GENERALISED GAUSS-CODAZZI EQUATIONS FOR BERWALD'S
CURVATURE TENSORS IN SUBSPACES OF A FINSLER SPACE

MANIULA VERMA

The object of this paper is to pive a-further extension of the Gauss-Copazyi 1o some
subspuces of a FINSLER space.

Introduction. SineA ['}') has obtained the generalised. Gauss and Copazzi equations for
BERWALR's curvature tensors in a hypersurface of a FINSLER space. In the present paper, the
same equations have been derived in the case of a congruence of curves associated to a subspace
of a FiNsLER space and some particular cases have been discussed.

" 1. Notations and basic concepts. In order to explain the notations and to clarify the con-
cepts used below some basic formulae of the theory of FINsLER spaces and their subspaces
are briefly presented here. Consider a FINSLER space Fp of # dimensions referred to a local

coordinate system xi (i = 1, 2,...,n), whose metric function F(xf ,x.") satisfies the conditions
usually imposed upon it [%, cb. T].

The metric tensor of F, is defined by £ij (x,x)= 5 d; 6),- Fix , Xy and since this

is positively homogeneous of degree one in x%, the tensor C,-J-k (x,x)= 5 . g,-j(x, k) satisfies
the identities,
Ci i x)x’ = Cik (x, ) xl = :‘jk(x>;‘)-;-"k =0.

Let the parametric equations of the subspace F,, of a FiNsLER space F, be represented by
xf = xt (™), (x =1, 2,...,m), where »® are the parameters of the subspace. It will be assumed
throughout that the function x# are at least of class €7, and that the matrix of the projection

parameters || B' )| has rank m.

We shall use the following notations:
_VBLZBa xt, B;B = dgdpxt . B-liﬁkv = B;B; B.-’:_

-A‘subspace vector B possesses components i with respect to the coordinate system F, which

are given by ¥ = Bi «®. The induced fundamental tensor of F,, is given by

1y The numbers in the square bmclccts refer to the references given in the end.
) 8, —-Dfdx . 0 = Bfaxt .
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.n 2ab (07, W) = gy Ok, xH) BT

In terms of the tensor £°B , which is the inverse of (1.1), one may introduce the guantities
5 . )

(1.2) B =g g B

and these in turn are the inverse of B, : B! BP = 88, Since the rank of the[] Bi|| is assumed to be

m, it follows thal there exists a field of (n — m) linearly independen! vectors N("V) normal to Fr
and they may be chosen in a multiply infinite number of ways, given by the relations

(1.3) Ny BL =8y Ny BL =0, (ro,p=m+1,..4)
The set of vectors are normalised by means of the relations

N('\,) = gU (x,x) N(\,)j .

. i P .
gy (v x) N(u) N{V) =c0os (Ngy s Ny)) = g -

The following tensors vanish identically in any locally Euclidean (or Riemannian) theory of subs-
paces :

. o
My (6 %) = Cgp (6, ) N,
— T i _ ih
My = Z Mgy Ny s My = 8 Moy, -
T

The connection coefficients of L. BErwarp [%, ch. 11} are denoted by Gj’:k and are used to
define a covariant derivative. For instance, the covariant derivative of a covariant tensor

Ty (x, x) of degree two is given by

(1.4) Ty = 3 Ty— 3, Tydy G - Ty G — Ty 5’: i

T i

!

Since the connection coefficient G,'rk is homogeneous of degree zero in x° we have

3,6y, X" =0,
The BERWALD aqd CARTAN connections are related by the relations
(1.5) Gy =TI+ Ch x.

2. Induced and intrinsic derivatives on the subspace. As remarked ' by Runb (2], since the
induced and intrinsic BERWALD connections are identical, the induced parameters Gis

satisfy the relation,

. 'n" N
2.1 Goy = o + Coyy 1°
Let

-~

@.2) Top = A5, + Il
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where we have used the potations as in Sinua |'l. The induced symmetric tensors and connac-
tion parameters of F,, are given respectively by

2.3) a4 = Al BBl
and
(2.4) %S~ B (B, + [y Bos ).

With the help of these quantities we can define two types of induced mixed derivatives denoted

by Ti’G and TG';”[: and defined by

(2.5) = Fa T‘ + T A' B’ — T‘ A

ag

2.6) ' The =8, Th— it TI*M}+TL B Tiry
Substituting (2.2) and (2.3) in (2.1) we have
@7 Ghg = Bf (Bl + It B + A5, + Copy o

With the help of (2.7) and (1.5) we have,

< E i hi; i .
Gaa = Bu' E‘B:xﬁ + Bn:g; (G;Jk CM r JC )] + Amﬂ F C:.ﬁlp

These quantities allow us to define the following mixed tensor :

(2.8) vio = B, —BL G, + G, Bu.
Simplifying (2.8) with the help of (1.5) and (2.1) we get,

V*. BC

dﬂh’

-( hk F r
+ Baa Chklr X
where

. . r ’\5 r,
.I;B = B;ﬂ—B: I’m Jrl'th”
The induced derivative N} of the type (2.6) can be easily obtained as
tlly

as i {
2.9 Nigta = — Lyap & BL + Ely T,

where

. . . ’ lb
Ety = Z Negy Mgy — 2Mey -

o

We shall in particular require the covariant derivative of the unit normal N('-v) of F,, defined by
P I % o A e ok o opk
Neoty = By Ny =8, Nyyy 8, G° -+ Ny Gy, B,

which by virtue of (1.5) becomes
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i _ i i i ropk
(2.10) L Newe ™ Neatiy T Noy e *° By -
On substituting the value of N{v)hx from (2.9) in (2.10) we obtain,

_ e '
(2.11) Nty = — Py 87 BL 1 Egy Iy,
¥} 1 : 3

+ N(\lu) ';rklr 4 B, .

-+ 3, The Generalised Gauss and Codazzi Equations. Consider a set of (n — m) congruences
of curves such that one curve of each of them passes through every point of F,,. We consider
the contravariant component of a unit vector in the direction of a curve of a congruence of cures

as expressed linearly in terms of B; and set of the normals to F,,

G.1} ; . Vl’u)_ i((u)B + Z v (v) :

¥

In order to derive the Gauss and Cobazzi equations we must evaluate the «mixedy deriva-

tives of V("u) with respect to #®, noting that the mixed derivatives V; =B In view of (1.4)

alp "
the value of l;:x)f[ﬁvi is obtained as

i h ki 1
Hp 4 BBTH_“ d )

i
G.2) Fonent = ¥ Hie 20 LY N

LIS
+ 3 Gy Vi, By dgn o

where HhU’ HE sy represent the components of the curvature tensors of F, and Fj res-

pectively, the first of these being defined by,
. . y . ;
Hy =2 (O Gy + Gy G + G G -

The mixed covariant derivative of V("u) is given by

G.3) limm f(u] + t(u}fﬂ B + Z d\',u)l"i

l'
+ 2 tve) Mivsay -

Again taking the mixed covariant derivative of (3.3) with respect to ¥ and considering the
skew symmetric part in # and y in the resulting equation, we get,

i - i it
Httart = 1o Vaterr + B Tpiian

+ 2 iy i Neanan + Z Newy Ayt -

v

Taking the mixed covariant derivative of (2 11), simplifying and conSIdermg the skew symmet
ric part in # and ¥ we have, . .
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3.9 Neiten) = & B Lipagprn — Ygonts Viie &
ol [ i I ‘E
+ E(u)H[-r Va]: W b(ull VE[&/YI “

I . i ir k
+ Bly Vhy wiy + WGy Cle X g, B

hi i r ok
+ Ny Cuar * Vi) 2

Similarly we have the following relations: &

P _ 48 o ; L
(3.9 2 leaian = Has'r — 9, t(u) Hn,{.r ) :
and [
ik :
(3.6) 2 Vi = B H,. + B(;,gr iy L

43, G, B R VI —BE vy

Ef3

Simplifying (3.2) with the help of (3.4}, (3.5} and (3.6) we obtain
Wi o . )
(3.7 Hy 1y QW Byt =ty Bugt ) = Hy @ Xy — B, 3, o8 u®
h '
— 80 Gl Vi, By WGl — 15, B 12 ) |
¥ i
{8 B Dptar) ~ Lags Vi1c 8™
oo
+ By, Vot @+ By s[am vt E, Vels i}
i i N fc F i : k
+ (Ngy Chigr % i By + Moy Cheyy ¥ Hliy)

i
+ 2 ENM Bv )/ 16v]

¥

Multiplying (3.7} by &, B;” and using (1.13, (1,2) and (1.3} we get,

m ki m bk f
(3.8) Hymi ('t(u) B, pr I(u] B s ‘r)

— HEy O My 81 B — 9, 1y 2,000

5 i ! ko ] h
— 20, Gy Vi By ° Ry — 2 Bod &y By

— Zd(V.u) {g” Bz Deatary Sim B;n

v

+ iats Vi1 8 Bun By — Elnty Vato it B,

§ I ; i ]
_E(y)l VE[QJ’Y} _us -~ E{Iv) V e[g u/,‘,} -+ (N(VJ Jlklr .x )/Iﬁ B }
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Again multiplying (3.7} by N(U)f and simplifying as above, we have,

i ] A 3 VN3]
(3.9 i, kj U‘(u) By, — f&) B;B Y) Neoy

o € N i ‘5 : i I 14 te h o 'l
Hsa\' d, "(;’1.) #—2 0, Gy VE!Y B?‘] i (G),.(l(m—f(u) B}

. i «E i f )
—2 chv,,.) (Qsate Vi ® Ny — Ecotie Vato Miani
v
i { TE i ! ‘e
— Bt Verprar © Newyi By Verg #1m1)
o Ny

h i Fy k h { { : &
+ (N(v) C;r.’\'lr xr),'{B Bﬂ N(U)i + NG N Cirklr x Vl[w]

T2 Z d(\r.u)."ﬁﬂyf Ay o)
Y o

Equations (3.8) and (3.9) which are based on a vector A;u) of a most gencral nature can

be regarded as generalisatioﬁ of the Gauss-Covazzl equations in a subspace F,, imbedded in
a FINSLER space I, . :

4. Particwlor cases. The congruence of curves can be considered .in the following three
ways :
(i) The vector Azu) in r lies in a space spanned by the normals, that is,
i i
l(il) - 2 d(u.v) N(v) '
"
(if) The vector Afu)_lies in the space spanned by Bi , that is,
i L i
Sy T l‘(u) B, -
(#{) The vector l;u) is tangential to the curves,
Si ot i
x =" B,.

These equations can easily be obtained for the hypersurfaces of a FinsLEr space as well,
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OZET
Bu arastirmamn giyesi, Gauss-Copazzl denklemlerini Finseer  uzaylafin bzt aluzay-
T larina bir genellemektis. :




