ON THE ZEROS OF ENTIRE FUNCTIONS Y

SHAKTI BALA - MANJT SINGH

Let f be an entire funclion and n(r, £} the number of zeros of fin D = {zEC tlz) = r},

where nir, f) is assumed non zero, The convergence exponent o. and the lower convergence

exponent p of f are defined as the upper and lower limits of the ratio log n{r, f)/log r

when 7 tends to infinity. The object of this paper is to establish relationships between

convergence exponents and lower converpence exponents of two ot more entire functions
and then a result about entire functions of infinite order.

1. Let E be the set of mappings f: ¢ + C(Cisthe complex field) such that the image

under fof an element ze C is f(z) = Z a, 2" with Hm inf|a, |~ '/ = +- oo; Nis the set of
: neEN koo
natural numbers 0,1, 2, ...; {@,:#e N} is a sequence in Cand z=x +iy; x,ye R(R is

the field of reals). Since Hm inf [an [~'/" = + oo, L. the power series defining f converges
n—+-kca

for each complex z, f is an entire function.

If fe Eis an entire function such that it has at least one zero in the disc
D={zeC:|z|<r), and if nr, f)is the number of zeros of fin D, then the convergence
exponent of the zeros of f or briefly the convergence exponent @ and lower convergence
exponent # of f are defined as

tim P o8 f) o,
(L.1) pvyoo inf  logr B

In this paper we first establish relationships between convergence exponents and lower
convergence exponents of two or more entire functions and then a result about entire functions
of infinite order.

Theorem 1. Let f, fy ., f, 6 E be three entire functions, each having at least one zero in D,
of convergence exponents w, &, , oy and lower convergence exponents B, 8,, B, . If nlr, f),
alr, £, nir, [, denote, respectively, the number of zevos of f,f,,f, in D, and if, asr -+ + oo,

(1.2) log n (r, ) ~ {log n(r, f) log n (r, £))' ™
then
(1.3 G L, P R I LA
and
=,
2 - = gl
(1.4 f = 4,4, = a

(') The authors express their gratitude to Dr, I. 8. Guera for his heip and guidance in this paper.
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Proof. Making use of (1.1) for £, and f, we get, for any ¢ > 0 and sufficiently large r ),

_ log (s, £)

a.s) (o) < ZEL <, 4 o)
and
(1.6) (Fy—5) < OBHLSY (g,

logr

Multiplying (1.5) and (1.6) we get, for any ¢ > 0 and sufficiently large »,

log a(r, f1) log a(r, f3)
{log #)*

("?x — &) ('?-1*8) < << (Ot.[ + &) (c“z + 8,
or

G—a (0 < (BEEDY < (0 4y oy )

in view of condition (1.2). On proceeding to limits and making use of (i.1) for F we,
therefore, get

(3807 = B a2 (o o) /2
Thus (1. 3) is established.

In order to prove (1.4) we make use of the well known fact that if < x, > and < y, >
are two sequences in R* (R* is the set of extended reals), then

lim infx,. lim sup y.

n—++o0 n>400
(.7 lim infn(x, . y,) < ' < lim sup (x,.r,).
A0 n—++oo
: lim infy,. lim sup x,
a—++too #—r 400

Here for large values of r, the sequences

log n(r, f,) log n(r, f,)
——2 L and { ——17¢
: log » log r

satisfy the conditions for (1.7) and so

= lim inf k)g_n(r."f_l) . lim sup IOg "(r:fn)
F->+oa log » b oo logr
1mag@%wmxbmmm)
log r log »

F—+foco

lim inf log m(r, fo) . lim sup log n{r, 1),
rer4-00 log r . Febta log r

1) 6 need not be the same at each occurence,
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£ lim sup log n(r, f)) log nr, f2)
= log ¥ fog r ’

r—+-+oa

or

iim inf (Mﬂ_)Y 2P = lim sup ( log ”(",ﬁ))”,
por b log r T, rego log r

in view of (1.1) for f, and f, , and condition (1.2). Now using (1.1) for f, we get
prelit o
7 fy
which proves (1.4).
Corolary 1. Let frc E(k=1,2,...,m)be m entire functions, each having at least one
zero in D, of convergence exponents oy and lower conyergence exponents fy. , and let, for each
k=1,2, .., m, mlr, f)} denote the number of zeros of fi in D. Also let fe E be some other

entive function, having at least one zero in D, of convergence exponent x and lower convergence
exponent f. If n(r, f) denote the number of zeros of f in D, and if, as r -» + oo,

ym

log n(r, £ ~ {log n(r, £} ... log alr, ) '™
then ‘

By o Bd™ 2 8 2 a0 2 (2, e I,

This is an immediate generalization of (1.3).

Corollary 2. Under the hypothesis of Corollary 1, if each of the entive functions be of
regular growth and nonintegral order, then,

where py, is the order of fy, for each kt = 1,2, ..., m, and g is the order of f

This follows from Corollary 1, since for an entire function of regular growth and noninteg-
ral order the convergence exponent equals the order [, 241

Theorem 2. Let f,f,, f,cE be three entire functions, each having at least one zere in D,
of convergence exponents &, % , &, , and lower convergence exponents fi, f,, fy . If n(r, f),
n(r, £, n(r} f,) denote, réspectively, the number of zeros of f, f,, fo in D and if, as r > + oo,

(1.8) log a(r, /'y ~ log (n(r, £) . (. £)),
then
(1.9) < Bites

=

=
=
i
=
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The result in (1.9) follows from (1.8) and the well known fact that if {x, ) and
{#,} are two sequences in R¥, then

lim infx, + lim supya
H—r-}00 =00

lim inf (xp + p,) < = lm sup (x, + yn)-
#r-toa ) nr-hoo

lim infy, + lim supx,
a—++oo r—+-+toa

Theorem 3. Let f, , f,c E be two entire functions, each having at least one zero in D, of
convergence exponents «,, o, and lower convergence exponents p,, f,, and let n(r, f), n(r, ;)
denote, respectively, the number of zevos of fy, f; in D, Also let

) li sup . =c
{(1.10) im i =

r—=*+oo

where y(r; fo, ) = n(r, f)—nlr, ), and e, de R* If ¢ and d are finite, then «, — «, , and
B, = Pu. Futhermore if the limit in (1.10) exists then

r

(1,11) f xdy=0(r), r = rye, f1, ) >0,

Ty

as r-» + oo,
Proof. If ¢ and 4 are finite, (1.10) implies that
#{r, f1) — nlr, 1) = 0(1)
when r -» + oo, and so, as ¥ > + oo,
1.12) air, f1) ~ nir, f).

From (1.12) it follows that

&4 _ oy 9P logn(rf) _ o suploga(nfi) _ e
B, r—++oo inf  logr r+too inf logr 8.7

which proves the first part of the theorem.

Now, if the limit in (1,10) exists, then ¢ = d, and so, for any ¢ > 0 and r = ry(s, £, , f2),
we have,

e—e<y(ri fi, fy<cete

Hence
,
1
==y < [ S d <+ {1l —0)
Ty
Taking limit as r > + oo, we get
lim —l—-fx(x‘f fyde=c
rr§+oor LEREE R E]
L I

whence
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¥

Tim (z(r P Fa S ’L f-xd.{x(x ) }) = ¢,

r—+-4o0
Fo

But lim x{r;f, .7} = ¢, and hence (1.11) holds. This completes the proof of the theorem.

Pk 30

2. In the end we give a result regarding entire functions of infinite order. Let fe E be an
entire function of order g0 < p <= + oo} and lower order 4, pfr,f) be the maximum term,
for | z| = r, in the power series defining /, and »(r, £} be the rank of u{r, £). It is known [%,80]
that

1) lim inf 08 B, f)

= Hm sup log B L)
rp »(r, f) -

=11 _
e A r—r+co 1'(1',/).

It follows from (2.1) that if f is of infinite order, then

1 inf 108 #(r F)
22 Jim inf =2 0 g
22) ¢+ oo 'J‘(f',f)

Since for every entire function p{r,f}== M(r,f), where M(r.f}= sup |f(re®)], a result
6025

better than (2.2) viz.,

@3 lim inf JOEMES)

et i )

for every entire function of infinite order, has been proved by Snan [7, 112]). We show
| ¥ e
that (2.3) hold with M, {r, )} in place of M(r, f}, where M (»,f) = (E? f | (reioy |2 de)
: 0
is the second root of the quadratic mean of f
Theorem 4. If fe E is an entive function of infinite order, then

lim inf log My(r, S}

foreboo S ) =0

Proof. We know [*, 13] that

M )= M0, ) = (B

e
2 ) MR f), 0< r<R.

Putting R = kr, (k > 1) and taking logarithms, we get

log My(r, /') < log M(r, £} < log My(kr, £} + % log ( = i—) :

Hence

lim inf JOBMonSY gyl MELS)
porfroo v f ) T rrdos v(r, f)
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. : k41
tog M(kr,f } + & log —— |
= lm inf ( k=1 | olenf) ) .
PR ¥, f) #(r, f) 8
. log My, f)
= Hm inf-—S._—227 7
r—+4-co (1, f) ’

and the result follows from this in view of (2.3),

It is known [%, 215] that

MAr Sy =20 e, o )

Hence
log M(r, f} < § log 2 + fog plr, £} - log #(r, f').

Dividing throughout by #(#, ) and taking inferior limits of both sides we get (2.4) in view of (2.2).
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OZET

f bir tam Fonksiyon ve n(r, f) bu fonksiyonun O = {zeC a2l = r} diskindeki sificlarinin

sayts olsun. afr, £) sifiedan farkh farzedilmektedir, f fonksiyonunun yalfursakitk idssil ve

alt  yakinsakhik Assit log #(r, f)/og r Kesrinin, r nin sonsuza gitmest halindeki st ve alt

limiti olarak tammlanmstir. Bu araghirmanin gayesi iki veyadaha fazla tam fonksiyonun

yakinsaklik ve alt yakinsakhk lsleri arasinda bagintilar elde etmek ve sonsnz mertebeden
bir tam fonksiyon hakkinda bir sonug ispat etmektir,




