ON THE v - TYPE, LOWER 4 - TYPE AND y - .- TYPE
OF THE FUNCTIONS REPRESENTED BY THE SERIES
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This paper introduces a series which unifies various aspects of ke two theories of

entire functions defined by TayLor series and DIRICHLET series, which have so far been

treated separately by different workers in the two fields. Applications given at the end
of each theorem are intended to emphasize this fact i),

1. Consider the function

a.n _ F@) = Y g et 00
n=1

where

1.2) fim sup afd, = n< w,

n—ray

Ap >y, 4,0, limi, =g} =1,23...) is a sequence of real numbers
-+

and v (x) is an increasing continuous function of the real variable x, defined either for all x on
the real line or for all x in the interval 5 << x <C @ where — o0 <5 <~ 4 oo, satisfying the
following conditions ;

) w (x) tends to infidity as x -~ ,
(i)  w(x) assumes every value from — o to + o,

(iii)  w(x) has an inverse, that is, if ¥ = y (x), then there exists a function ' such
that w~'(} = x,

(iv) wix)=w(x—k)=¢x) =0() for every fixed k > 0,

1} The research work of the author has been supported by a Post-Doctoral Feltowship of the
Universtly Graal Commission, India, -
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Let x, and x, be the abscissa of p-convergence and the abscissa of absolute w-convergence
respectively. If x, = ~ and x, = -, then the series in (1.1) is convergent for all values of
x > » and the sum function F(x) is defined and continuous for all values of x = .

2. if, in the series (1.1), we put () == o, we get a DIRICHLET series viz.,

o
Fo) = ), an- et 9 ©< o< w)

n=1
in the real variable o

If, in the series (1.1}. we substitute # (r) = logr and X, — n, one may get a TAYLOR
series, viz.,

o

F(r)— Z a, - " 0 < r< ~)
n=1

in the real variable r.

If, 1,, and v (x) are respectively replaced by n and x, the series takes the form of a
TayLor-D-series,

o

F(x)= 2 a, et

n=1

In this paper we have attempted to unify various aspects of the two theories of entire fun-
ctions defined by TavrLor series and DiRricHLET series which have so far been treated sepa-
rately by different workers in the two fields. Applications given at the end of each theorem are
intended to emphasize this fact.

3. Let

Ein;; sup log log F(x) o

G.n i inf w1

0=hzg< @)

We shall refer to the constants ¢ and 1 as defined in (3.1} by w-order [', 18] and lower
yr-order [', 18] respectively of the function F(x), which shall be said to be of regular y-growth
when ¢ = 4, Justification for this lies in the fact that ¢ and 4 depend on the function w (x).
Again let :

i . sup log F(x) T .
(3.2) lenl inf W =, (0 === T < o)
where g (0 <C g < o0} is the w-order of the function f(x). We define T to be the w-type [1, 21)
and ¢ the lower w-type[', 21} of the function F(x)of y-order g, and in the case when the limit in
(3.2) exists i.e. T = (< @) and 1 = g, we say that F(x) is of perfectly regular w-growth.
In a previous paper [', 15-26] we have obtained an expression for the w-type in terms of
the coefficients, Now, we obtain the same for the lower y-type.
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Theerem 1, Lef

o

F) = ) @ et ¥

=1
be g function of w-order 8 (0 < ¢ < )} such that

log F(x)

lim inf =7,
X+ e W(¥)
i dnts ~ 4, then
L An
(3.3) tz== lim inf = (g,):/An
PR ep

log {anfan+1)

and further, if F
] -

forms a non-decreasing functian of n Jor n > n, then

(3.4) ¢ = lim inf é_ﬂ (a,)¢ k.

N0 Q

Proof, Let

lim -inf- A (@) hn = a,
ee

I

Suppose first 0 < a < <o, then, forany & > 0_, n > N = N(g), we have
L@, Rl > (@—¢)ep.

We know that

F(x) >> q, ebn - ¥) forall x >,

Therefore
log F(x) _ logla,) + dq o wix)
e "W e W)
That is
log F(x} 1 i i
e v 7 e | ha ) o log e ee— o o8t |-
Let
(Anfora) 1@ = ¥ < (ys1fu-a)' i,
Then '

log F (x) ae [ 4, L A ’
V@ T Ty | g 0B A0 g o8 Wa—o)eel O(I)J

~a log {(-a:—s) . e] , since PN P

Hence ¢ éa, which obviously holds when a = 0. If ¢ = oo, the above argument with a
arbitrary large number & in place of (@ —¢) gives + — o and hence (3.3).-
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If u (x, F) denotes the maximum term of F(x), then

log puix, F) 1 .
R TE T gu e | 082t An e ()
for ’
log (an—1/a,) log (a,/an+1)
sn it - TR il A
lu—‘-n—-l v < Ant1 —dn
Suppose first / < oo, then
(3.5) loga, + 4w (X) = (t — )@ ¥
for all x > x, and for all # such that
log (an—1/a,) i log {a,fan+-1)
gy s i g

Let
X = e (@)@ 0

then for # > n,,
log X > log dn + *f-— [(F — &) e W — 1,y (x)]
n

or

by Qe 5) e ¥
X>evm e"p[ i

- j-n e+ Q‘(T — 8)-8Q © W(x)
T e - () Fi

b

since e* = ex, for all values of x = 0.

Further, if

log (apfan+1)
Lyt —dn
we obtain from (3.5)

gl = gn—1)=..=gl—mand if | Zp=m, (n—m) > a,,

in_p{a,—p)Q'hir > ep .
Therefore

]

(3.6) fim inf 22 (g yeih, =
eg
which on the same arguments shows that if { = o, then a = . Hence (3.4) follows from
(3.3) and (3.6).
Application.

@ Let f(z) = 2 0a 2%, (2 = x 4+ i¥), be on entire function of order o and. lower order
A0 < A <£p << x), Then
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1= lim inf 2 jq,(0m © =t )
no ep
i @ s N . .
and further if log —G_‘LI l and consequently | aylan 1| forms a nondecreusing function of n for
fit- . ’

7 > n,, then [¥, 260]

f = Hm inf 2 am
o ot fag |20

(ii) In the case of DiricHLET series the result [*, 29-31] is the same as in (3.3} and in
(3.4) under the conditions mentioned in the theorem,

w

Theorem 2. Ler F(x) = Z ay - ek " VF pe the function of wp-order ¢ and lower
=1

yeorder A0 <= 4 < o~ w) Then

. .o log F(x) .. e log p(x, F)
lim inf — lim inf OB #L )
G.7 () St =m0

i.e. the fower w-type of the function F(x) of frregular - growth and of finite w-order is zero.

@ fim inf 255 =
Proof. From (3.1) we obtain
(3.8) fog F(x) > eld—8 ¥, for any & >0 and x > x, = x, (z) and
3.9 log F(x) < ela+®) - ¥{*} for a sequence of values of x—+oo.

Dividing (3.8) and (3.9) by e * ¥{(*) and then proceeding to limits, the argument shows that

log F(x)

lim inf = 0.

X el WX
Since log F(x).~ log p (x, F), for ¢ <C =, hence the result in (3.7).

Also, it is known [', g] that

lim inf log dvinF) _ A
x5 y (X)
Therefore proceeding on the same lines as above, we obtain the second part of the theorem.

Application, The lower type of enfire functions represented by IIRICHLET Series and
TAYLOR serics of irregular growth of finile order, is zero ; and the values of

lim inf &1@_ and lim inf@
F- ee" rao }‘Q
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vanish in the two series respectively. [*, 2501, [3, 345].

4, The fact that

lim inf log F(x)

—_— ey o -
ool s — 0 when 0=1<¢ < )

opens the question of comparing the function log F(x) with the function e ¥ when
(0 < v < g - <o), Bvidently, since 2 < g,

log Fx)

lim sup =2 7O c :
X p el Wiz} ' i

.. log Fx)

t 1 el S

yet I nf 5w

of the function F(x) and denote this by 73. Thus, for function F(x) of w-order p and lower
w-order 4, such that (0 << <2 ¢ = ~), we define the w-i-type 1), by

may still be a finite constant. We shall refer to this constant as w-A-typc

log F(x) _

4.1 limy inf = fy,

oo e . N

Application. From (4.1), we obtdin the definitions for i-type in case ‘of DIRICHLET
series and TAYLOrR series respectively as obtained by R.S.L., Srivastava and P. SinGh
[*, 250] and [, 3457 viz.,

. oo log M (a

W) Y int %(—)* —

(i ' lim inf M = 1.
P ’h

Here we find- ¢ in terms of coefficients.

Theorem 3. Ler

F(x) = Z a’n . eln" 'P(x)
a=1

be a function of lower w-order L(0 << & << ) such that

fim inf log FE) = 1y,
X 67'- © P{x)

If dygy~ by, then

N |
£3 == lim inf 20 W hn
“n 2 2@

o

and. further, if 1og apfa, . )R — 1) forms a non-decreasing function of u for n > My, fhen

LR ]
4.3 73 = lim inf e_'i (@) .

TR
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The above theorem can be proved on the sam< lines as theorem 1, hence we omit the proof.
[i ]

Theorem 4. Let F(x) = 2 anehn Y be a function of w-order g, lower wy-order
n=1

A, {0 < & < g < ~) and lower y-A-type £y. If

o

lim Anja = D, D > 0.

n—+w
then
(4.4) lim inf 4, (an+1/a,)MD < elty,
N
and
(4.5) Hm inf &, (@u+ (‘@ )20 = 0,
now
Proof. Let lim inf 4, (aw+1/a,) M2 = ¢, (0 << ¢ << w), then, for any ¢ > 0
[ iRded
4.6) o Ay (@pia)M P = c— s for v ony=n, (8.

Substituting n,, #, — I, ..., (¢ — 1) in (4.6) and then mutltiplying all the (» — &) inequ-
alities, we have
(A, )0, (an.'lan'u)l D > (¢ — e)—ng

since 21 > 4,., Taking (# —n,}th root of both sides and then proceeding to limits, we get
eht, ¢, which is also true when ¢ =0, of ¢ = ~, then #3 = ~. If, in (4.6) we take g in
place of 2 and proceed on the same lines as above, we obtain (4.5), in view of (3.7).

)

5. Let F(x)= E an-ern - W) be the function of p-order (0 < p < ~), w-type T
and lower w-type f, then we have

. sup log F(x) . sup logu (x, F) T
; SE S - lim e = < f o -
GD I inf e 9B ~ gom inf e vy 0 OFf=T < @)

We now define vw-growth number y and fower w-growth number § for the function
F(x) as

52 tim S0P _Ay(eF)

y 3
o af st v —dr O=d=r<)

In the next theorem we obtain a number of results involving », 8, T, ¢, and ¢ etc.

Theorem 5, If the symbols have the meanings, as defined in (5.1) and (5.2) then

(5.3) () ' y=pT>pr=38
51t
(i) NP AN
(i) ‘ P y>=8(] - iogyjd)>=pr =8
) . v+ S8 =ZepT

) Equality cannot hold simultancously in (iv) and 8§ < ¢ T,
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Proof. From (5.2), we have

A, Fy = (0 — £). e - Y1)
for any £ >0 and x > x,.
Also, from {1.3) [, 16] for x > x,, and constant v (%) > ¢, we have,
x v w () + y )
log [~ H{w () + (), FI=0(1) + [ f + f i py -y’ (1) et
x

X

A
=0() + (rﬁ—s)f e V) L’ (Dt + Aoy - ()

X3
5—¢
=0+ - - DR W0 — @ VD] Ay - (k)
Therefore,
logply—"{wx)t+w (k}), F1 o) + d—s €2 WY Aoix, 1)+ 2 (k)
et [V T+ W) = o @ [P F W) T e@ [N * Pk
_ d—= t w {k) dvix,F)
=00+ e TRl T wm e wm

Hence, on proceeding to limits we obtain

and ié&{l-l—e"‘ﬂ(k)} .

S+ oy
(54) T > 0-e?" (175

- Q-e?"-j’(k)

3 0¥

The right hand side of the first inequality in (5.4} attains its maximum vaiue when

4
p {k) — L-;E,L , .hence -

!a
(5.5) - : _ ‘ QTE’e”-

Similarily, the right hand side of the second inequality in (5.4} is maximum, when
w (k) = 0. Thus : :

(5.6 - _ Qr==9.

Apain, as before, we have

fog p fip ~' {w (x) + w{(OLFI=0() + z j - Ee@f‘%'(x)_ea"l?(xo)] tdy tp i - 900 L F) - (k).
Therefore
logply v+ vl F] _ o+ "ty Ayle™ e wiohF1y ()
& (PO WR] = PR e [(VETF 9]

Hence, on proceeding to limits, we have
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vl 4 k) o - e®WEY ) » B (l) g QW)
PRI and = 0 o ST

6N T<

.The right hand side of the first inequality in {5.7) is minimum when  {£) = 0, hence
5.8 e T > ' .

Similarily, the right hand side of the second inequality in (5.7) attains its minimum value

5 ,
S (1 1o when () ~ ;— log 4 . Thas

(5.9 gt.‘—;—d(l 4 log —;—) .

Now, the first part of the theorem follows from {5.6) and {(5.8).
The second and third parts of the theorem are the direct consequences of the first part, for
eb S P

= — and (l+log-’[;*)f'—:-.~"

e »

The fourth part of the theorem follows from (5.5), because

T }‘.ieﬁlv
e

or

s .
ep T E?(]+T+...)

and hence the result,

To prove the fifth part of the theorem, let § = g 7, then from (5.4), we have

lQT*Fi’Q"',U(k)

T= @« g0 0k )

B CACE
o w (k)

Puty (k) = 1/p - log {1 + %) where > 0. So
T
y ;T-E’i——(]?(prT) =T,
Also, § == w», hence » = T.
So
r4-d=2pT<epT.
MNext suppose that
r+d=cpT.
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then d will be'less than e T, for if it were equal to ¢ 7, then by the above » +-4 will have to 5
be less than ¢p 7. i L

Application. The results proved in the case of TAYLOR series by Suan [®, 220], 8. K. SiNGH
[}, 6] and others and in the case of DiricHLET series by K. N. Srivastava [°, 134-146],
P. K. KamTaan [®, 28] and others, follow from the theerem proved above.
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OZET

Tam fonksiyonlarin TavLOR veya Dirichier serileri ile tanunlanmalarina gére elde edilen
iki teorlyi birlestiren bir seri ele almarak aynr konunun birgok yazar tarafindan ayr ayri =
yapilan incelemelerini birlestirmek mimkén olmugtur. Teoremlerin sonunda yaptlan uyzu- G

lamalar bu durumu kesin bir gekilde feyid edecek mahiyettedir.




