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Abstract 

Clustering is an effective tool that divides data into different classes to reveal internal and previously unknown data 
schemes. However, in conventional clustering algorithms such as the k-means, k-NN, fuzzy c tool, the selection of the 
appropriate number of clusters for each data set is uncertain and varies with the data sets. Furthermore, the data sets to 
which the clustering algorithm is applied generally have nonlinear boundaries between clusters. Determining these 
nonlinear boundaries in the input space causes a complex problem. To overcome these problems, kernel-based clustering 
methods have been developed in recent years, which automatically determine the number and boundaries of clusters. In 
particular, the Support Vector Clustering (SVC) algorithm has received great attention in data analysis because of its 
features such as automatically determining the number of clusters and recognizing nonlinear boundaries based on the 
Gaussian kernel parameter. The number of clusters and region boundaries produced by SVC may show variation 
depending on the choice of the kernel function and its parameters. Therefore, the choice of kernel function plays a 
significant role. In this study, for the first time, the implementation of two different kernel (Cauchy and Laplacian) 
functions and evaluation of their performances have been realized within the framework of SVC. It was observed that the 
Laplacian kernel function performed better than Gauss and Cauchy kernel functions. 
Keywords: Clustering, Unsupervised Learning, Support Vector Clustering, Cauchy Kernel, Laplacian Kernel 

ELİPSOİT DESTEK VEKTÖR ÖBEKLEME ALGORİTMASI İÇİN FARKLI KERNEL 
FONKSİYONLARININ İRDELENMESİ 

Özet 

Öbekleme verideki bilinmeyen desenleri açığa çıkararak farklı sınıflara ayıran etkili bir araçtır. Ancak, k-ortalama, k-NN, 
bulanık c-ortalama gibi geleneksel öbekleme algoritmalarında, veriye göre değişken olan öbek sayısının seçimi belirsizdir. 
Dahası, öbekleme algoritmalarının uygulanacağı veri setleri genellikle öbekler arası doğrusal olmayan sınırlara sahiptir. 
Bu doğrusal olmayan sınırları giriş uzayında belirlemek karmaşık bir problemdir. Bahsi geçen sorunları çözmek için, son 
yıllarda öbek sayısını ve sınırlarını otomatik olarak belirleyen kernel tabanlı öbekleme yöntemleri geliştirilmiştir. 
Özellikle, Destek Vektör Kümele(DVK) algoritması öbek sayısını otomatik olarak belirleme ve Gauss kenel parametresine 
göre doğrusal olmayan sınırları ortaya çıkarma gibi özellikleriyle veri analizinde büyük ilgi görmektedir. DVK tarafından 
belirlenen öbek ve öbekler arası sınırlar, kernel fonksiyonunun seçimine ve parametrelerine bağlı olarak değişiklik 
gösterebilir. Bundan dolayı, kernel fonksiyonunun seçimi önemli bir rol oynar. Bu çalışmada, ilk kez, DVK çatısı altında  
iki farklı kernel (Cauchy ve Laplacian) fonksiyonunun uygulanması ve performanslarının değerlendirilmesi 
gerçekleştirilmiştir. Elde edilen sonuçlardan Laplacian kernel fonksiyonunun Gauss ve Cauchy kernel fonksiyonlarından 
daha iyi performans gösterdiği gözlemlenmiştir.  
Anahtar Kelimeler: Öbekleme, Denetimsiz Öğrenme, Destek Vektör Öbekleme, Cauchy Kernel, Laplacian Kernel  
Cite 
Bağcı, F. B., Karal, Ö., (2020). “Exploring efficient kernel functions for support vector clustering”, Mugla Journal of Science 
and Technology, 6(2), 36-42. 

 

1.  Introduction 
As an unsupervised approach, clustering refers to a very 
broad set of techniques for finding subgroups, or 
clusters, in a data set [1]. Clustering algorithms aim to 

understand the general structure and characteristics of 
the limited data by finding the similarities between the 
data samples [2]. These algorithms are applied in many 
scientific fields like medicine [3-7], engineering [8], 
finance [9], internet [10]. 



Furkan Burak Bağcı, Ömer Karal 
Exploring Efficient Kernel Functions For Support Vector Clustering 

 

37 

 

Despite the widespread use and popularity of clustering 
algorithms, there are some disadvantages. The 
parameterization level in conventional clustering 
algorithms is one of the most important issue. For 
example, in algorithms such as k-means and fuzzy c-
means, choosing the number of clusters suitable for 
each data set has an important effect on the result. 
Generally, this low-level parameterization is not obvious 
and varies according to the data sets. Moreover, the data 
sets to which the clustering algorithm will be applied 
generally have nonlinear boundaries between clusters. 
Identifying these non-linear boundaries in the input 
space is a complex problem. To resolve this problem, 
firstly, the data in the low dimensional input space is 
mapped into a high-dimensional space called the 
feature-space by means of a non-linear transformation 
function. The clustering process is then performed in 
this high-dimensional space by finding a hyper-plane to 
separate the clusters and then mapping this hyper-plane 
back to the input space. The algorithms using this 
approach are called kernel-based methods [11] in 
general. According to the Mercers Theorem, there is a 
mapping function for any positive definite kernel 
function [12]. In other words, any valid kernel function 
can be expressed as the dot product of the data samples 
in the feature space. Therefore, there is no need to 
explicitly calculate the mapping function that moves the 
data from the input space to the higher dimensional 
space. Instead, the kernel functions are used in place of 
the dot product of the mapping functions. For this 
purpose, it is checked whether the kernel function is 
positive definite rather than what the mapping function 
is. For this reason, kernel-based clustering algorithms 
has an advantage over classical clustering algorithms 
and these methods over performed others in the 
literature by performing clustering operation in high 
dimensional space instead of data space. Furthermore, 
as mentioned above, by means of the kernel function, 
these algorithms calculate similarities of the data 
samples in high dimensional space without mapping the 
data samples to high dimensional space. With this 
process called kernel trick, kernel-based algorithms 
perform with higher accuracy rate than conventional 
algorithms, but do not have high computational 
complexity by performing all operations in the data 
space. 

Kernel-based, non-parametric Support Vector 
Clustering (SVC) method [13] was developed inspired 
by one of the well-known supervised classification 
algorithms named Support Vector Machines (SVM). SVC 
has pointed significant interest due to its ability to 
generate arbitrary cluster shape by using Gaussian 
kernel parameter, automatically determination of the 
number of clusters, no need prior information etc. This 
method is very interesting with its aspects and used in 
fields like, electrical engineering [14], economics [15], 
and medicine [16, 17] and performance analysis is done 
with several synthetic and real data sets [18-23].  

According to our recent search, there isn’t any study 
that implements SVC algorithms with different kernel 
function other than Gaussian in literature. However, 
SVM based classification algorithms have been 
implemented with different kernel functions. Kavzoğlu 
and Colkesen [24] compared Maximum likelihood 
classifier and SVM classifier (using polynomial and 
radial basis function kernels) for land cover 
classification. It has been observed that SVM with radial 
based function (RBF) kernel performs better than the 
other in terms of general and individual class accuracy. 
Chen et al. [25] compared the six GIS-based prediction 
methods such as frequency ratio, index of entropy, and 
SVM with four kernel functions (linear, polynomial, RBF, 
and sigmoid) for landslide susceptibility mapping. It has 
been observed that SVM with RBF kernel gives the best 
performance. Sharafi et al. [26] applied the SVM 
technique using six different kernel functions 
(polynomial, sigmoid, exponential, Gaussian, Laplacian 
and rational quadratic) to predict scour depth around 
bridge piers. It has been observed that SVM with 
polynomial kernel function (SVM-P) produce the most 
accurate results compared with other kernel functions. 
Then, it has been compared with two artificial 
intelligence (AI) methods, namely artificial neural 
networks (ANN) and adaptive neuro-fuzzy inference 
systems (ANFIS). Clearly, SVM-P was found to be more 
accurate than the two AI techniques. Zhang et al. [27] 
presented the Optimal Relaxation Factor (ORF), which 
is a set of new SVM kernel functions for speech 
recognition. In the SVM framework, the ORF kernel was 
compared with RBF, Exponential RBF, and the Kernel 
with Moderate Decreasing, and higher recognition 
accuracy was achieved with the ORF-based SVM. 
Feizizadeh et al. [28] compare the predictive 
performance of GIS-based landslide susceptibility 
mapping (LSM) using four different kernel functions in 
SVM. RBF was observed to be the most efficient kernel 
among other kernels for LSM. They also stated that SVM 
would generally be an effective method for LSM, 
provided that the kernel function is evaluated carefully. 
Fadel et al. [29] studied the effect of different kernel 
functions on the performance of SVM for recognizing 
Arabic characters with eleven different kernel functions. 
From the results, it was seen that Exponential and 
Laplacian kernels showed excellent performance and 
others such as multi-quadric kernel could not recognize 
the characters, especially with increased level of noise. 

Although many kernel functions have been previously 
proposed and used for SVM-based classification, a 
comparative study of the SVC method using two 
different kernel functions has not been considered in 
the literature. For this reason, this research focuses on 
the implementation of Laplacian and Cauchy kernel 
functions and comparing their performances in the SVC 
framework. For this purpose, a real world benchmark 
data set, namely the Iris data set, is classified with SVC 
using three different kernel functions. In addition, a 
synthetic two-dimensional blobs data set from scikit-
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learn library in Python programming language is used 
for visual inspection of the results.  

Rest of the article contains the following sections: 
Method, Experimental Results, Conclusion, and 
References. 

2.  Method 
In this section, the SVC algorithm is explained in detail 
and then the theory of kernel-based methods and kernel 
functions used in this study are examined. 

2.1. Support Vector Clustering 
Kernel-based SVC algorithm is first proposed by Ben-
Hur et. al. [13] inspired by Support Vector Machines 
(SVM). SVC can provide arbitrary set of clusters, can 
determine the number of clusters not previously given 
to the system.  

In SVC theory, first data points mapped from data space 
to the feature space using a non-linear mapping 
function. Then minimal feature space sphere that 
encloses most of the data points is found. Support 
Vectors (SVs) are on the boundary of this sphere, 
bounded support vectors are outside and all other 
points are inside of the sphere. After that, this sphere 
mapped backed to the data space so, it can be separated 
into the components. Points inside of each separate 
component are in the same cluster. Kernel parameter 
has high level control on the number of clusters by 
changing the mapping scale to the feature space. But, it 
does not directly control the number of clusters. 

Consider a dataset, containing 𝑁 points  𝑥1 , 𝑥2,… , 𝑥𝑁 , 
𝑥𝑖 ∈ ℝ𝑑  in d dimensional data space (𝑋 ⊆ ℝ𝑑). Utilizing 
the non-linear transformation 𝜙 from data space 𝑋 to 
the high dimensional feature-space (ℝ𝑓), a hyper-
sphere that encloses the all mapped data points in the 
feature-space with minimum volume is generated. 

This definition is described by the representation in 
Equation 1. 

min  𝑅2 + 𝐶  𝜉𝑖
𝑁
𝑖=1   

𝑠. 𝑡.    Ф 𝑥𝑖 − 𝑎 2 ≤ 𝑅2 ,𝑅 > 0,   𝑖 = 1,… ,𝑁 
(1) 

As shown in Equation 2, adding slack variables 
(  𝜉1 , 𝜉2 ,… , 𝜉𝑁 , 𝜉𝐽  𝜖 ℝ ) that enables soft boundary 

calculation provides more robust and accurate 
representation. 

min  𝑅2 + 𝐶  𝜉𝑖
𝑁
𝑖=1   

𝑠. 𝑡.   Ф 𝑥𝑗  − 𝑎 
2
≤ 𝑅2 + 𝜉𝑗  

𝑅 > 0, 𝜉𝑗 > 0, 𝑖 = 1,… ,𝑁  

(2) 

To solve problem, Lagrange multipliers are used in 
Equation 3. 

𝐿 = 𝑅2 −  (𝑅2 +𝑗 𝜉𝑗 −  Ф 𝑥𝑗  − 𝑎 
2

)𝛽𝑗 −

 𝜉𝑗𝜇𝑗𝑗 + 𝐶  𝜉𝑗𝑗   

𝛽𝑗 ≥ 0,     𝜇𝑗 ≥ 0 

(3) 

𝛽𝑗  and 𝜇𝑗  are Lagrange multipliers. 𝐶 is a constant and 

𝐶  𝜉𝑗𝑗  is error term. Setting the derivative of 𝐿 to zero 

with respect to 𝑅, 𝑎 and 𝜉𝑗  respectively gives the 

Equation 4, 5 and 6. 

 𝛽𝑗 = 1𝑗   (4) 

𝑎 =  𝛽𝑗Ф 𝑥𝑗  𝑗   (5) 

𝛽𝑗 = 𝐶 − 𝜇𝑗  (6) 

Karush-Kuhn-Tucker conditions give Equation 7 and 8. 

𝜉𝑗𝜇𝑗 = 0 (7) 

(𝑅2 + 𝜉𝑗 −  Ф 𝑥𝑗  − 𝑎 
2

)𝛽𝑗 = 0 (8) 

Support Vectors are on the boundary of the sphere with 
0 < 𝛽𝑖 < 𝐶, bounded support vectors are outside of the 
sphere with 𝜉𝑖 > 0, 𝛽𝑗 = 𝐶 and all other points are 

inside of the sphere. 

Using Lagrange equation, the Wolfe dual form that is 
used in the optimization case is generated (Equation 9). 

𝑊 =  Ф 𝑥𝑗  
2
𝛽𝑗𝑗 − 𝛽𝑖𝛽𝑗Ф 𝑥𝑖 Ф 𝑥𝑗  𝑖 ,𝑗   

𝑠. 𝑡.    0 ≤ 𝛽𝑖 ≤ 𝐶,     𝑖 = 1,… ,𝑁 
(9) 

According to the kernel trick, dot product of mapped 
samples is equal to the value of the kernel function with 
the data values in data space. This is described in 
Equation 10. 

𝐾 𝑥𝑖 , 𝑥𝑗  = Ф 𝑥𝑖 ∙ Ф 𝑥𝑗   (10) 

Gaussian kernel used in SVC is written in Equation 11. 

𝐾 𝑥𝑖 , 𝑥𝑗  =  𝑒−𝑞 𝑥𝑖−𝑥𝑗  
2

 (11) 

Hence, the optimization problem is written as in 
Equation 12. 

𝑊 =  𝐾 𝑥𝑗 , 𝑥𝑗  𝛽𝑗𝑗 −  𝛽𝑖𝛽𝑗𝐾 𝑥𝑖 , 𝑥𝑗  𝑖 ,𝑗   

𝑠. 𝑡.    0 ≤ 𝛽𝑖 ≤ 𝐶,     𝑖 = 1,… ,𝑁 
(12) 

To find the test function, first, the distance between an 
image of the sample and center of the sphere is found in 
Equation 13. 

𝑅2 =  Ф 𝑥𝑗  − 𝑎 
2
 (13) 

Putting Equation 4 into Equation 13 gives test function 
named trained kernel support function (TKSF) as in 
Equation 14. 

𝑓 𝑥 ≔  Ф 𝑥 − 𝑎 2 = 𝐾 𝑥, 𝑥 − 2 𝛽𝑗𝐾 𝑥𝑗 , 𝑥 𝑗 +

 𝛽𝑖𝛽𝑗𝐾 𝑥𝑖 , 𝑥𝑗  𝑖 ,𝑗   
(14) 

Radius of the sphere is described in Equation 15. 

𝑅 =   𝑓 𝑥𝑖    𝑥𝑖  is a support vector} (15) 

Cluster boundaries are defined as in Equation 16. 
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{ x | 𝑅 𝑥 = 𝑅 } (16) 

The cluster assignment algorithm, which does not vary 
according to the elements in different clusters, includes 
a geometric approximation based on the distances from 
the center of sphere of the elements in the feature space. 
This approach is constructed on the following 
observation: a line that combines two points in the data 
space must exit the sphere in feature space. This is 
accomplished by the determining points, forming line 
that joining two points, randomly extracted from the 
data set and by comparing the distance to the center of 
sphere for each point in the feature space with the 
radius of sphere. If a point with a distance greater than 
the radius is found, it is understood that these two 
points are in different clusters and the value that 
represents these two points in the adjacency matrix (𝐴) 
is zero. However, if there isn’t any point forming line has 
greater distance than radius of sphere, it is understood 
that these two points are in the same cluster and the 
value of the adjacency matrix is set to 1 (Equation 17). 
All values of the adjacency matrix are found by above-
mentioned method. After determination of the 
adjacency matrix, cluster assignment process is 
performed by using the depth first search algorithm. 

𝐴𝑖 ,𝑗 =  
1,  if 𝑥𝑖 and 𝑥𝑗, 𝑅 𝑦 ≤ 𝑅 

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (17) 

 

2.2. Kernel Method 
Kernel methods are ones that, by replacing the inner 
product with positive definite function, implicitly 
perform a non-linear mapping of input data into a high 
dimensional feature space (Equation 10). 

Thanks to the kernel functions, the mapping process 
from input to high-dimensional space is carried out 
without the need to calculate the non-linear mapping 
function. It plays an important role in SVC. The kernel 
function is used in the optimization equation of the SVC 
algorithm where the dot product of the data in the 
feature space is expressed. This process is achieved by 
generating a kernel matrix of 𝑁𝑥𝑁 size for a data set 
with 𝑁 instances. Each element of this kernel matrix 
shows the similarity of the data samples corresponding 
to the row and column index. Until this time, the 
Gaussian kernel function has been used with SVC. The 
values in the kernel matrix for Gaussian kernel function 
refer to the similarity of the data samples calculated by 
Gaussian distribution in the feature space. Using 
different kernels from the Gauss kernel function will 
induce different metric measurements and result in 
different similarities between the data samples. 
However, the SVC algorithm has not been implemented 
in the literature with any other kernel functions except 
Gauss kernel function. 

In this article, the effects of non-Gaussian kernel 
functions such as Cauchy and Laplacian on cluster 

results will be examined. The mathematical notations of 
the Gaussian, Cauchy and Laplacian kernel functions are 
listed in Equations 18, 19 and 20 respectively. 

𝐾 𝑥𝑖 , 𝑥𝑗  = 𝑒−𝑞 𝑥𝑖−𝑥𝑗 
2

 (18) 

𝐾 𝑥𝑖 , 𝑥𝑗  = 1 (1 +  𝛽 𝑥𝑖 − 𝑥𝑗 
2
 )   (19) 

𝐾 𝑥𝑖 , 𝑥𝑗  = 𝑒−𝑞 𝑥𝑖−𝑥𝑗   (20) 

As can be seen from Figure 1, although Gauss, Cauchy 
and Laplacian kernels have similar appearance, their 
statistical properties are slightly different from each 
other. For example, the Laplacian kernel function has a 
sharper peak and broad tails compared with the 
Gaussian and Cauchy kernel functions. 

 
Figure 1. The graph of Gaussian, Cauchy and Laplacian 

kernel functions with 𝑞 = 1, 𝑥𝑖 = −1,… ,1 and 𝑥𝑗 =0 

 

3. Experimental Results 
In this section, Cauchy and Laplacian kernel functions 
are applied along with the Gaussian kernel function in 
SVC. The effects of different kernel functions on 
performance have been demonstrated by the 
implementation of SVC with synthetic and real-world 
iris data sets. The two-dimensional blobs data set is 
generated by using one of the well-known open source 
machine learning library named scikit-learn in Python 
programming language. 

 

3.1. Synthetic Data Set 
The two-dimensional Blobs data set consists of 200 
samples with three clusters. One of the sets in the Blobs 
data set can be easily separated from the others. 
However, since the other two clusters overlap, it is very 
difficult to divide them into two different clusters. The 
data set is shown in Figure 2. Each class is visualized 
with different colors so that classes can be easily 
distinguished 
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Figure 2. Blobs Data Set 

 

Figure 3 demonstrates the results of SVC with three 
different kernel functions in the Blobs synthetic data set.  

As shown in Figure 3 and Table 1, the Blobs data set is 
divided into 3 clusters with over 96% accuracy with 2 
different kernels proposed for the SVC algorithm. The 
best accuracy was obtained from the SVC algorithm 
using Laplacian kernel with 97.5%. 

 
(A)

 
 

 (B) 

 
(C) 

Figure 3. Experimental results of SVC with three 
different kernel functions in the Blobs synthetic data set 

A) Gaussian B) Cauchy C) Laplacian  

 

The performance results of the three different kernel 
functions proposed in the SVC algorithm on synthetic 
data sets are shown in Table 1. 

Table 1. Experimental results with Blobs data sets 
Accuracy % Kernel Function 

Gaussian Cauchy Laplacian 

Data 
Set 

Blobs 96 96 97.5 

 

3.2. Real World Iris Data Set 
Iris is the standard benchmarking data set in pattern 
recognition literature. It has 150 instances with 4 
measurements (the length and the width of the sepals 
and petals, in centimeters) of an iris flower. There are 3 
types (Setosa, Versicolor and Virginica) of iris flower in 
data set. Setosa class is linearly separable from the other 
two classes. Versicolor and Virginica classes are not 
linearly separable. It has 50 instances for each class. In 
literature, SVC algorithm was applied to the Iris data set 
with Gaussian kernel function with %90.66 accuracy 
[13].  

For the iris data set, the confusion matrices of Gaussian, 
Cauchy and Laplacian kernel functions used in SVC 
algorithm are given in Table 2, Table 3 and Table 4 
respectively. Furthermore, sensitivity, recall and F1 
score values obtained for each class using these 
confusion matrices are given in Table 5, Table 6 and 
Table 7 respectively. Finally, the accuracy rates obtained 
in the classification of Iris data determined by Gaussian, 
Cauchy and Laplacian kernel functions used in SVC 
algorithm are given in Table 8. 
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Table 2. Confusion Matrix for Gaussian kernel function 
with iris data set 

Number Of 
Samples 

Classified As 

Setosa Versicolor Virginica 

A
ct

u
al

 
C

la
ss

es
 Setosa 50 0 0 

Versicolor 0 46 4 

Virginica 0 11 39 

 

Table 3. Confusion Matrix for Cauchy kernel function 
with iris data set 

Number Of 
Samples 

Classified As 

Setosa Versicolor Virginica 

A
ct

u
al

 
C

la
ss

es
 Setosa 50 0 0 

Versicolor 0 41 9 

Virginica 0 2 48 

 

Table 4. Confusion Matrix for Laplacian kernel function 
with iris data set 

Number Of 
Samples 

Classified As 

Setosa Versicolor Virginica 

A
ct

u
al

 
C

la
ss

es
 Setosa 50 0 0 

Versicolor 1 46 3 

Virginica 0 2 48 

 

Table 5. Classification Metrics for Gaussian kernel 
function with iris data set 

 Precision Recall F1-
Score 

Setosa 1 1 1 

Versicolor 0.81 0.92 0.86 

Virginica 0.91 0.78 0.84 

 

Table 6. Classification Metrics for Cauchy kernel 
function with iris data set 

 Precision Recall F1-
Score 

Setosa 1 1 1 

Versicolor 0.95 0.82 0.88 

Virginica 0.84 0.96 0.9 

 

Table 7. Classification Metrics for Laplacian kernel 
function with iris data set 

 Precision Recall F1-
Score 

Setosa 0.98 1 0.99 

Versicolor 0.94 0.92 0.93 

Virginica 0.94 0.94 0.94 

 

 

 

Table 8. Accuracy values with iris data set 

Accuracy 
% 

Kernel Function 

Gaussian Cauchy Laplacian 

Data 
Set 

Iris 90 92.6 95.3 

 

In these experiments, SVC algorithm was applied to the 
iris dataset with 90% accuracy rate with Gaussian 
kernel function. Afterwards, 92.6% and 95.3% 
successes were obtained in the experiments with 
Cauchy and Laplacian kernel functions, respectively. In 
all experiments using these kernel functions, the data 
samples of the Setosa class were classified accurately 
from the other two classes. However, some samples of 
data in the Versicolor and Virginica classes are 
incorrectly classified. 

4. Conclusion 
Clustering is used to find the structure in unlabeled 
data. In conventional clustering algorithms such as the 
k-means, k-NN, fuzzy c means, the selection of the 
appropriate number of clusters for each data set 
depends on the user. Furthermore, the application of 
conventional clustering algorithms to the unlabeled data 
results in nonlinear boundaries between clusters. 
Determining these boundaries in the input space causes 
a complex problem. Therefore, kernel-based clustering 
methods have received great attention in recent years. 
Especially, SVC algorithm has been applied in many 
scientific fields due to its features such as automatically 
determining the number of clusters and recognizing 
nonlinear boundaries depending on Gaussian kernel 
parameter. However, there are no studies in the 
literature that implement an SVC algorithm that uses a 
kernel function different from Gaussian. In this study, 
for the first time, implementation of two different kernel 
functions such as Cauchy and Laplacian kernels and 
evaluation of their performance were performed within 
the framework of SVC. The results showed that 
Laplacian kernel function works better than Gauss and 
Cauchy kernels. In the future, as an alternative to the 
commonly used Gauss kernel, performance analysis can 
be performed using Laplacian and Cauchy kernels.  
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