\triangle -CURVATURES AND \triangle -GEODESIC PRINCIPAL DIRECTIONS OF A CONGRUENCE OF CURVES IN THE SUBSPACE OF A FINSLER SPACE ')

C. M. PRASAD

The process of δ -differentiation [4] leads to the use of the DUPIN indicatrix in finding out the principal directions of a congruence. The process of Δ -differentiation [2] requires the use of the osculating indicatrix corresponding to a direction xi in finding out the principal directions of a congruence of curves. In the present paper, by using the process of Δ -differentiation, the Δ -curvatures and the Δ -geodesic principal directions of a congruence of curves in the subspace of a F_{1NSLER} space have been obtained and some of their properties have been studied.

1. Introduction. Let $F(x, \dot{x})$ be the fundamental metric function of the FINSLER space F_n with local coordinates x^i (i = 1, ..., n) and satisfy the conditions usually imposed upon a FINSLER metric [⁴]. Let F_m be a FINSLER subspace with local coordinates u^{α} $(\alpha = 1, 2, ..., m)$. Let $L: u^{\alpha} = u^{\alpha}$ (t) be a curve on F_m . The components $x^i = dx^i/dt$ and $u^{\alpha} = du^{\alpha}/dt$ of its unit tangent vectors with respect to the x^i and u^{α} coordinate system are related by $\dot{x}^i = B^i_{\alpha} u^{\alpha}$ where $B^i_{\alpha} = \partial x^i/\partial u^{\alpha}$. At each point of L, a combination $(n^{\alpha}, \dot{u}^{\alpha})$ or (x^i, \dot{x}^i) determines a line-element of F_m . Quantities in our discussion will be considered for this line-element unless stated otherwise. The fundamental metric tensors $g_{ij}(x, \dot{x})$ and $g_{\alpha\beta}(u, \dot{u})$ of F_n and F_m are connected by

(1.1)
$$g_{\alpha\beta}(u, \dot{u}) = g_{ij}(x, \dot{x}) B^{i}_{\alpha} B^{j}_{\beta}.$$

There exists a system of *n*-*m* linearly independent unit vectors $n_{(y)}^{*i}(x, \dot{x}), v = m + 1, ..., n$, normal to F_m . These vectors are called secondary normal vectors [¹] and are defined by the solutions

(1.2)
$$n_{(v)j}^* B_{\alpha}^j = g_{ij}(x, \dot{x}) n_{(v)}^{*i} B_{\alpha}^j = 0$$

and arc normalised by

(1.3)
$$F(x, n_{(v)}^{\star}) = g_{ij}(x, n_{(v)}^{\star}) n_{(v)}^{\star i} n_{(v)}^{\star j} = 1.$$

These vectors also satisfy the relation

(1.4)
$$g_{ij}(x, \dot{x}) n_{(v)}^{*i} n_{(\mu)}^{*j} = \delta^{v}_{\mu} \psi_{(v)}, \quad (\text{no summation on } \nu).$$

¹⁾ The author is extremely grateful to Professor K. B. LAL for his encouragement and guidance.

The covariant derivative of B^i_{α} with respect to u^{β} is given by ['],

(1.5)
$$B^{i}_{\alpha;\beta} \stackrel{\text{def}}{=} I^{i}_{\alpha\beta} = \sum_{\nu} \Omega^{*}_{(\nu)\alpha\beta} n^{*}_{(\nu)}$$

where $\Omega_{\alpha\beta}^*(u,\dot{u})$ is defined as the secondary second fundamental tensor of the subspace. The covariant derivative of the secondary unit normal is given by

(1.6)
$$n_{(\nu);\beta}^{*i} = A_{(\nu)\beta}^{\delta} B_{\delta}^{i} + \sum_{\mu} N_{(\nu)}^{(\mu)} n_{(\mu)}^{*i}$$

where

(1.7)
$$A^{\delta}_{(\nu)\beta} = -\psi_{(\nu)} \Omega^*_{(\nu)\alpha\beta} g^{\alpha\delta} - E^*_{ijk} (x, \dot{x}) B^k_{\beta} B^i_{\alpha} u^{*j}_{(\nu)} g^{\alpha\delta}$$

and

(1.8)
$$N_{(\nu)\beta}^{(\mu)} \psi_{(\mu)} = u_{(\nu)\beta}^{*j} n_{(\mu)j}^{*} , \ E_{ijk}^{*} = g_{ij;k} (x, x)$$

Consider a system of congruences determined by the vector-field $\lambda_{(\alpha)}^i$. At a point of the subspace, it can be expressed as

(1.9)
$$\lambda_{(\sigma)}^{i}(u, \dot{u}) = t_{(\sigma)}^{\alpha}(u, \dot{u}) B_{\alpha}^{i}(u) + \sum_{\nu} C_{(\sigma\nu)}(u, \dot{u}) n_{(\nu)}^{*i}(u, \dot{u}) .$$

It may be noted that at a point of F_m , the functions $\lambda^i_{(\alpha)}(u, \dot{u})$ are single-valued functions of (u, \dot{u}) . Let $C: u^{\alpha} = u^{\alpha}(s)$ be a curve (not in the direction of \dot{u}^{α}) of the subspace. The components, in the x^i and u^{α} coordinate system, of the tangent vector to C are such that

$$(1.10) x'^i = B^i_a u'^a$$

where $x'^{i} = \frac{dx^{i}}{ds}$ and $u'^{\alpha} = \frac{du^{\alpha}}{ds}$.

These vectors satisfy the condition

(1.11)

$$g_{ij}(x, \dot{x}) x'^{i} x'^{j} = g_{\alpha\beta}(u, \dot{u}) u'^{\alpha} u'^{\beta} = \varphi.$$

Let

$$x'^{i}/\sqrt{\varphi} = g^{i}$$
 and $u'^{a}/\sqrt{\varphi} = g^{a}$

then equation (1.11) gives

(1.12)
$$g_{ij}(x, \dot{x}) g^i g^j = g_{\alpha\beta}(u, \dot{u}) g^\alpha g\beta = 1.$$

In the following section, by using the process of Δ -differentiation [²], we shall define the Λ -curvatures of the congruence $\lambda_{(\sigma)}^i$.

2. A-curvatures of a congruence

The Δ -differential of the vector $\lambda_{(\sigma)}^i$ (given by (1.9)) along C is given by

(2.1)
$$\frac{\Lambda \lambda_{(\sigma)}^{i}}{\Delta s} = \lambda_{(\sigma);\beta}^{i} y^{\beta} = \left(W_{(\sigma)}^{\alpha} B_{\alpha}^{i} + \sum_{\gamma} D_{(\sigma\gamma)} n_{(\gamma)}^{*i} \right),$$

CURVATURES AND PRINCIPAL DIRECTIONS OF A CONGRUENCE

where

(2.2)
$$W^{\alpha}_{(\sigma)} = q^{\alpha}_{(\sigma)\beta} \ y^{\beta} = \left(t^{\alpha}_{(\sigma);\beta} + \sum_{\nu} C_{(\sigma\nu)} A^{\alpha}_{(\nu\beta)} \right) y^{\beta}$$

and

(2.3)
$$D_{(\sigma\nu)} = P_{(\sigma\nu)\beta} y^{\beta} = \left(t^{\alpha}_{(\sigma)} \Omega^{*}_{(\sigma)z\beta} + \sum_{\tau} C_{(\sigma\tau)} N^{(\nu)}_{(\tau)\beta} + C_{(\sigma\nu);\beta} \right) y^{\beta}.$$

In analogy to the definiton of the geodesic curvature of a subspace [4], we define the geodesic curvature of the congruence, $\lambda_{(\sigma)}^i$ as follows:

Definition (2.1). The quantity K(r)G defined by

(2.4)
$$K^{2}_{(\sigma)G} = g_{\alpha\beta} (u, u) W^{\alpha}_{(\sigma)} W^{\beta}_{(\sigma)} = \widetilde{\Omega}_{(\sigma)\alpha\beta} y^{\alpha} y^{\beta}$$

where

(2.5)
$$\widetilde{\Omega}_{(\sigma)\alpha\beta}(u, \dot{u}) = g_{\gamma\delta}(u, \dot{u}) q^{\gamma}_{(\sigma)\alpha} q^{\delta}_{(\sigma)\beta},$$

is called \varDelta -geodesic curvature of the congruence $\lambda_{(\sigma)}$ along C in F_m .

Definition (2.2.). If the A-geodesic curvature of the congruence $\lambda_{(\sigma)}$ in the subspace vanishes at every point of the curve C, the curve is called a A-geodesic.

The differential equation of a A-geodesic of the congruence is given by

(2.6)
$$\widetilde{\Omega}_{(\sigma)x\beta}(u, \dot{u}) \frac{du_{\alpha}}{ds} \frac{du^{\beta}}{ds} = 0$$

If $u^{\alpha} = u^{\prime \alpha}$, the 1-geodesic is called the λ -geodesic and its differential equation is given by

(2.7)
$$\widetilde{\Omega}(\sigma)_{\alpha\beta}(u, u') du^{\alpha} du^{\beta} = 0.$$

If the space F_m is a Riemannian space, (2.7) reduces to λ -geodesic [³].

Since the Δ -geodesic curvature of the congruence $\lambda_{(\sigma)}^i$ in F_m vanishes along a Δ -geodesic (i.e. $w_{(\sigma)}^{\alpha} = 0$), the equation (2.1) reduces to

(2.8)
$$\left(\frac{\Delta \lambda_{(\sigma)}^{i}}{\Delta s}\right)_{\mathbf{Q}} = \sum_{\mathbf{v}} D_{(\mathbf{v})} n_{(\mathbf{v})}^{*i} .$$

In view of the definition of the secondary normal curvature of the subspace [1], we define the following :

Definition (2.3). The scalar $K_{n^*(\sigma)}$ defined by

(2.9)
$$K_{n^*(\sigma)}^2 \stackrel{\text{def}}{=} g_{ij}(x, \dot{x}) \left(\frac{\Delta \lambda_{(\sigma)}^i}{\Delta s}\right)_G \cdot \left(\frac{\Delta \lambda_{(\sigma)}^j}{\Delta s}\right)_G$$

73

is called the Δ -secondary normal curvature of the congruence in the subspace and since $n_{(\sigma)}^*$ are unit vectors, it follows from (2.8) that the curvature of this Δ -geodesic (regarded as a curve of F_n) is represented by (2.9).

Simplifying the equation (2.9), we have

(2.10)
$$K_{n^{*}(\sigma)}^{2} = \widetilde{\Omega}_{(\sigma)\alpha\beta}^{*} (u, u) g^{\alpha} g^{\beta},$$

where

(2.11)
$$\widetilde{\Omega}^*_{(\sigma)\alpha\beta} = \sum_{\nu} \psi_{(\nu)} p_{(\sigma\nu)\alpha} p_{(\sigma\nu)\beta}$$

Definition (2.4). The scalar $K_{(\sigma)}$ defined by

(2.12)
$$K_{(\sigma)}^{2} = g_{ij}(x, \dot{x}) \left(\frac{d\lambda_{(\sigma)}^{i}}{ds}\right) \left(\frac{d\lambda_{(\sigma)}^{i}}{ds}\right)$$

is called the Λ -absolute curvature of the congruence in the subspace.

Theorem (2.1). If the conguruence $\lambda_{(\alpha)}^i$ does not lie in a variety spanned by the secondary normals, the A-geodesic curvature of the congruence is the magnitude of the A-derived vector of the tangential component of the congruence along C.

Proof. If $\lambda_{(\sigma)}^{i}$ does not lie in a variety spanned by the vectors $n_{(\sigma)}^{*i}$, $C(\sigma_{\nu}) = 0$ and $W_{(\sigma)}^{\alpha} = \frac{\Lambda t_{(\sigma)}^{\alpha}}{\Lambda s}$ and the equation (2.4) reduces to

(2.13)
$$K^{2}_{(\sigma)G} = g_{\alpha\beta} \left(\mathbf{u}, \dot{\mathbf{u}}\right) \left(\frac{\Delta t^{\beta}_{(\sigma)}}{\Delta s}\right) \left(\frac{\Delta t^{\beta}_{(\sigma)}}{\Delta s}\right),$$

which is the required result. Moreover, if $du^{\alpha}/dt = du^{\alpha}/ds$, the equation (2.13) yields

(2.14)
$$K^{2}_{(\sigma)G} = g_{\alpha\beta} (u, u') \frac{\delta t^{\alpha}_{(\sigma)}}{\delta s} \frac{\delta t^{\alpha}_{(\sigma)}}{\delta s} \cdot$$

Theorem (2.2). If the components of the congruence $\lambda_{(\sigma)}^{i}$ tangential to F_{m} are tangential to the curve C and $du^{\alpha}/ds = du^{\alpha}/dt$, the Λ -absolute curvature, the Λ -geodesic curvature and the Λ -secondary normal curvature are respectively the geodesic curvature with respect to F_{m} , the geodesic curvature with respect to F_{m} and the secondary normal curvature of the subspace.

Proof. Since $\lambda_{(\alpha)}^i = x'^i = B_{\alpha}^i u'^{\alpha}$, the proof of the theorem follows from the definitions (2.4), (2.1) and (2.3).

From theorem (2.2) obviously the Λ -curvatures of the congruence may be considered as the generalised curvatures of the subspace and as such we may regard $\tilde{\Omega}^*_{(\sigma)\alpha\beta}(u, u) du^{\alpha} du^{\beta}$ as the generalised secondary second fundamental form of the subspace.

CURVATURES AND PRINCIPAL DIRECTIONS OF A CONGRUENCE

Definition (2.5). A direction along which the Δ -secondary normal curvature of the congruence in F_m vanishes, is called the Δ -asymptotic direction and a curve whose direction at each point of it is Λ -asymptotic, is called a Δ -asymptotic line of the congruence in F_m . Its differential equation is given by

(2.15)
$$\widetilde{\Omega}^*_{(\sigma)\alpha\beta}(n, u) \, du^{\alpha} \, du^{\beta} = 0 \qquad \text{for all } \sigma.$$

3. A-geodesic principal directions

Definition (3.1). For a preassigned $(u^{\alpha}, \dot{u}^{\alpha})$, a direction du^{α} / ds is said to be Δ -geodesic principal direction with repect to $n_{(\sigma)}^{*i}$ provided that $K_{(\sigma)G}^2(u, \dot{u}, u')$ assumes an extreme value. The corresponding value of $K_{(\sigma)G}^2$ is called a Δ -geodesic principal curvature of the congruence in the subspace.

We now give the following propositions.

Theorem (3.1) The Δ -geodesic principal directions and the Δ -geodesic principal curvatures (with respect to $n_{(\sigma)}^{*i}$) of the congruence are respectively the eigenvectors and eigenvalues of the tensor $\widetilde{\Omega}_{(\sigma)\times B}$.

Theorem (3.2). There exist *m* Δ -geodesic principal directions $\xi^{\alpha}_{(\mu)}$ ($\mu = 1, 2, ..., m$) of the congruence in F_m satisfying the conditions

(3.1)
$$\widetilde{\Omega}_{(\sigma)\alpha\beta}(u, \dot{u}) \ \xi^{\alpha}_{(u)} \ \xi^{\beta}_{(u)} = 0$$

and.

(3.2)
$$g_{\alpha\beta}(u, u) \xi^{\alpha}_{(u)} \xi^{\beta}_{(a)} = 0 \quad (\varrho \neq \mu).$$

The proofs of the above theorems are similar to those of the corresponding propositions in [2].

4. Some Invariants

Let $\xi^{\alpha}_{(\mu)}$ ($\mu = 1, 2, ..., m$) be the Δ -geodesic principal directions and ν^{α} be a vector field of F_m normalised by the condition

(4.1)
$$g_{\alpha\beta}(n, u) v^{\alpha} v^{\beta} = 1.$$

Since $\xi_{(\mu)}^{\alpha}$ are linearly independent in F_m , we write

(4.2)
$$\nu^{\alpha} = \sum_{\mu} l_{(\mu)} \xi^{\alpha}_{(\mu)} .$$

Substituting from (4.1) and using the relation (3.2), we get

(4.3)
$$\sum_{\mu} l_{(\mu)}^2 = 1 \; .$$

The square of the Δ -geodesic curvature $K_{(\sigma)G}$ along ν^{α} is given by

$$K^2_{(\sigma)G}(\mu^{\alpha}, \dot{\mu}^{\alpha}, \gamma^{\alpha}) = \widetilde{\Omega}_{(\sigma)\alpha\beta}(\mu, \dot{\mu}) \gamma^{\alpha} \gamma^{\beta}$$

Substituting from (4.2) and putting

$$\widetilde{\Omega}_{(\sigma)\alpha\beta}(\mu, \dot{\mu}) \xi^{\alpha}_{(\rho)(\mu)} = \delta_{\mu\rho} \overline{K}_{(\sigma\mu)}$$
 (no summation on μ)

we obtain

(4.4)
$$K^{2}_{(\sigma)G} = \sum_{\mu} l^{2}_{(\mu)} \bar{K}_{(\sigma\mu)}$$

where $\vec{K}_{(\sigma_{k})}$ ($\mu = 1, 2, ..., m$) are the A-geodesic pricipal curvatures of the congruence.

Theorem (4.1). The sum of the squares of the A-geodesic curvatures of the congruence along m mutually orthogonal directions of F_m is an invariant and is equal to the sum of A-geodesic principal curvatures of the congruence.

Proof. Consider *m* mutually orthogonal vectors $v_{(\rho)}^{\alpha}$ ($\rho = 1, ..., m$) each satisfying the normalising condition (4.1). We write

(4.5)
$$v^{\alpha}_{(\rho)} = \sum_{\mu} l_{(\rho\mu)} \xi^{\alpha}_{(\mu)}$$
 $(\varrho = 1, ..., m).$

Since $g_{\alpha\beta}(u, \dot{u}) v^{\alpha}_{(2)} v^{\beta}_{(\mu)} = \delta_{\rho\mu}$, we get after simplification,

(4.6)
$$\sum_{\ell} l_{(\mu \ell)} = \delta_{\rho \mu}.$$

Hence the matrix $\| \, I_{\rho\mu} \, \|$ is orthogonal and

(4.7)
$$\sum_{\rho} l_{(\rho\mu)}^2 = 1 \quad \text{for} \quad \mu = 1, 2, ..., m.$$

By (4.4), the square of the Δ -geodesic curvature $K_{(\alpha)G}$ in the direction of $v_{(\alpha)}^{\alpha}$ is given by

(4.8)
$$K^2_{(\sigma)G(\rho)} = \sum_{\mu} l^2_{(\rho\mu)} \bar{K}_{(\sigma\mu)}.$$

Hence using the equation (4.7), we get

$$\sum_{\rho} K^2_{(\sigma)G(\varepsilon)} = \sum \vec{K} (\sigma \mu)$$

which was to be proved.

5. A-absolute geodesics

From the equations (2.4), (2.10) and (2.12), we have

(5.1)
$$K^{2}_{(\sigma)} = \Phi_{(\sigma)\alpha\beta}(u, \dot{u}) g^{\alpha} g^{\beta},$$

CURVATURES AND PRINCIPAL DIRECTIONS OF A CONGRUENCE

where

$$\mathcal{D}(\sigma)$$
 ab $\{\Omega(\sigma)$ ab $+ \Omega_{(\sigma)$ ab}\}

is a symmetric covariant tensor.

Defination (5.1). If the \triangle -absolute curvature of the congruence vanishes along a curve C, the curves is called the \triangle -absolute geodesic of the congruence in the subspace. Its differntial equation is given by

(5.2)
$$\Phi(\sigma)\alpha\beta \quad (\mathbf{u}, \mathbf{u}) \quad \frac{du^{\mathbf{q}}}{ds} \quad \frac{du\beta}{ds} = 0 \ .$$

The principal directions associated with the tensor $\Phi(g)_{\alpha\beta}$ may be called Δ -absolute principal directions and corresponding values of $K_{(\sigma)}$ are called the Δ -absolute principal curvatures of the congruence $\lambda^i_{(\sigma)}$. When du/dt = dn/ds, the equation (5.2) gives the equation of the absolute geodesic of the congruence in F_m .

From the equations (2.4), (2.9) and (2.12), we have

(5.3)
$$K_{(\sigma)}^2 = K_{(\sigma)G}^2 + K_{n(\sigma)}^2$$

Now we prove the following

Theorem (5.1). A necessary and sufficient condition that a curve of the subspace be Δ -absolute geodesic is that it is a Λ -geodesic as well as a Δ -asymptotic line of the congruence in the subspace.

Proof. From the definition (5.1) and the equation (5.3), we have $K_{(\sigma)} = 0$ and then from the equation (5.3) obviously $K_{(\sigma)G} = 0$ and $K_{n(\sigma)}^{*} = 0$. Conversely, if $K_{(\sigma)G} = K_{n(\sigma)}^{*} = 0$, then $K_{(\sigma)} = 0$ which completes the proof.

In view of the equation (5.3) and the definitions (2.1)-(2.5) and (5.1), the following propositions are immediate.

Theorem (5.2). The Λ -absolute curvature and Λ -geodesic curvature of the congruence are equal along the Λ -asymptotic line of the congruence in F_m .

Theorem (5.3). The A-absolute curvature and Δ -secondary normal curvatures are equal along a Δ -geodesic curve of the congruence in the subspace.

Theorem (5.4). If any two of the following hold, the third will also hold ;

(i) the curve be a Δ -absolute geodesic,

(ii) it is a Δ -geodesic and

(iii) it is a A-asymptotic line of the congruence.

77

Personal and the second second

승명 좋지만

REFERENCES

- [1] ELIOPOULOS, H. A. : Subspaces of a generalised metric space, Canad. J. of Math., XI (3), (1959).
- [2] LAL, K. B. : The generalised curvatures of a congruence of curves in the subspace of a Finsler space, AND Rev. Fac. Sci. Univ. Istanbul, Serie Δ, 31, 49 - 55, (1966).
 PRASAD C. M.
- [8] NIRMALA, K. : Curves and Invariants associated with a vector-field of a Riemannian V_m in relation to a curve C in a subspace V_n , Proc. Nat. Inst. of Sciences, India, 29, A, No. 4, (1963).

[4] RUND, H. : The Differential Geometry of Finsler Spaces, Springer Verlag (1959).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GORAKHPUR, GORAKHPUR, (U. P.), INDIA (Manuscript received March 21, 1970)

ÖZET

Δ-türetme işlemi [4], bir kongrüansm esas doğrultularının belirtilmesi için DUFIN göstergesinin kullanılmasına imkân vermektedir. Δ-türetme işlemi [2] ise, bir kongrüansm esas doğrultularının bulunulmasında bir x^i doğrultusuna tekabül eden oskülatör göstergenin kullanılmasını gerektirmektedir. Bu araştırmadu, Δ-türetme işlemini kullanarak bir FINSI.ER uzayının bir alt uzayında bir eğri kongrüansının Δ-eğrilikleri ve Δ-geodezik esas doğrultuları elde edilmiş ve bunlardan bâzı sonuçlar çıkarılmıştır.