ) + C, ppippr =P +p)—4u — L+ D |
Dot Pyt = f (Poretpou) + (ot — L) + C, PP = a(pue—p) — 2l — L)+ D ]
C = a?——2x8 4 210, D= f%—23f — 2.
Substituting from (19) in {18) we have
—2X, () =2 — ) pou + 24 —py (Lo — L) 4+ 20 + @) (Cou— L) -+ C— D,
which as
C—D=uo— [ +2@¢ + pb) = (8" —e?)/5
by (8), verifies the expression for X, () in (17). The others arc obtained from this by cyclic per-
mutation of 0, 1,2, 3, 4, and Theorem 5 is accordingly proved.

The general linear combination of X, {#),..., X, {#) has double poles at ¥ =0, 0,20,
30, 40, and is thus of order 10, which accords with the fact that the focal curve, of which these
functions supply the parametrisation, is of order 10. Each of the individual functions X; ()
however is of order 6, having a double pole at u = is only, and simple poles at the other
four points ; thus for u = 0, 5, 20, 30, 4o respectively the five functions are proportional to
(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,), (0,0,0, 1,0, (0,0,0,0, 1)
confirming that these five points on the focal curve are the vertices Py; (i= 0,...,4) of the simplex
of reference.
The tangents to the focal curve at the points Py; (f =0,...,4) are easily found. For that at
P,, for instance, x;,..., x, are proportional to the values at # = 0 of the derivatives of
X (), .., X, (&) each of which contains a term in p,u and no other term which is infinite
at ¥ = 0 ; thus for the tangent, x, ,..., x; are proportional to the coefficients of p,u in the deri-
vatives of the four functions, i.e. to those of —{,u in the functions themselves. The tangent to
the focal curve at P, is accordingly
xprxprixyix, = —p) i — A+ 4+ p)i(p—2R). 20)
This is seen to lie in the plane =, :x, + x, = x, + x, = 0, as we expect, since the focal cur-
ve, being the envelope of the family {C?}, touches at Py, the curve C(0), lying in the plane =,.
We next prove . _
Theorem 6 . The coordinates of the point (u + o6, u— o) are proportionnl to
H (“) ={z—f (p0[f+p1£l_p2tf_pu" + pua) -+ 24 (C~lu'— Cau + Cu”_ g._;”)*K
Y, ) =(—f putpu—pu—pu+ o0+ 20 Eu—Cp + Liu— L) —K
Yy () = (a— ) Pyti+Pati— Pyi— Pyt + Pu) -+ 24 (Cyu— Lyt + Lo — L) — K H21)
¥, 00 = (@ — ) (puutp—pop— Pyt +pou) + 28 (Cn—Co + &t — L) — K !
Y4 (u) = (9" _ ﬁ) (p4£‘+p0[l_ Po— Pt + pﬂ”) + 24 (Cutt — i:u + ga” _ ":s”) - KJ
and those of the point (& + 20 , u — 20) are proportionul to

Zy () = {a—0) (Dot — P 0 + poit + Pt —pi)— 206 (C e + S — Egtt — L) — L. ]
Zo) =(x—-NPpu—>pu+pu +pt —pit)—2pfu+ Lty —Cu—Lu)—L [

Zy () = (—F) (Pott — Pyt + Pyt + Post — 9 i) — 2p (Lt + L — Lo — L) — L 5(217)
Zy (o) = (—F) (Part — Pt + Pour + Py — o) —2p L+ Lo — L —Ly — L

Z, (1) = (a—B) (Pt — Poit + P+ Pott — Pytt) —2p (Lot + Ly — Cou—Eu) — L
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where
K=o (x—f)+ 2, L=7F(—pf+2p0.

Proof. By (16), the coordinates of (1 + o, 1 — o) are proportonal to the five sums
D (o 4 0) P = 0) + Py 4 — 0 pim Gt ok @) (== 0,0 ).

But evidently p,-j(u + ) =pi_, j_l(u) and Pij (@t —a)y = pry., it (), from the way (10)
were gbtained by the cyclic permutation, the suffixes here being agam treated as residues (med 5).
Thus the first of these sums,

Pt + ) plt—0) +p (u+ 0)py(t-—0) +py (it 0)py, (0 —0)
+ P+ o)py (r—0) Yot a)py, (w—a)+ py (e + 9) Pyt —0)
= Pyo () Pao () + Pos () Pos () + pog (1) Py (1)
+ Py (0P (@) + Poy () Pag () 4 Py () (22

These six terms are functions of several different types, and require to be evaluated separately,
s (1) has double poles at y = T o, and double zeros at u = + 26. At w =0,

Pous(@) =@ —He—a)' — 0+ 2¢) -+ Ou—0))

— @B ) 5 o) + O -0)

so that .
Po® @) = (@ — B (0 —ay 2+ G—p) & — Y (g — ) + O (L)

Hence

(o— M ' p? @ = — P pu+pw +@L—m o —C) — (@ — A — A~ ¢+ @),

23
the constant term being determined by the zeros. (It is easily verified that the derivative also vanis-
hes at these).

Paa (0) pry () = pgy (6) pyy {#) was determined as (x — #)° (pyu — f) in the course of veri-
fying the Grassmann relations. We therefore write

= py (el = E—Bpou—F—A @29
Pag () pao (1) has simple poles at # = + v, and a double zero at w =10, Atu =0,

Pgo (1) = — p, and pg, () has residue (f-— a). Thus
(o — )" Poo (W) pag () = p(Eru— L) + 200 (25)

Py, () pyo(n) is obtained from this last by the substitution of 20 for o, together with
change of sign; thus

(2 — ) por (1) pyo () = A (Lot — Ty 1) — 2y 26)

Pas (W Py () has 2 double pole atw = 2o and simple at ¥ = ¢, and a double zero at

=36 and simple at 4 = 4o. At # = 20 the two factors have residues + (x — f), and at
# = 6 pyy (1) has residue (x — f) and p,, () = 4. Thus

("rﬁ)'_lps.x (“)Pos () = _(x—'ﬁ) By “—A(al H— Ea u) + c‘(c‘—‘ﬂ) + A(B—f}’), (27)

the constant term being determined so as to make the function vanish at # = 30 ; .itis easily
verified that the derivative also vanishes, here, and that the function also vanishes at « = 43,

using (6), (7). 3 :
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Finally p,, (2) pa, () is obtained from this last by substituting 44 (or — s) for o, which
interchanges the suffixes (14) (23) by pairs, leaves o, § unchanged, and changes the sign of
A, 1, 8, @. Thus ;

=N W) pa () = — (2 — N Py + A u— L)+ x(@a— N + 10 —g). (28)

Adding up now the right hand members of (23),..., (28), we obtain the value of ¥, (1) in
(21) as that of (@ — f)—' times the right hand member of (22) ; the constant term being

—K=(—MNEE—20+20—3¢)+p G+ ¢)—20p = —o (x—§—2ip,
since by (7), (6)

- l p‘

] LR —3p)=pGd | @)= o

Z, (i) is obtained from Y, (¥) by substituting 26 for ¢, and changing the sign throug~

hout ; and ¥; (u), Zi () (F = 1,...4) from these two by the usual cyclic permutation. Theorem
6 is thus proved.

We note that K+ L = — (2 — AY{5, by (8). Thus trivially 2X; (1) = Y1) + Z; (&)
(i =0,...,4), expressing the collinearity of the points (%, n), (¢ + o, 4 — o), (¥ + 20, 1 — 20),
which are all on the generator [ (2¢), As a simple extension of this we now prove

= ——(x—)*,

Theorem 7. The coordinutes of the point (it -- v, u —v) of R® ure proportionul to

2p V.X,- (N)-——Wi (”) (FZO:"‘A')’
where X; (i) (i = 0,...,4) are us defined in (19), und
Wy ) = Y () + aZy () ¢ =0,..49,

Y (W), Zi () (F = 0,...,4) being as defined in (21), (217).

Proof, Evidently these coordinates are proportional to Y; (&) + £{v) Z; (), where f(»)isa
function of v (mod 22), of order 2, zero at v = & o, infinite at v = + 20, and with the value
py— o

" 1 at v =10, This means that f(¥) = o and the coordinates in question are proportional to
v —B Y )+ (pv—ax) Z; () (i =0,..,4),

which is the theorem,

6. Grassmann coordinates of the generators

The generators {(w) of R* form of course a system of lines dual to the system = (1) of pla-
nes ; and in dealing with these, in order to utilise as much as possible of the work already done,
it is convenient to introduce temporarily a new coordinate system (y,...,»,), whose relation
to the whole figure is dual to that of the coordinate system (x,,...,%,), 50 that instead of the
points Py (i = 0,....4) being the vertices of the simplex of reference, the primes £y (7= 0,...,4)
are its faces. As the equations of these primes, in the original coordinate system, are the vanis-
hing the of sums of all but one of the coordinates, we write

Yo = 01 111 Xg
7, 101 1 1 X,
Ve 11011 xs (29)
Pa 11101 X
A i1t110 x,
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Any permutation on (x, ,..., x;) clearly induces the same permutation on (y,,...,»,) ; thus the
whole figure is still invariant under the group $; /M1 .5";. We must bear in mind however, that as
the lines /y, 1, 1y, Iy, 1, are the generators H0), /(20), /{da), I{o), i(30) respectively, the cyclic
permutation of 0, 1, 2, 3, 4 applied to cither system of coordinates cooresponds to the substi-
tution of w-— 2¢, not w-— a, for w, and consequently induces the cyclic permutation of 0, 2,
4,1, 3 on the functions &;w or p;w. We now prove

Theorem 8. The Grassmarnti coor(lmulfsiaf the generator w) of R* are proportional {o

G = Cw—Lw—20—g) g =Cw— Lt 2@ )
ey =Lw—Lw—2(0-—g) foo (WY = C, w—L, w1 2(0 + o)
G0 (W) = C‘,(-\xvgf:s w—2 (0 — ) Gra W) =Cow-—Cow +2(0 + o) (30)
Gy =Lw-—8, w—2(0—9) g =0,w—Cwt 20+ ¢
qam)y=C,w—Lw—2(0—¢) fap (W) =C w—Eyw 4+ 200 I 0]

Proof. The prime y,— ¥, + ¥, +¥s—¥, =0, or x, + x, =0, contains the plane
g, and the lines /,,f; ., or I{ £ o);the prime y, + y,—y,—¥; + ¥, =0, ot x, + x, =0,
contains =, and the lines /,,7,, or /{4 20) ; and the prime y, = 0 contains =z, and the line
1, , or I{0), Thus the prime joining =, to the generator / (wyis f(Wy yo— ¥, + ¥ + ¥y—r, = 0,
where f(s) is an even elliptic function of w, of order 2, infinite at w =0, and with the
2pw-——(x -+ i)

Thus the
o — ﬁ

values 1 at w =+ ¢ and —1 at w= 4 2¢, Le f(w)=

equations of the five primes joining /(w) to the five planes =, ..., %, arc

pw—ae—fHrp+tBE—2)py t@—Ny te—RNr,+(—2x)y, =0
B—a)yy+Qpow—a—Ry +@—) e+ (@—Hyy + x—Hy, =0
(x— Ny +(F—Ddp+Quw—z2—FNr+-E -2y, +x—Hy =20
@— Py +x—Py+F—Dr+Cpw—a—RNp+ E—x)y, =

(A—wlyy +@—pPr @0+ ¢ —ady +Qpw—a—y =0

The matrix of coefficients in these eguations however is what the matrix (9) becomes, on
applying the cyclic permutation {1243) to both rows and columns. Exactly as in Theorem 4, the
GrassMANN coordinates ry; of J(w), relative to the coordinate system (y, ..., ¥,), are propor-
tonal to the square roots of the diagonal cubic minors of this matrix, which we have already
found ; and as the permutation (1243) is equivalent to doubling each of the symbols (mod 5),

we can write, interpreting the suffixes as residue classes, i;= Paisuj {(w), i. e,

Fow = Pus (0, Py = Pua O¥), ray = Pog (Wh 1o = pog (Wh 1y, = By (W)
(31

Far == Paa (W), Foy = Pyy (W), F1a = Puy (W), Foy == Pay (Wh Fag = P ().

Now the coordinate systems (xg, +«., X3), (Mo, +++, Va) being related as in (29), the GRASSMANN
coordinates g; ; of any line with respect to the system (x,, ..., x,} are linear combinations of its
coordinates i with respect to the system (y,, ...,»,), with a matrix of coefficients which is the cubic
adjoint, i. e. the ten-by-ten matrix of cubic minors, of the matrix of coefficients in (29). These
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cubic minors are easly found, comparatively few needing to be actually calculated, on account
of the symmetry of the matrix in the ordinary sense, as well as ifs cyclic symmetry. Putting in
the values of Fij from (31), and a constant of proportonality g to which we shall give
a convenient value later, we have

g | [ 2 1 0o 0 1 0 1 —1 1 1 — pan)
a5 (W) 1 2 1 0 0 1 0 1 —1 —1 Dia(w)
F1lP) 0o 1 2 1 0 —1 1 0 1 — Py
go (W) 0 0 1 2 1 —1 —1 1 0 1 PuoW)

B arw) | 1 0 0 1 2 1 —1 —1 1 0 PoW)

5, (W) 0 1 —1 4 1 2 0 1 1 0 Pys(W)

ool W) 1 0 1 —1 —1 o 2 0 1 1 Posw)

aus(w) -1 1 0 11— 1 0o 2 0 1 Por()

T2 ~1 -1 1 0o 1 1 1 o 2 0 Pua(w)
gy — - 1 —1 —1 1 0 0 1 1 0o 2 — — Py —

In the ten sums on the right, when we express pij(u) in the second form given in (10), most of
the terms cancel, and on putting ¢ = 2(x — ) we quite staightforwardly obtain (30).

We verify, as we did for the coordinates of »n(u), that for w = 0, 20, 40, o, 30, (32) gives
the coordinates of the lines /y, [, , fy, Iy, /, respectively. For w = 0, q,4Ww), qq,,(%), qy.0w),
(W), which all contain a term in {,w, have simple poles with residues 1, —1, 1, —1
respectively, and the other q,-j(w) are all finite, i. e, for the line /;

G0 ° Gor :qﬂg:qau:anyotherqij =1:—1:1:—1:0,
agreeing with the coordinates. of /, as found from those of any two of
P,:(1,0,0,0,0), Py : (1, — 1, 1,1, —1), P, . (1,1, —1,—1, 1.

The coordinates of /,,/,, 7, , 1, are similarly given by the poles of ¢]t-j(w) at w = 20, 40, 0, 33
respectively.

Writing the GrassMAnN coordinates of any line or plane, regarded as a vector in a ten di-
mensional space, in the order

(Pos » Psa s Puo s Pot » Pra s Put s Paz s Pis s Pas s Paods

we define the twelve vectors

po=(0,—1,0,0,1; 0,0,1,—1,0) q —(0,0,1,—1,0; 0,1,0,0, —1)
po=(1,0,—1,0,0; 0,0,0,1,—1) q.=(0,0,0,1,—1; —1,0,1,0,0) l

Py =1(0,1,0,—1,0; -1,0,0,0,1) @ =(-10,0,0,1; 0,—1,0,1,0) | 33
Py = (0,0,1,0,—1; 1,—1,0,0,0) ¢ =(1,—1,0,0,0; 0,0,—1,0,1)

P = (—1,0,0,1,0; 0,1,—1,0,0) q,=(©0,1,—1,0,0; 1,0,0,—1,0) l

a =(,1,1,1,1; 0,0,0,0,0) b =(0,0,0,0,0; 1,1,1,1,1) J

By Theorem 4, a coordinate vector for the plane =(#) can be taken to be

) :pnC.}u+D1C;u+D2C.H,u+pscnu+p£.lu-—a(ﬂ + Q’i)—-b(o—(p‘)

and by Theorem 8, one for the generator /(w) is
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q(w) — qu.cu w - qlgg w o+ q2§4“’ + quL w -+ q;gu w— 2a {0 — Q’) -}- 2b (0 —+ tr).

WNow the condition for a plane with coordinate vector p and a line with coordinate vector g to
intersect is the vanishing of the scalar product

p.q= ZP;;Q;;ZO»
tbe summation being over the ten pairs /. From (33) we have at once
Bioq; p,-.ar:p,-.bﬁqj.a :qj.bf-a.b:O(i,j:O,...,4),
a.a=bb.b
whence, identically in (i, w)

pu) . q(w) =0,

expressing that the plane n{u) meets the generator /(w) for all # and w. The vector p; is the coor-

dinate vector of the plane w; , and q: that of the generator /;, and the relations p;. q; = 0

{7, j=0,....4) simply cxpress that all five lines meet all five planes. Also, it is worth noting the
4 4 ‘

obvious relations Z p; = Z q; = 0, which express that =,,...n, are five associated planes,
=0 i=0

and /,,...,f, are five associated lines.

7. Cubic primals containing R®.

The gencrators {/} of R® are the intersection of five linearly independent linear complexes
of lines, i. e, are the lines common to an c? linear system | L | of linear complexes. In this system
arc of course a quadruple infinity of webs, or «0* linear subsystems, and a sextuple infinity of nets,
or »? linear subsystems, of linear complexes. The lines common to a genera! web of linear com-
plexes are one system of generators of a SEGRE cubic primal, meeting five associated planes on
the primal, and those commeon to a general net of linear complexes are the trisecants of 2 VEro-
wrsE surface. (By this term we shall denote the projection into four dimensions of the normal
VERrRoNESE surface in five dimensions ; we shall omit the word projected usually associated with
this surface, as we shall have no further occasion to refer to the normal surface). 1f a net N of
linear complexes is contained in a web W, the VERoNESE surface V,* whose trisecants are the
commen lines of N lies on the SEGRE cubic V3" generated by the common lines of W ; for V,*
has a pencil of trisecan{s through each of its points ; and the generators (of the relevant system)
of V,® are the trisecants of ¥;* that belong to a linear complex not containing all of them, and
hence include either one line or the whole of each pencil of trisecants, i. e. every point of ¥,* lies
on at least one generator of ¥°.

Theorem 9. The general cubic primal containing R® is a SEGRE primal V,? | and its inter-
Ssection with the quintic primal W,® generated by the planes (s} of the curves {C*} on R® consists of
R counted twice, together with five associared planes of {=}. R® is the base surface of wn oo* linear
svstem of such cubic primals, the intersection of two general members of which, residual to R®, is
a4 VERONESE suiface V' frisecant to the generators of R*.

Proof. Tet ¥,' be a cubic primal containing R* ; its intersection with W5 includes R®
counted twice, since R® is the double locus on W3* , each of its points being the intersection of
two generating planes a(u), »(x’) of W% The residual intersection, of order 5, consists of five
of the planes {#} ; since if ¥3* contains a point of a{#) not on R? i.e. not on C(w), it must con-
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tain the whole of w=(x). The complete linear system | ¥,*| of all cubic primals through R* thus
traces residually on W,® a linear series of sels of five planes au,) ,..., =(x;) ; and as one such set
3
consists of =, ,..., 7, every such set satisfies Z u; = 0, i.e. consists of five associated planes.
. =1
Conversely, every set of five associated planes in {=} determines a SEGRE cubic containing it,
generated by the lines meeting the five planes, among which are the generators of R®, and hence
containing R®; thus | ¥, | traces on W,° the complete series of sets of five associated planes in
{s}, of dimension 4, i.e.| V,* { is of dimension 4. (We have already seen that there are «* webs
of linear complexes in |L| ,the common lines of each web being the generators of a SEGRE
cubic containing R®.)

Now let V,%, ¥,* be two general members of | ¥,° |, and let W, W'’ be the coirespon-
ding webs of linear complexes. As W, W' are both contained in the o5 linear system |L| of
linear complexes, their intersection is a net N, the common lines of all whose complexes are the
trisecants of a Verongsg surface V,*, and include the generators (of the relevant systems) of
both V,*, V’,% Thus V,* lies on both F,* and V"% and the intersection of these two cubics
consists just of the surfaces R®, V,', since their total order is 9. This completes the proof of
Theorem 9.

Clearly, some cubics of | ,* | will meet W," in sets of five planes not all distinct, as any
linear series contains some sets not all distinct, These cubics are not strictly SEGRE cubics, as
they do not contain fifteen planes ; they are to be regarded as limiting cases of the SEGRE cu-
bic, in which some of the planes coincide. Each is however generated by at least one system of
a0? lines, common to a web of linear complexes, one of these including the generators {f} of R®.

Similarly, some of the VERoNESE surfaces V,* which are the characteristic system of |V,Y|
are degenerate. For a net N of linear complexes, though in general it does not include any that
are special, consisting of all lines that meet a fixed directrix plane, may include one, two or three
special complexes. (There are of course oo special complexes in | 1. |, whose directrix planes are
the planes {#}.) The VERONESE surface corresponding to N breaks up accordingly into the direct-
rix plane = of the special complex and a ruled cubic with directrix in = ; the directrix planes
s, =" of the two special complexes and a quadric meeting sz, »” in lines ; or the directrix planes
z, n°, =* of the three special complexes and the unique plane meeting these three in lines, the
join of their intersections by pairs. In particular on the SEGre cubic primal F*,* from which
we began, containing the planes =,...,%, , there are in the web |V,*| of Varongse surfaces traced
residually by cubics through R?, ten such completely reducibles surfaces, consisting of four planes
Ty, Ap, AL Ty, Where jkim is any permutation of 01234, ’

The ruled quintics | R| with generators in the line system {5} on ¥*,? are a linear system of
dimension 5 ; the Grassmannian of this [ine system being the guintic L PezZo surface in five
dimensions, each of whose prime sections is the Grassmannian of an R?. Some prime sections
of the DEL PezZzo quintic are of course reducible ; in particular it has completely reducible prime
sections, consisting of five lines forming a skew pentagon, and these correspond to degenerate
members of | R|, consisting of five planes 737, %t Zmy, iy 3t gy Where again {kim is any
permutation of 01234, .

The characteristic system of | R | consisting of sets of five associated lines, every set of five
associated lines in the system (5) is the base of a pencil of surfaces in | R | . In particular the lines
Iy youy I, are the base of a pencil { R®* (4: p) } of which one member is the particular surface
R* we are studying, and two other members are the degenerate quintics Mgy gy Ty My, 3T, and

Ty Bpp Sy Ty Ty
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The equation of the SeGRE cubic primal ¥#;® containing the fifteen planes with which
we began is, in the original coordinate systern before we suppressed the redundent coordinate
X-

)

5

in“i();

i=0

since every point of the plane x; + X;=xp -l X =Xm + x, = 0 satisfies also x;* + xj-“
— xg? -l = X"+ v, = 0. On suppressing x; this becomes

&

xo:i + -’513 + xeu + xliu + ,\‘,,:’ = (xu Xy b oxy b Xy + Xl)a » E

0F = ¥ a7 xj+ 2 P xexpxe =0, G4)

the first summation being over the 20 ordered pairs jj, and the second over the ten unordered
triads ¢jk. Before finding the equations of other cubic primals containing R?, it is convenient to
prove the following

Lemmy. Taking x, , x, , x, as coordinates in =, (with x, = — x,, x, = —x,) the equa-
tion of the curve €(0) is

Al ) —x B A+ op (e — xS — 57 =0, (33)
and those of C{a),..., C(d0) are obtained from this by cyclic permutation of xp,...,x,.

Proof, From {(4), the points Py, Py, Pyas Py, Pay are (1,0,0), (1, 1, —1), (1,1, 1),
(1, —1,—1), (1, —1,1), so that the lines Pyy Poy Pyys Pop Poy Puo» Poy Pou. Py Poy, Py, Py,
Py, Py are

4\'1+X.3=0, xlu'—xzzt)a xo"'—xl'h"‘(L X +x =0, x4 +x‘em0: Xo — Xy =0

respectively, On € (0), # is a normal parameter for the point (u, 0), so that the tangent at (fa,0)
meets the curve again at (3/0,0), i.e. Py, is an inflexion, and the tangents at Py,,, Pyy, Py,
Poare x, +x, =0, x,—x, =0, x, +x, =0, x, —x, =0, respectively. The cubics in
the plane satisfying these contact conditions are a pencil, two reducible members of which
are (x, + x)(xs" —x,H =0 and (x,—x,){x,* —x,") = 0, and as from (20) the tangent
to C(0) at P,, satisfies 4 {x, + x,) + g (x, — x,) =0, C0) is the curve of this pencil given
by (35), which establishes the lemma, the application of the cyclic permutation being obvious.

It may be observed that the two triangles (x,-f-x;) (x,>—x, D =0and (x,—ux,) (x,*—x,)=0
are the traces on =, of the two degenerate quintic surfaces sy sy, 1 %,, and 7, g, 7,4
7., %4 . In each case the two planes out of the five that have 0 for one of their suffixes meet
=, only in points, and the other three meet it in lines, forming the degenerate cubic curve in
question. We now prove the main result of this section ;

Theorem 10. The surface R°, together with the degenerate VERONESE surface consisting
of the planes = G ks L, i Jorm the complete intersection of the cubic primal ¢* =0
with the cubic primal o ;=0 where
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By = A(x Fxg) (L xy) (et x) + (e Fxg b xy) (o) Gogtxy)

By, = Ayt xg) G bx) Gratxg) + o Gy Fag b x4g) (6,4 x,) O xy)

Poo = 2 {xy 2, Gy xa) () + (gt tag a0 ) G b xg) (ptx,)

Dy = A{xgtxg) egx) (o ag) + e Oopby a0 Foy) () (1)

Brg = A (xgFx) (xFx9) (ogrl-x) + g (rpF X0t X1 00) (o b)) Co3xy)

Py = At xg+xy) (x,Fxg) (o ta) — g G bay) (e T3 (0 3)

Pog = A{xy+ 2,3+ x0) (i Fx,) Grydxg) — g Gy} (g x,) (- xy)

P = A(e,Fx;txgtx) o ag) (gt ag) — g (et (- Fag) (%)

Dy = A (xgdxgtax, T} (gbag) (et a,) —p (g xg) Geptx)) (3 x0)

Pap = A (y+x by tag) (x4 (xyta) — i (g 4x,) (g +x) (ot xg)

Proof. &;; = 0 contains the planes =, ;, ny. , 7y, #m for all A, p; for instance ¢, is a
linear combination (with quadratic coefficients) of x, + x,, x; 4 x, which vanish on =,, ; of
x, + x,,x, + x, which vanish on =,; of x, 1 x;, ¥, + x, which vanish on =,; and of

xo + x5, x, + x, which vanish on =,; the proofs for the other cubics ¢;; are exactly the
same, and obtained by applying the usual permutations to the coordinates.

(36)

Further, in ®y, ®ys, Pags Pia» the only four of the ten cubics which do not vanish
identically on =, , if we substitute — x, , — x, for x,, x, respectively, we obtain in each case
either plus or minus the left hand member of (35). Thus each of the primals @;; = 0 either
contains the plane %, , or cuts it in the curve C{0} ; similarly each of these ten primais either
contains the plane =5, or cuts it in the curve C(kv), by the usval cyclic permutation. Thus each
of these primals contains at [east live points on every penerator of R?, one in each of the planes
7 ,..., 7%, and hence (being a cubic) contains R?, Theorem 10 is thus proved.

It is worth remarking that whereas both terms in $;; vanish on the four planes =;; ,
%y, ®p, w0, , the term in each of these cubics which has the coefficient 4 vanishes also on the
five planes wy,, 7, , 7,5, ™y, , %4, and that which has the coefficient @ vanishes also on
Ry, Hpy, Mg, Htyy, Fy,. Thus allowing 4, p to vary, &;; = 0 represents a pencil of cubic
primais, tracing on @% = 0, residually to the fixed degenerate VErowese surface, the pencil
{R® (2 ;1)) of surfaces in | R®|, with the base lines #, ,...,/;, including the R® we are studying,
and the two degenerate surfaces consisting of these pentads of planes. Each of the twenty
terms, cofficients of 2, ¢ in &y; , represents three of the fifteen primes £, ;i , of Section
2, each cutting ¢* = 0 in three planes ; and these nine planes are in each case just the four
composing the degenerate /,* and the five composing the degenerate R .

We confirm also the uniqueness anticipated at the end of section 2 in the following

Corrollary. Given the configuration of Section 2, the period lattice 212, and chosen fifth
part ¢ of an element of 2102, the surface R® such that the planes =, , ..., #, shall be those of the
curves C(0),..., C(46) respectively, is uniquely determined ; for the configuration determines
the coordinate system, and relative to this coordinate system the equations of R® depend only
on the constants 1 = p'(e|262), p = p'(20]20).

8. Cubics through R® in relation to W,°,

We have now to consider two five dimensional vector spaces over the complex numbers :
{¢*}, consisting of all cubic forms  in the coordinates that vanish on &* ; and { p()}, consis-
ting of all elliptic functions

4 4

p(u):ZA,-C,'quC (2;{;:0) BT

f—o i=o
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with at most simple poles at # = i¢ { = 0,...,4) ; the condition in parentheses in (37} being clas-
sically necessary and sufficient for p(i) there defined to be an elliptic function, Our objective of
course is to obtain a linear mapping of these two vector spaces on each other, which shall express
the fact that the projective model of the linear system traced on W% , residually to .R® counted
twice, by the cubics & = 0, for all & in {H*}, is the Grassmannian curve of [}, parametrised
in Theorem 4 in terms of {p(@)}.

In dealing with {p(«)}, or any similar vector space of elliptic functions with assigned poles,
it is convenient to speak of any individual element of the vector space as having au s - ple root at
a point which is an r - pie pole of the vector space (i. e,of its general element), if in fact it has an
(r — &) - pie pole there, or an (¥ — ¥) - ple zero, or a non zere finite value for s = r ; at a point
that is not a pole of the vector space, an s-ple root will mean the same thing as an s-ple zero.
(This is analogous to the way in which, in dealing with the vector space of polynomials f(x) of
degree n, we regard one which is actually of degree » — s as having an s+ — ple root at infinity,
as well as its ordinary roots or zeros elsewhere). With this convention, every element of { p(r) }
has five roots, with due allowance for coincidence in multiple roots ; and the points of

intersection of the Grassmannian curve of { =} with the prime E 4:; ps; = 0, or the pla-
nes common to { =} and the linear complex with this equation, arc given by the roots of
Zq,- i (). Tn particular, if Fkim is any cyclic permutation either of 01234 or of

02413 , as pg; (@) has simple poles only at # = jo, ma, simple zeros at ¥ — ko, fo, and a non
zero finite value at # = {o, its roots arc simple at ¥ = ie¢ and double at 4 = ke, /o ; and it
represents a set of five associated planes consisting of #; counted once and =g , 7y, each twice.
In the same wav, a constant element of {p(x)}, having simple roots at the five poles of the
vector space, corresponds to the set of planes =,,...,7,,

The planes [} being common to five linearly independent linear complexes, there are of
course five linearly independent linear identities between the ten functions p; j(u). These are first
of all those expressing that & (#) meets {, ,...,f, , of which only four are linecarly independent
(the five fines being associated), namely q; . ple) = 0, where q, ,...,4, are defined in (33), i. e,

Puolit) — Por(i) -+ pos(i) — pyou) = 0
Poltt) — pis(0) + prg() — pou) = 0
Pua(t) — pog(e) + poy(it) — Poalnt) = 0 (38)
Poa(t) — Po () + poyli) —pos(i) = 0
]JQJH) — pi(u) + P.ch(“) — Pﬂ(“) =0
and since further, from the second form of (10), and from (7),
Poaltt) + pa i) 4 i) - py () - piy () =508 —a) 0493 =22—p } (39)
Podle) + Pooli) + pry()) + pog() + pyy (@) =58 — ) @—g)=2+2p
we can take the equation of the remaining linear complex, which defines {=} among the o? pla-
nes meeting /; ,...,f,, in the form
A+20) (poy 4 Pay A Pyo - Por 42 1) = Q4 — p) (o - Pup TP18 - PacT Pao)- (40)
We remark also that from these relations, either of the pentads p,y{u), pa, (1), pue (1),
Pollit), pro (1) and po, (10, pye () P g (1), poy (4), Pyo (1) is linearly independent, and can be used
as a base for {p(s)) ; we have in fact

QA—w) / pu () = i A s—i p—12 A Pag (1)
Pos (11)\ A 1 ) p—3i p—A4 Pas (1)
Pig (1) 2 i A 1 w— 7 Do (it} 41i)
Pay () / p—h ow—d 4 % Pon (1)
Pas () i p—d p—1 i A o (4)

and inversely
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@A +2w
P (20} 4 " —l—p —de—p 1 Py ()
Pay (1} B Iz @ —h—p —d—p P (20
Pol® |=| —A—u p # # —d—p P () | (42)
Pay () —hy —i—p Iz #t I3 Pas (i)
P () I3 —A—p  —l—n p p Pop (1)

Turning now to {$*}, we have of course live linearly independent linear identities between
the ten clements rI_J,-j, six between these and %, since {#7}, like | p(:)), is five dimensional. It is
easily seen from (36) that

Dg— Pay = L0, + xg) ((xy + )0y + w0 — (v + ) (x, + x50

+ (Xj + x ) {xy + 2 o 4+ x)) — (e, + xg) (e +x0)
and
By — Py =2 Oy + 2,) (s + 2 (o - x) — (g + X vy )
"i‘ ® (XJ E .\’1) (("\ + xx) (X, ‘l’ -""n) - (.t", + x~g) (x;g + Xl)),

so that applying the cyclic permutation

Prg = Pyy + By — By =0
Poy— Py + Byg— Py =

Byp = By -k By — Byy =0 (43)
Dy — Dyy + Py — By = 0
By — Puag + By — By = 0

of which enly four are lineatly independent ; and also from (36), (34),

Dyy + Pyg + By + Boy + Pyy = 24— p) D* f

44
@'zu + fpa.l + @.ju - ".bul + fpl? = (}' + 2 ,L!) P, S ( )

Comparison of (43), (44) with (38), (39) suggests, for any constant g, an obvious
linear mapping & : {®#*} - {p (v)}, in which

E(P,) = e pa () Eldy) =ep,, (u)
E(Po) = @ pye (1) E(Dgd) = @ pgs (0)
E( @) = 0pi0 (#) E(@o)=ep (v} E(@)=¢ (45)
E(P..) = g py, () E (o) = @pp, (1)
E(bye} = 0 pyz (0} E(Pa2) = g py, (0)

——

We now prove

Theorem 11. The mapping £: [($*) = {p ()} defined in (45) has the property thar if’
@ is any element of (DY), the cubic primal & = 0 cuts W§, residually to R® ceunted nvice, in
the planes = () corvesponding fo the five roots u of the element & (b} of {p(u)}.
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Proof. That there is some non singular linear mapping w1 {#*] - {p(w)} having this
property is obvious, since, as was remarked above, the projective model of the linear system
traced by the primals & =0, for all ¢ in {#*}, on W7 Is the Grassmannian curve of {=}.
Clearly also, v is determined to within a coefficient of homogeneity, i.e. the mappings y having
this property are all the scalar multiples of any one of them.

We begin by showing that the planes of {=] that lie on the primal #,; = 0 corrsepoud
to the roots of p,(u), i.e. are n,, counted once and =,, =, each counted twice, so that ¢ (&) is
a constant multiple of p,, (). Now if 7is any line lying on $,, = 0, not a generator of R®, but
of the system containing the generators of R?, the five planes of {w} that meet / are those that
lie on ¢,, = 0. We find the coordinates ¢; jofa suitable ling /7 as follows :

Putting x, + x, = 0 in ¢,; =0, it becomes
ey + 2 (A Gxy + x) Oy b x) e O+ xy) (o T x) =0,
indicating that this prime cuts &,, = 0 in =, together with a quadric surface ; it cuts R® in the
curve C(0) together with the generators /, , /; . One system of generators of the quadric is

Xy oF ox =g+ x) —Kxy + x) = Ax, Foxo) F lplxy o)) =0 (46)

with variable parameter & ; and of these, the lines &t = o0, & = Oare [y ,/; by (3). Thus for any
other value of k&, the line (46) is on ¢, == 0, and belongs to the system containing the generators
of R®, but is not itself a generator. Putting & = 1 for smplicity, we obtain the line / ;

Xy ox =X b X, — X — X = Xy b A+ A ey =0,

whose Grassmann coordinates are the cubic minors in the coefficient matrix

0 1 0 0 1
1 0 1 —1 -1
@ A A i3 o

of its three equations. These minors are

(Woys F3s Fyos Yo1> Qa2 5 Dats Tozs Digs Taas dsq)

=(17M!M7113‘+H‘11+F’)2“5 0)_(2'4_#')).“'71»2”:0);
3

and substituting these values in the condiiion Zqi PPij ()=0 for I to meet = (), it is at

once verified that the terms containing &;# (/ = 0,....4) reduce to 22 {a — ) (L, n— ) ;
the constant term is in the first instance found as 2 @—f (A —w) (O — @) — @ + 23 B + ¢)) ;
but since, from (7), (4 + 2) (0 + ¢) = Q4 —p) (0 — @), it reduces to —21(a — (O — ¢),

so that Z q,-jp,-j(u) = U p,, @

Thus y ($,,) is a constant multiple of p,, (u); and in exactly the same way v (&),
¥ (Buo) W (Byr), ¥ (B, are some constant multiples of py, (0), pyg (), pay (), Puo (&) respec-
tively. But also, w (%) isa constant element of {p (i) }, since its roots are f6 (i = 0,...,4) ; thus
the constant multipliers are all equal, i. e. y = E, for some value of the constant g in (45). This
completes the proof of Theorem 11.

Corrollary. The values, on substituting the coordinates of any point in the plane s(u),
of all clements of {$*], are proportional to the values at the point # of the corresponding ele-
ments of {p ()}, under the mapping E.




58 Parrick Du VaL

9. Equation of W§.

W§ , generated by the planes {}, is a quintic primal, and its generators are the system of
planes dual to those of R® as system of lines. Before actually finding the equation of this primal,
it is convenient to take a look, in general terms, at the kind of equation we may expect,

Each R* of the pencil {R® (A : p£)} on P'*,®, obtained by varying the ratio 4 : g in the cubic
equations @;; = 0, determines of course a W, which we denote by W2 : #), and which varies
with the parameter 4 : g in a system [W§(1:p)). Any plane = meeting /y,...,J, (other than
Hy,ene.,) is @ generator of one member of the system {W3(Z : @)} ; for the lines mesting =,,...,7,,
@ are the generators of a unique P?, which is one of the pencil {R*(: u)}, since this pencil
consists of all R*s on F** that have /,,..../, as generators; and =z is a generator of the
corresponding W 5(1 : p). Since through a general point P of space there pass two planes =, =
meeting /,,..../,, two members of {W3(4: i)} also pass through P, one with = and one with
a" as generators. Thus the equation of WE(2 : g} must be homogeneously quadratic in (4, ),
as well as quintic in the coordinates. Only if Pis on ¥*,*, = and =" arc two planes »(ir), #{z’) of
one Wi(A:u), and Pis the point (v, on R®(1:p); in this case the two members of
{WEQ : p)} through P coincide.

To the degenerate members of the pencil {R*(X : ¢)}, which occur for 4 = 0, # = 0, and
consist of the pentads of planes sy, , 4, , Tuy , 7oy » 7y, and 7, , Tgg s Ty s Fay , Tge, COOT-
respond degenerate members of {WE(1: )}, consisting of the pentads of primes X,,, ¥,,,
Figs 2ges Xy and 225 s Xuus Zaes Fois Fie respectively. For by (4), (49, (5), AT
Xy -+ xy = 0 contains =, , 7y, , meets =gy in the line /,, = P,, P,,, and meets =, 2, in
lines throngh P,,, P,, respectively ; thus any plane through /7, in ¥, , like =, (which is in
fact one of this pencil) meets =, , 75, , 7;, in lines and =,, , =;, in the points P, , P, , and
hence meets every generator of the degenerate R® myy, m,, 7., %, %, » 45 these generators are
a pencil in each of the five planes, those in =, , 7, having their vertices at P,,, P,,. The
planes meeting all the generators of the degenerate R¥, and cutting the degenerate R® in degen-
erate plane cubic curves, are thus a pencil in each of the five primes X, >, >, £21 ¥ao , which
accordingly constitute the coorrespnding W, .

Bearing in mind that the equation of }#,* must be invariant, not only under the cyclic per-
mutation of x,,x,,x,,x, ,x,, but also under that of x,,x,, x,, x, accompanied by the
substitution of (¢,—1) for (1, ¢), we see that there are two a priori possbilitics for the form of
the equation :

(@) ZPF4+ApG+p'H=0, (b) *F+ ApG— p’H=0,
where o
F= (x2 + xa) (xs + x-{) (x-L + xo) (xu + xl) (xl + xa) =0
H=(xy 4 %) (% + %) (8, + x5) (8, + x0) (5 + X0) = 0

are the equations of the two singular #,” ’s, and & is invariant under the cyclic permutation of
Xy, Xy, Xy, X3, %, , and in case (a) is changed in sign, but in case (b) is left unchanged, by
that of x;, xy, x, , x; . We shall find that the actual case is (b), We prove in fact
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Theorem 12. The eguation of W,°, generated by the planes {n} of the curves {C®} on P, is
BF 4 pG— p*H =0, 48)

where, F, H are as defined in (A7), and G is the symmetric quintic form in the coordinates

G = Y xx; +2 Y 4 v +4 § Xt e +1 g)] XN XXt 12 X X Xy Xy %y, (49)
20 30
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the summation being over ail distinct monomials oblained by permuting the coordinates, and the
nmber nnder each snmmation sign indicating the nimber of terms in the symmeltric sim,

Proof. R’ is the locus of double peints of W7, each peint of R* being on two generators
of W,*; and #,%is the only quintic primal having R* as locus of double points, since any such
primal must meet cach plane = () at least in the curve C(y) counted twice, i.e. at least in a sextic
curve, and hence must contain the whele of = (#). We therefore show that the quintic primal
(48) has R*> as locus of double points, by verifying the identities

Doy, — p O = (x, + x, + xg + 2 )@ F—1pG— u2H)

Dy gy — g B = (%) + x, - ¥y + X)) (AF— G — pH)

D@, — dp D*F = (3, 4 Xy b X b 2) (BPF — 1 G — p*H) (50)
Py, — e DT = (%, + X+ Xy +x)EF—Ap G — it H)

Dra@yy — At PF == (x, + 31 + xp + x) ) (AF— A G— piH)

or indecd any one of them ; since the left hand member, equated to zero, is the equation of a sextic
primal with R® as locus of double points, and the identity shows that this primal breaks up into a
prime and the quintic (48), which can thus only be ¥, in the product &,, @, the coefficients

of 1% u® arc immediately seen to be (x +x,+x, + x) F, —(x, +x, + x,;, + x) H; the coef-

ficient of 2 is symmetrical in x,, x,, xg, x,; and the verification that it is in fact equal to
BE? — (X, 4 xs + Xy -+ x,) G s tedious but perfectly straightforward. Theorem 12 is thus
proved,

It will be seen that the identities (50) and the mapping defined in (45) provide an explicit
expression for the known quadrecubic Cremona transformation in four dimensions [4], in which
the homaloids are on the one hand quadrics through an elliptic quintic curve *C?, and on the ot~
her hand cubics through an R%, We can take (payy s Pag s Paos Pos s Pro 3 Pais Pog s Py » Pey » Pao) 85
linear forms in the coordinates in the ambient four dimensional space of the Grassmannian
'C5 of {n), satisfying the lincar identities (38) with. the argument & omitted, and (40) ; for
instance we can take either of the two pentads (2, 5 Pa  Pao » Pot s Pre) OF (Pug s Pan  Prs s Poygs
Pao) as the coordinates, the relation between the two coordinate systems being given by (41),
(42), again of course with the argument « omitted ; and we define the further lincar form

P* = (Pay + oy T Pt o T PIB),‘;(ZJ'-_ #)
= (py 4 Poz + Pis Py + P:m)."(‘l + 2.

Then from (45} we have

Pay P P by
Pas Foa Poz Dyy
Q P,;o = (I’l.‘i s B FP1a == (1)40 > Epii‘ = (‘D* (51)
Pu1 P, P Dy
D1z Fryy Pyy @y

X, O T T T (I’?Hgﬂ

x 1 -3 1 1 1 =1 Pysyy

\ DyoPrs
Mit F—dpG - wHY| xe )=} U1 —3 1 1 —I

#G — ¢ 2 o

X 111 =3 1 e

X, 1 1 1 1 -3 —1 lgi‘fp*qﬂo

the equations of the inverse mapping arc

|
|
v


file://-/-P-ii
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Xy —3 1 - 1 1 | - | Pz Pyl
Xy 1 —3 1 1 1 1 P3siPyz
gl X |= 1 1 —3 1 1 1 PPy (52)
Xg 1 1 1 -3 — Po1Pey
3 — P12 Pyo
Xy 1 1 1 1 3 1 l;p*“

where g, like g, is an arbitrary coefficient of homogeneity, The identities

Paslit} p1(#) = Pyu(e) Pooltt) — puolin} pos(t) = poi(et) po (1) == P () Pyolur) — plk

which are obvious form the first form of (10), mean that the five quadrics on the right of
(52) all contain the Grassmannian curve, of which (10) is the parametrisation,

The envelope G2 -- 4FH = ¢ of {W,%(4 : w)}, of total order 10, consists of two parts, The
locus of double points of W," being R, that of the whole system [W,%(4 : w)} is V2%, {R*(4 : p))
being a pencil on ¥*,* ; this counts twice in the envelope. The residual part is the quartic primal
M, locus of a point P such that the two planes =, =" through 2 that meet /,,...,/, coincide ;
sifice for any point P not on ¥*,% if and only if s, =* coincide, the two members of {IW,%(A : i)
through P, one containing each of these planes, will likewise coincide.

The quartic primal M,* is well known [1]. It has the fifteen lines /;, fz; in (5} as double lines,
and touches each of the ten primes X, ; along a quadric surface Q; j» of which the six that arc in
that prime of the fifteen lines (5} are generators (three of each system). M,* is in fact the only
quartic primal touching these ten primes, or indeed any five of them that are linearly indepen-
dent, along the respective quadric surfaces Q; j + for taking five such primes as the faces of a
simplex of reference, the section of the quartic by each of these (the corresponding quadric Q; ;
counted twice) determines all the terms in its equation that do not contain a particular coordinate;

and as the equation is quartic, no term can contain all five coordinates,

This last remark enables us to verify that the equation of M * (in the coordinate system used
throughout) is

@:Zx,-?xjhr22xiﬂxixk+22x,-xix,,x;=0. (53)
10 30 5

For on substituting — x, for x, in @ (. e. taking (x,....,x;) as coordinates in the prime
X 35! x;+x, = 0) many terms cancel, and the expression reduces to (x,*+ x5 X+ x5 X1 +x, X,
Moreover, the six of the lines (5) that lie in this prime are

b xg=xg=—%¢ Iy Xo=x3=—x1 L =% ——x,

It Xo=xy =—xy lp! x=x1=—x; [y x,=x,=—x,
all of which clearly lie on the quadric x,* + x, x; + x4 x3 + %y, x, = 0, so that this quadric is
the quadric @y, . Thus & = 0 touches ¥;, along the quadric Q,,, and similarly it touches each

prime 3y along the quadric @y, ; 1. e. @ = 0 is the equation of M,*,

There is thus clearly the identity

G HAFH=9 %" 0, 54
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except that, a priori, there might be a numerical coefficient on one side or the other ; but that
this coefficient is unity can be scen by giving the value 1 to all the coordinates at once, when, by
merely counting the terms in the symmetric forms, we see that

F—=H=32, G=2352,G"+4FH =128000; ¢ % — 40,6 = 80, $** & = 128,000.

The quintic primal G = 0 cuts cach of the ten primes i in the quadric surface ;,, to-
gether with the three of the fifteen planes =, #; ; that are in 3; ; {incidentally, these three
planes cut Q;; in the six out of the fifteen lines that are in 2 G =0cuts ¥#3% in the fifteen
planes =, , n;; ;5 and it cuts My* in the ten quadrics O;; . The intersection of F*y* with My*
is a surface of order 12, having the fifteen lines /;, ],-j- as double lines, and on which the focal
curves of the surfaces {{R® (4 : p)} form a pencil, with base points at Py, ,..., Py, . The focal
curve on R® is in fact ¢clearly its section by M,%, residual to the five lines /,,...,J; counted
twice.
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OZET

Dért boyutlu uzaydaki beginci dereceden normal cliptik R7 regle yizeyleri igin dzel
bir koordinat sistemi o tarzda tantmlanmaktadir ki, yiizey bu koordinat sisterninin koor-
dmatlarima 20 permibtgsyonundan olugan bir grubun déniigiimleri altinda invaryam kal-
maktadwr. Bu koordinat sistemi sayesinde, R% yiizeyini kiibik bir egri boyunca kesen genel
diizlemin ve yiizeyin genel doguramnin Grassmany koordinatlannin beginet dereceden
eliptik fonksiyonlart cinsinden ifadeleri elde ediimekte ve yiizeyin iki degigkenin eliptik
fonksiyonlari cinsinden iki farkh parametrelenmesi bulunmaktadir, Béyiece, yizey igin bir
kiibik denklem takime ve yiizey tizerindeki kiibik egrilerin diizlemleri tarfindan dogurufan
hiperytizey igin beginci dereceden bir denklem elde edilmektedir : bu denklemier, a, eliptik
fonksiyonlzrm peryodunun ilkel pargasiun begte biri olmak tzere,

A =1’ (0) ve g = 9’ (20)
parametrelesine homogen bir tarzda baghdilar, Ustelik, #% yiizoyinden gegen kiibikler
iie elde edilen Csemoma dOntigimii ve normal eliptik beginci dereceden bir efriden
gegen kuadrikierie elde edilen ve ynkardaki doniigimiin tersi olan déniigiimlerin agtk
ifadeleri bulunmaktadiz,




