ON THE EXISTENCE OF RELATIVE FIX POINTS OF A CERTAIN CLASS OF COMPLEX FUNCTIONS

DIBYENDU BANERJEE AND BISWAJIT MANDAL

Abstract. Using the idea of relative iterations of functions we prove a fix point theorem for certain class of complex functions.

1. Introduction

A single valued function $f(z)$ of the complex variable z is said to belong to (i) class I if $f(z)$ is entire transcendental, (ii) class II if it is regular in the complex plane punctured at $a, b(a \neq b)$ and has an essential singularity at b and a singularity at a and if $f(z)$ omits the values a and b except possible at a.
The functions in class II may be normalized by taking $a=0$ and $b=\infty$.
Throughout this paper we shall consider only such normalized functions, whenever we deal with functions in class II.
Let $f(z)$ be any arbitrary function. Then the iterations are defined inductively by

$$
f_{0}(z)=z \quad \text { and } \quad f_{n+1}(z)=f\left(f_{n}(z)\right), n=0,1,2, \ldots
$$

A point α is called a fix point of $f(z)$ of order n if α is a solution of $f_{n}(z)=z$ and called a fix point of exact order n if α is a solution of $f_{n}(z)=z$ but not a solution of $f_{k}(z)=z, k=1,2, \ldots, n-1$.
In this manner, Baker [2] proved the following theorem.
Theorem 1.1. If $f(z)$ belongs to class I, then $f(z)$ has fix points of exact order n except for atmost one value of n.

In 1980, Bhattacharyya [4] extended Theorem 1.1 to functions in class II as follows:
Theorem 1.2. If $f(z)$ belongs to class II, then $f(z)$ has an infinity of fix points of exact order n, for every positive integer n.

In [5] Lahiri and Banerjee introduced a new concept of fix point, called relative fix point (defined below) and using this, proved the result of Bhattacharyya [4] .

Let $f(z)$ and $\phi(z)$ be functions of complex variable z. Let

$$
\begin{aligned}
& f_{1}(z)=f(z) \\
& f_{2}(z)=f(\phi(z))=f\left(\phi_{1}(z)\right) \\
& f_{3}(z)=f(\phi(f(z)))=f\left(\phi\left(f_{1}(z)\right)\right)
\end{aligned}
$$

$$
\vdots
$$

$$
\begin{aligned}
f_{n}(z) & =f(\phi(f(\phi \ldots(f(z) \text { or } \phi(z) \text { according as } n \text { is odd or even } \ldots))) \\
& =f\left(\phi_{n-1}(z)\right)=f\left(\phi\left(f_{n-2}(z)\right)\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
\phi_{1}(z) & =\phi(z) \\
\phi_{2}(z) & =\phi(f(z))=\phi\left(f_{1}(z)\right) \\
\phi_{3}(z) & =\phi\left(f_{2}(z)\right)=\phi\left(f\left(\phi_{1}(z)\right)\right) \\
& \vdots \\
\phi_{n}(z) & =\phi\left(f_{n-1}(z)\right)=\phi\left(f\left(\phi_{n-2}(z)\right)\right) .
\end{aligned}
$$

Clearly all $f_{n}(z)$ and $\phi_{n}(z)$ are functions in class II, if $f(z)$ and $\phi(z)$ are so.
A point α is called a fix point of $f(z)$ of order n with respect to $\phi(z)$, if $f_{n}(\alpha)=\alpha$ and a fixpoint of exact order n if $f_{n}(\alpha)=\alpha$ but $f_{k}(\alpha) \neq \alpha, k=1,2, \ldots, n-1$. Such points α are also called relative fix points.

Theorem 1.3. If $f(z)$ and $\phi(z)$ belong to class II, then $f(z)$ has an infinity of relative fix points of exact order n for every positive integer n, provided $\frac{T\left(r, \phi_{n}\right)}{T\left(r, f_{n}\right)}$ is bounded.

Recently Banerjee and Jana [6] introduced a new concept of fix point, called relative fix point of factor order and using this, extend Theorem 1.1.
A point α is called a relative fix point of $f(z)$ of factor order n if $f_{n}(\alpha)=\alpha$ but either $f_{k}(\alpha) \neq \alpha$ or $\phi_{k}(\alpha) \neq \alpha$ or both, for all divisors $k(k<n)$ of n.

Theorem 1.4. If $f(z)$ and $\phi(z)$ are transcendental entire functions, then there are relative fix points of factor order n of $f(z)$, except for at most one value of n.

First we modify the definition of relative fix points of factor order n given by Banerjee and Jana $[\mathbf{6}]$ and with this modified definition prove the result of Bhattacharyya [4].

Definition 1.5. A point α is called a relative fix point of $f(z)$ of exact factor order n if $f_{n}(\alpha)=\alpha$ but $f_{k}(\alpha) \neq \alpha$ and $\phi_{k}(\alpha) \neq \alpha$ for all divisors $k(k<n)$ of n.
Example. Let $f(z)=z-1$ and $\phi(z)=\frac{1}{z+1}$. Clearly $f_{2}(z)=-\frac{z}{z+1}$. Here $z=0,-2$ are relative fix points of exact factor order 2 of $f(z)$.

Remark. Every relative fix point of exact factor order is also a relative fix point of factor order but converse is not always true.

Let $f(z)$ be meromorphic in $r_{0} \leq|z|<\infty, r_{0}>0$. We use the following notations [1]:
$n(t, a, f)=$ number of roots of $f(z)=a$ in $r_{0}<|z| \leq t$, counted according to multiplicity,
$N(r, a, f)=\int_{r_{0}}^{r} \frac{n(t, a, f)}{t} d t$,
$n(t, \infty, f)=n(t, f)=$ the number of poles of $f(z)$ in $r_{0}<|z| \leq t$, counted due to multiplicity,
$N(t, \infty, f)=N(t, f)$,
$m(r, f)=\frac{1}{\pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta$,
and, $m(r, a, f)=\frac{1}{\pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{1}{f\left(r e^{i \theta}\right)-a}\right| d \theta$.

With these notations, Jensen's formula can be written as [1],

$$
m(r, f)+N(r, f)=m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f}\right)+O(\log r)
$$

Writing $m(r, f)+N(r, f)=T(r, f)$, the above becomes

$$
T(r, f)=T\left(r, \frac{1}{f}\right)+O(\log r)
$$

In this case the first fundamental theorem takes the form

$$
\begin{equation*}
m(r, a, f)+N(r, a, f)=T(r, f)+O(\log r) \tag{1}
\end{equation*}
$$

where $r_{0} \leq|z|<\infty, r_{0}>0$.
Suppose that $f(z)$ is non-constant. Let $a_{1}, a_{2}, \ldots, a_{q}, q \geq 2$, be distinct finite complex numbers, $\delta>0$ and suppose that $\left|a_{\mu}-a_{v}\right| \geq \delta$ for $1 \leq \mu \leq v \leq q$. Then

$$
\begin{equation*}
m(r, f)+\sum_{v=1}^{q} m\left(r, a_{v}, f\right) \leq 2 T(r, f)-N_{1}(r)+S(r) \tag{2}
\end{equation*}
$$

where

$$
N_{1}(r)=N\left(r, \frac{1}{f^{\prime}}\right)+2 N(r, f)-N\left(r, f^{\prime}\right)
$$

and

$$
S(r)=m\left(r, \frac{f^{\prime}}{f}\right)+\sum_{v=1}^{q} m\left(r, \frac{f^{\prime}}{f-a_{v}}\right)+O(\log r)
$$

Adding $N(r, f)+\sum_{v=1}^{q} N\left(r, a_{v}, f\right)$ to both sides of (2) and using (1), we obtain

$$
\begin{equation*}
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{v=1}^{q} \bar{N}\left(r, a_{v}, f\right)+S_{1}(r) \tag{3}
\end{equation*}
$$

where $S_{1}(r)=O(\log T(r, f))$.
Therefore,

$$
\begin{equation*}
\sum_{v=1}^{q} \bar{N}\left(r, a_{v}, f\right) \geq(q-1) T(r, f)-\bar{N}(r, f)-S_{1}(r) \tag{4}
\end{equation*}
$$

where \bar{N} corresponds to distinct roots.
Further, because f_{n} has an essential singularity at ∞, we have $[\mathbf{1}], \frac{\log r}{T\left(r, f_{n}\right)} \rightarrow 0$ as $r \rightarrow \infty$.

2. LEMMAS

The following lemmas will be needed in the sequel.
Lemma 2.1. [5] If n is any positive integer and f and ϕ are functions in class II, then for any $r_{0}>0$ and a positive constant M, we have

$$
\frac{T\left(r, f_{n+p}\right)}{T\left(r, f_{n}\right)}>M \quad \text { or } \quad \frac{T\left(r, \phi_{n+p}\right)}{T\left(r, f_{n}\right)}>M
$$

according as p is even or odd, for all large r except a set of r intervals of total finite length.

If we interchange simply f and ϕ then we obtain the following lemma.
Lemma 2.2. If n is any positive integer and f and ϕ are functions in class II, then for any $r_{0}>0$ and M, a positive constant

$$
\frac{T\left(r, \phi_{n+p}\right)}{T\left(r, \phi_{n}\right)}>M \quad \text { or } \quad \frac{T\left(r, f_{n+p}\right)}{T\left(r, \phi_{n}\right)}>M
$$

according as p is even or odd, for all large r except a set of r intervals of total finite length.

3. MAIN RESULT

The main result of this paper is the following theorem.
Theorem 3.1. If $f(z)$ and $\phi(z)$ belong to class II, then $f(z)$ has an infinity of relative fix points of exact factor order n for every positive integer n, provided $\frac{T\left(r, f_{n-1}\right)}{T\left(r, f_{n}\right)}$ is bounded.

Proof. We may assume that $n>1$, because if $n=1$, the theorem has no relevance. We consider the function $g(z)=\frac{f_{n}(z)}{z}, r_{0}<|z|<\infty$. Then

$$
\begin{equation*}
T(r, g)=T\left(r, f_{n}\right)+O(\log r) \tag{5}
\end{equation*}
$$

Assume that $f(z)$ has only a finite number of relative fix points of exact factor order n. Now from (3) by taking $q=2, a_{1}=0, a_{2}=1$, we obtain,

$$
T(r, g) \leq \bar{N}(r, \infty, g)+\bar{N}(r, 0, g)+\bar{N}(r, 1, g)+S_{1}(r, g)
$$

where $S_{1}(r, g)=O(\log T(r, g))$ outside a set of r intervals of finite length [3].
First we calculate $\bar{N}(r, 0, g)$. We have

$$
\bar{N}(r, 0, g)=\int_{r_{0}}^{r} \frac{\bar{n}(t, 0, g)}{t} d t
$$

where $\bar{n}(t, 0, g)$ is the number of roots of $g(z)=0$ in $r_{0}<|z| \leq t$, each multiple root taken once at a time. The distinct roots of $g(z)=0$ in $r_{0}<|z| \leq t$ are the roots of $f_{n}(z)=0$ in $r_{0}<|z| \leq t$. By the definition of functions in class II, $f_{n}(z)$ has a singularity at $z=0$ and an essential singularity at $z=\infty$ and $f_{n}(z) \neq 0, \infty$. So $\bar{n}(t, 0, g)=0$. Consequently, $\bar{N}(r, 0, g)=0$. By similar argument $\bar{N}(r, \infty, g)=0$. So

$$
\begin{equation*}
T(r, g) \leq \bar{N}(r, 1, g)+S_{1}(r, g) \tag{6}
\end{equation*}
$$

We now calculate $\bar{N}(r, 1, g)$. If $g(z)=1$, then $f_{n}(z)=z$.
Due to our definition two cases arise.

Case (i). When n is even.
Now by Lemma 2.1 and Lemma 2.2, we have

$$
\begin{aligned}
\bar{N}(r, 1, g) & =\bar{N}\left(r, 0, f_{n}-z\right) \\
& \leq \sum_{j / n, j=1}^{n-2}\left[\bar{N}\left(r, 0, f_{j}-z\right)+\bar{N}\left(r, 0, \phi_{j}-z\right)\right]+O(\log r)
\end{aligned}
$$

(The term $O(\operatorname{logr})$ arises due to the assumption that $f(z)$ has only a finite number of relative fix points of exact factor order n.)

$$
\begin{aligned}
\leq & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+O(\log r)+T\left(r, \phi_{j}-z\right)+O(\log r)\right]+O(\log r) \\
= & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+T\left(r, \phi_{j}-z\right)\right]+O(\log r) \\
= & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}\right)+T\left(r, \phi_{j}\right)\right]+O(\log r) \\
= & \left\{T\left(r, f_{j_{1}}\right)+T\left(r, f_{j_{3}}\right)+\ldots+T\left(r, f_{j_{2_{p-1}}}\right)+T\left(r, \phi_{j_{2}}\right)+T\left(r, \phi_{j_{4}}\right)+\ldots+T\left(r, \phi_{j_{2 q}}\right)\right\} \\
& +\left\{T\left(r, f_{j_{2}}\right)+T\left(r, f_{j_{4}}\right)+\ldots+T\left(r, f_{j_{2 q}}\right)+T\left(r, \phi_{j_{1}}\right)\right. \\
& \left.+T\left(r, \phi_{j_{3}}\right)+\ldots+T\left(r, \phi_{j_{2 p-1}}\right)\right\}+O(\log r)
\end{aligned}
$$

(where $j_{1}, j_{3}, \ldots, j_{2 p-1}$ are odd divisors of n and $j_{2}, j_{4}, \ldots, j_{2 q}$ are even divisors of n and strictly less than n.)

$$
\begin{aligned}
= & T\left(r, f_{n}\right)\left[\frac{T\left(r, f_{j_{2}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, f_{j_{4}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{2 q}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, \phi_{j_{1}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, \phi_{j_{3}}\right)}{T\left(r, f_{n}\right)}\right. \\
& \left.+\ldots+\frac{T\left(r, \phi_{j_{2 p-1}}\right)}{T\left(r, f_{n}\right)}\right]+T\left(r, f_{n-1}\right)\left[\frac{T\left(r, f_{j_{1}}\right)}{T\left(r, f_{n-1}\right)}+\frac{T\left(r, f_{j_{3}}\right)}{T\left(r, f_{n-1}\right)}+\ldots+\frac{T\left(r, f_{j_{2 p-1}}\right)}{T\left(r, f_{n-1}\right)}\right. \\
& \left.+\frac{T\left(r, \phi_{j_{2}}\right)}{T\left(r, f_{n-1}\right)}+\frac{T\left(r, \phi_{j_{4}}\right)}{T\left(r, f_{n-1}\right)}+\ldots .+\frac{T\left(r, \phi_{j_{2 q}}\right)}{T\left(r, f_{n-1}\right)}\right]+O(\log r) \\
< & \frac{n-1}{4 n} T\left(r, f_{n}\right)+\frac{n+1}{4 n} T\left(r, f_{n-1}\right)+O(\log r),
\end{aligned}
$$

for all large r.

Case(ii). When n is odd, by Lemma 2.1 and Lemma 2.2 we have

$$
\begin{aligned}
\bar{N}(r, 1, g) & =\bar{N}\left(r, 0, f_{n}-z\right) \\
& \leq \sum_{j / n, j=1}^{n-2}\left[\bar{N}\left(r, 0, f_{j}-z\right)+\bar{N}\left(r, 0, \phi_{j}-z\right)\right]+O(\log r) \\
& \leq \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+O(\log r)+T\left(r, \phi_{j}-z\right)+O(\log r)\right]+O(\log r) \\
& =\sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+T\left(r, \phi_{j}-z\right)\right]+O(\log r) \\
& =\sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}\right)+T\left(r, \phi_{j}\right)\right]+O(\log r) \\
& =T\left(r, f_{n}\right) \sum_{j / n, j=1}^{n-2} \frac{T\left(r, f_{j}\right)}{T\left(r, f_{n}\right)}+T\left(r, f_{n-1}\right) \sum_{j / n, j=1}^{n-2} \frac{T\left(r, \phi_{j}\right)}{T\left(r, f_{n-1}\right)}+O(\log r) \\
& <\frac{n-1}{4 n} T\left(r, f_{n}\right)+\frac{n+1}{4 n} T\left(r, f_{n-1}\right)+O(\log r),
\end{aligned}
$$

for all large r. Thus in any case,

$$
\bar{N}(r, 1, g)<\frac{n-1}{4 n} T\left(r, f_{n}\right)+\frac{n+1}{4 n} T\left(r, f_{n-1}\right)+O(\log r) .
$$

So from (6) and since $\frac{T\left(r, f_{n-1}\right)}{T\left(r, f_{n}\right)}$ is bounded, we have

$$
\begin{aligned}
T(r, g) & <\frac{n-1}{4 n} T\left(r, f_{n}\right)+\frac{n+1}{4 n} T\left(r, f_{n-1}\right)+O(\log r)+S_{1}(r, g) \\
& =\frac{n-1}{4 n} T\left(r, f_{n}\right)+\frac{n+1}{4 n} T\left(r, f_{n-1}\right)+O(\log r)+O(\log T(r, g)) \\
& =T\left(r, f_{n}\right)\left[\frac{n-1}{4 n}+\frac{n+1}{4 n} \frac{T\left(r, f_{n-1}\right)}{T\left(r, f_{n}\right)}+\frac{O(\log r)}{T\left(r, f_{n}\right)}+\frac{O(\log T(r, g))}{T\left(r, f_{n}\right)}\right] \\
& \leq T\left(r, f_{n}\right)\left[\frac{n-1}{4 n}+\frac{n+1}{4 n}+\frac{O(\log r)}{T\left(r, f_{n}\right)}+\frac{O\left(\log \left(T\left(r, f_{n}\right)+O(\log r)\right)\right)}{T\left(r, f_{n}\right)}\right] \\
& =T\left(r, f_{n}\right)\left[\frac{1}{2}+\frac{O(\log r)}{T\left(r, f_{n}\right)}+\frac{O\left(\log \left(T\left(r, f_{n}\right)\left(1+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right)\right)\right)}{T\left(r, f_{n}\right)}\right] \\
& =\frac{1}{2} T\left(r, f_{n}\right)
\end{aligned}
$$

for all large r.
Therefore, $T(r, g)<\frac{1}{2} T\left(r, f_{n}\right)$. This contradicts to (5). Hence $f(z)$ has infinitely many relative fix points of exact factor order n. This proves the theorem.

References

[1] Bieberbach L., Theorie der Gewöhnlichen Differentialgleichungen, Berlin, 1953.
[2] Baker I.N., The existence of fix points of entire functions, Math. Zeit., 73 (1960), 280-284.
[3] Hayman W.K., Meromorphic functions, The Oxford University Press, 1964.
[4] Bhattacharyya P., An extention of a theorem of Baker, Publicationes Mathematicae Debrecen, 27 (1980), 273-277.
[5] Lahiri B.K., Banerjee D., On the existence of relative fix points, Istanbul Univ. Fen Fak. Mat. Dergisi, 55-56 (1996-1997), 283-292.
[6] Banerjee D., Jana S., Relative fix points of factor order of transcendental entire functions, Indian Journal of Mathematics, 52(1) (2010), 209-216.

Dibyendu BANERJEE, Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India, e-mail: dibyendu192@rediffmail.com

Biswajit MANDAL, Bunia Dangal High School, Bunia-731303, Birbhum, West Bengal, India, e-mail: biswajitmandal.math@gmail.com

