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A VERSION OF LAGRANGE’S THEOREM FOR SOME CLASSES OF

FUNCTIONS OF MANY VARIABLES

SERGEY YU. FAVOROV and NATALYA P. GIRYA

Abstract. The famous mean motion problem which goes back to Lagrange is as follows: to

prove that any exponential polynomial with exponents on the imaginary axis has an average

speed for the amplitude, whenever the variable moves along a horizontal line. It was completely
proved by B. Jessen and H. Tornehave in 1945. Actually, this result is a consequence of almost

periodicity in Weyl’s sense of amplitude increments over segments of length 1. Here we consider
the problem for some classes of almost periodic functions of several variables.

1. Introduction

Consider an exponential polynomial

(1) f(z) =

N∑
j=1

cje
iλjz, cj ∈ C, λj ∈ R.

J.L. Lagrange [13] assumes that for each fixed y ∈ R there exist the limits

(2) c+(y) = lim
β−α→∞

∆α<x<β arg+ f(x+ iy)

β − α
,

and

(3) c−(y) = lim
β−α→∞

∆α<x<β arg− f(x+ iy)

β − α
,

so-called mean motions along real axis. Here arg+ f(x+ iy) and arg− f(x+ iy) are branches

of arg f(z), which are continuous in x on every interval without zeros of f and have the

jumps −pπ and +pπ, respectively, at zeros of multiplicity p, and ∆α<x<β arg± f(x+ iy) are

increments of the functions arg± f(x+ iy) on (α, β).

J.L. Lagrange proves his conjecture when the absolute value of one of the coefficients in (1)

is greater than the sum of absolute values of other coefficients. Moreover, if this is the case,

then

(4) arg+ f(x+ iy) = c+x+O(1), arg− f(x+ iy) = c−x+O(1) (x→∞),
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besides, the mean motions c+(y) and c−(y) are equal. Also, J.L. Lagrange shows that the

equalities (4) hold for the case N = 2 with arbitrary terms in (1) too, but c+ and c− may

be different (for example, in the case f(z) = sin z at the point y = 0).

Note that the equalities (4) are false for sums (1) in the case N > 2 (F. Bernstein [3]). On

the other hand, H. Bohr in [2] proves (4) with c+ = c− for almost periodic functions f on R
under the condition

(5) |f | ≥ κ > 0.

Moreover, in this case the terms O(1) in (4) are almost periodic functions as well. Next,

B. Jessen [9] proves that limits (2) and (3) exist for all y ∈ (a, b) outside of a countable set

for holomorphic almost periodic functions in a strip {z = x + iy : a < y < b}. Also, he

establishes a connection of mean motions with zero distribution of f .

Lagrange’s Conjecture for exponential polynomials is proved by H. Weil [20] in the case

of linearly independent λ1, . . . , λN over Z, and by B. Jessen and H. Tornehave [10] in the

general case (for an easy presentation see [5]). Actually, they prove that the functions

(6) ∆−1/2<t<1/2 arg+ f(x+ t+ iy), ∆−1/2<t<1/2 arg− f(x+ t+ iy)

are bounded in x ∈ R and have mean values

c±(y) = lim
β−α→∞

1

β − α

∫ β

α

∆−1/2<t<1/2 arg± f(x+ t+ iy) dx.

Now (2) and (3) follow immediately from the equality

arg± f(β + iy)− arg± f(α+ iy) =

∫ β+1/2

β−1/2

arg± f(t+ iy) dt−

∫ α+1/2

α−1/2

arg± f(t+ iy) dt+O(1) =

∫ β

α

∆−1/2<t<1/2 arg± f(t+ x+ iy) dx+O(1).

Bohr’s result has a multidimensional version. Namely, for any almost periodic function

f(x), x ∈ Rp with condition (5) we have

f(x) = exp{i〈c, x〉+ g(x)},

where g is almost periodic, c is a vector from Rp. In [15], [16], [4], and [6] one can find

various relations between mean motions and zero distribution for holomorphic almost peri-

odic functions in tube domains. Nevertheless, we do not know the studies about Lagrange’s

conjecture for exponential polynomials in several variables, although there are a lot of papers

devoted to properties of such polynomials (see, for example, [7], [11], [12], [14]).

In the present paper we introduce analogues of functions (6) for arbitrary exponential poly-

nomials in Rp and prove that these functions are bounded and almost periodic in the sense

of Weyl. Hence they have averages over Rp as usual almost periodic functions. As a conse-

quence, we get a multidimensional version of Lagrange’s theorem on mean motion.

Notations. For z = (z1, . . . , zp) ∈ Cp, put ′z = (z2, . . . , zp) and z = x + iy, x, y ∈ Rp,
′z =′ x + i′y, ′x,′ y ∈ Rp−1. By 〈x, y〉 or 〈z, w〉 denote the scalar product for vectors from
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Rp or the Hermitian scalar product for z, w ∈ Cp, |a| =
√
〈a, a〉. Next, a finite sum of the

form

(7) P (z) =

S∑
j=1

cje
i〈z, λj〉, cj ∈ C, λj ∈ Rp, λj 6= λj

′
for j 6= j′,

is called a (generalized) trigonometric polynomial in Cp.

Definition 1.1 (for p = 1 see [1], for p > 1 see [18]). A locally integrable function f(x) in

Rp is called almost periodic in the sense of Weyl, if for any ε > 0 there is a trigonometric

polynomial (7) such that

‖f − P‖W = lim sup
minj(βj−αj)→∞

∏
1≤j≤p

(βj − αj)−1

∫
αj<xj<βj ,j=1,...,p

|f(x)− P (x)|dx < ε.

Clearly, here we can replace a trigonometric polynomial by a uniformly almost periodic

function. Since any trigonometric polynomial has a mean value, we see that every almost

periodic function in the sense of Weyl also has a mean value

(8) lim
minj(βj−αj)→∞

∏
1≤j≤p

(βj − αj)−1

∫
αj<xj<βj ,j=1,...,p

f(x) dx.

Let P (z) 6≡ 0 be a trigonometric polynomial of the form (7). Put

E = {′z ∈ Cp−1 : P (z1,
′ z) ≡ 0 ∀z1 ∈ C}

= {′z ∈ Cp−1 : 0 = P (0,′ z) = P ′z1(0,′ z) = P ′′(z1)2(0,′ z) = . . . }.

Since E is a closed analytic set, for any ′y ∈ Rp−1 the set E ∩ (Rp−1 + i′y) has a zero

(p− 1)-dimensional Lebesgue measure.

Theorem 1.2. For any fixed y = (y1,
′ y) ∈ Rp the functions

(9) ∆−1/2<t<1/2 arg+ P (x1 + t+ iy1,
′ x+ i′y), ∆−1/2<t<1/2 arg− P (x1 + t+ iy1,

′ x+ i′y)

are uniformly bounded in x = (x1,
′ x) on the set Rp \ {(x1,

′ x) : ′x + i′y ∈ E} and almost

periodic in the sense of Weyl in the variable x ∈ Rp.

Remark. Note that the functions (9) are defined for any ′z =′ x+ i′y 6∈ E, hence they are

defined for any fixed y ∈ Rp almost everywhere in x ∈ Rp.

Taking into account the existence of mean values and arguing as above, we obtain the

following consequence of Theorem 1.2.

Theorem 1.3. For any trigonometric polynomial (7) and each y ∈ Rp there exist the limits

lim
minj(βj−αj)→∞

∏
1≤j≤p

(βj − αj)−1

∫
Π(p−1)( ′α, ′β)

∆α1<x1<β1
arg+ P (x+ iy) d ′x,



4 SERGEY YU. FAVOROV and NATALYA P. GIRYA

and

lim
minj(βj−αj)→∞

∏
1≤j≤p

(βj − αj)−1

∫
Π(p−1)( ′α, ′β)

∆α1<x1<β1
arg− P (x+ iy) d ′x.

Here Π(p−1)(′α,′ β) = {′x ∈ Rp−1 : αj < xj < βj , j = 2, . . . , p}.

The proof of Theorem 1.2 is based on the following lemma.

Lemma 1.4 (for p = 1 see [19]). Suppose g(u), u = (u1, . . . , uN ) is a 2π-periodic function

in each variable u1, . . . , uN , and µ1, . . . , µN ∈ Rp are linearly independent over Z. If g(u) is

integrable in the sense of Riemann on [0, 2π]N , then g(〈µ1, x〉, . . . , 〈µN , x〉) is almost periodic

in the sense of Weyl.

Proof. The proof of Lemma 1.4 is very close to one in the one–dimensional case. For reader’s

convenience, we give it here.

We may assume that g is a real-valued function. If g is a trigonometric polynomial of the

form

(10)
∑
k∈ZN

bke
i〈k, u〉,

then its average Mg over the cube [0, 2π]N equals the coefficient b0. Since k1µ
1 + · · · +

kNµ
N = 0 only for the case k = (k1, . . . , kN ) = 0, we see that the mean value (8) of

g(〈µ1, x〉, . . . , 〈µN , x〉) equals to b0 as well.

Furthermore, an arbitrary continuous 2π-periodic in each variable function g can be uni-

formly approximated by polynomials (11). Hence in this case g(〈µ1, x〉, . . . , 〈µN , x〉) is uni-

formly almost periodic.

Finally, for any Riemann integrable function g and any ε > 0 there are continuous 2π-

periodic in each variable functions gε(u) ≤ g(u) and gε(u) ≥ g(u) such that

Mgε ≤Mg + ε, Mgε ≥Mg − ε.

We get

lim sup
minj(βj−αj)→∞

∏
j

(βj − αj)−1

∫
Π(p)(α,β)

g(〈µ1, x〉, . . . , 〈µN , x〉) dmp(x) ≤Mgε,

lim inf
minj(βj−αj)→∞

∏
j

(βj − αj)−1

∫
Π(p)(α,β)

g(〈µ1, x〉, . . . , 〈µN , x〉) dmp(x) ≥Mgε.

Therefore, ‖g − gε‖W < 2ε. The lemma is proved.

�

We also need the following simple assertion.

Lemma 1.5. For any real numbers γ1, . . . , γn, there is a constant C < ∞ such that the

number of zeros in the segment [−1, 1] of an arbitrary trigonometric polynomial g(s) 6≡ 0 of
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the form

(11) q(s) =

n∑
k=1

ake
iγks, ak ∈ C,

does not exceed C.

Proof. Collecting similar terms, we may assume that γk 6= γl for k 6= l. Also, we may suppose

maxk |ak| = 1. The family of all trigonometric polynomials (11) under these conditions is a

compact set with respect to the uniform convergence on compacta in C. Since the functions

eiγ
′
ks are linearly independent over C, the family does not contain the function g(s) ≡ 0.

Using Hurwitz’ theorem, we obtain an easy proof of the lemma by contradiction. �

Proof of Theorem 1.2.

Let P (z) be a trigonometric polynomial (7) and µ1, . . . , µN be a basis of LinZ{λ1, . . . , λS}.
Therefore,

λj =

N∑
r=1

kr,jµ
r, kr,j ∈ Z, 1 ≤ j ≤ S, 1 ≤ r ≤ N.

Set

F (z, w) =

S∑
j=1

cj exp{i〈z, λj〉+ i

N∑
r=1

kr,jwr},

for w = (w1, . . . , wN ) ∈ CN . The function F (z, u), u ∈ RN is 2π-periodic in each variable

u1, . . . , uN and

(12) F (T + iy, 〈µ1, x〉, . . . , 〈µN , x〉) = P (x+ iy + T ) ∀T ∈ Rp.

Fix y = y(0) ∈ Rp. Since P (z) 6≡ 0, we get F (z1, i
′y(0), w) 6≡ 0 in the variables z1 and w.

Therefore the set

M = {w ∈ CN : F (z1, i
′y(0), w) = 0 ∀ z1 ∈ C}

= {w ∈ CN : 0 = F (0, i′y(0), w) = F ′z1(0, i′y(0), w) = F ′′z1(0, i′y(0), w) = . . . }

is closed and analytic in CN . Hence N -dimensional Lebesgue measure of the set M ∩RN is

zero. Set

I+(u) = ∆−1/2<x1<1/2 arg+ F (x1 + iy
(0)
1 , i′y(0), u),

I−(u) = ∆−1/2<x1<1/2 arg− F (x1 + iy
(0)
1 , i′y(0), u),

for u ∈ RN \M . Let us check that the functions I+(u) and I−(u) are uniformly bounded

and continuous almost everywhere in u ∈ [0, 2π]N .

If F (x1 + iy
(0)
1 , i′y(0), u(0)) 6= 0 for all x1 ∈ [−1/2, 1/2], then the function

F ′z(x1 + iy
(0)
1 , i′y(0), u)/F (x1 + iy

(0)
1 , i′y(0), u)
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is continuous and uniformly bounded in x ∈ [−1/2, 1/2] and u belonging to a neighbor-

hood of u(0). Hence the functions I+(u) and I−(u) coincide, are uniformly bounded and

continuous in this neighborhood.

Suppose that u(0) 6∈M∩RN and F (x
(1)
1 +iy

(0)
1 , i′y(0), u(0)) = 0 at a point x

(1)
1 ∈ [−1/2, 1/2].

Since F (z1, i
′y(0), u(0)) 6≡ 0 in the variable z1, we can use the Weierstrass Preparation

Theorem (see, for example, [8]). Hence there are ε > 0, δ > 0, and pseudopolynomial

(13) P1(z1, i
′y(0), w) = (z1 − x(1)

1 − iy
(0)
1 )r + a1(w)(z1 − x(1)

1 − iy
(0)
1 )r−1 + · · ·+ ar(w)

with holomorphic coefficients aj(w) in the ball {w : |w − u(0)| < ε} such that

(14) aj(u
(0)) = 0, j = 1, . . . , r,

and

F (z1, i
′y(0), w) = P1(z1, i

′y(0), w)F1(z1, i
′y(0), w), F1(z1, i

′y(0), w) 6= 0,

in the set {(z1, w) : |w − u(0)| < ε, |z1 − x(1)
1 − iy

(0)
1 | < δ}.

For a small ε each solution z̃1 of the equation P1(z1, i
′y(0), w) = 0 belongs to the disc

|z1 − x(1)
1 − iy(0)

1 | < δ. Hence the function F1 = F/P1 is holomorphic in the set {(z1, w) :

z1 ∈ C, |w − u(0)| < ε}.
Let x

(2)
1 be another point of the segment [−1/2, 1/2] such that F (x

(2)
1 +iy

(0)
1 , i′y(0), u(0)) = 0.

Using the Weierstrass Preparation Theorem for F1(z1, i
′y(0), w) in a neighborhood of the

point (x
(2)
1 + iy

(0)
1 , u(0)), we get

F1(z1, i
′y(0), w) = P2(z1, i

′y(0), w)F2(z1, i
′y(0), w).

Here P2(z1, i
′y(0), w) has the form (13) with x

(2)
1 instead of x

(1)
1 , the function F2(z1, i

′y(0), w)

is holomorphic in the set {(z1, w) : z1 ∈ C, |w − u(0)| < ε} and has no zeros in the set

{(z1, w) : |w − u(0)| < ε, |z1 − x(2)
1 − iy(0)

1 | < δ}. Proceeding in the same way, we get the

representation

(15) F (z1, i
′y(0), w) = P1(z1, i

′y(0), w) · · · · · Ps(z1, i
′y(0), w)G(z1, i

′y(0), w),

where the pseudopolynomials Pj have form (13) with various points x̃1 ∈ [−1/2, 1/2] instead

of x
(1)
1 . Their coefficients satisfy (14) and the holomorphic function G(z1, i

′y(0), w) does not

vanish in a neighborhood of the set {(z1, w) : x1 ∈ [−1/2, 1/2], y1 = y
(0)
1 , w = u(0)}.

Each pseudopolynomial Pj is a product of irreducible pseudopolynomials of form (13) with

conditions (14) (see, for example, [8]), therefore we may assume that all pseudopolynomials

Pj in (15) are irreducible. Also, we can rewrite (15) in the form

(16) F (z1, i
′y(0), w) = (z1 − b1(w))t1 · · · (z1 − bk(w))tkG(z1, i

′y(0), w),

where bn(w), n = 1, . . . , k are analytic in some neighborhood U of the point u(0).

Since the functions {F (s+ iy
(0)
1 , i′y(0), u)}u∈RN satisfy the condition of Lemma 1.5, we see

that the number of zeros t1 + t2 + · · ·+ tk is bounded from above uniformly in u ∈ RN \M .

An increment of the amplitude of any linear multiplier along any segment is at most π,

hence the functions I+(u) and I−(u) are bounded uniformly in u ∈ RN .
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Note that the discriminant dP (w) of a pseudopolynomial P of the form (13) is a holomorphic

function in U . If P is irreducible, then dP (w) 6≡ 0 (see, for example, [8]). Set

M1 = {w ∈ U : F (−1/2, i′y(0), w)F (1/2, i′y(0), w)dP1
(w) · · · dPr

(w) = 0}.

Note that N -dimensional Lebesgue measure of the set M1 ∩ RN is zero. Take a point

u(1) ∈ (U \M1) ∩ RN . There is a neighborhood U1 ⊂ CN of u(1) such that for each point

w ∈ U1 every pseudopolynomial Pm(z, i′y(0), w) has only simple zeros in z1 ∈ C. Hence for

w ∈ U1 representation (16) holds with mutual different functions bn(w). We shall prove that

each function ∆−1/2<x<1/2 arg±(x+ iy − bn(u)) is continuous at points of the set U1 ∩RN .

Note that F (±1/2 + iy
(0)
1 , i′y(0), u(1)) 6= 0. Hence for sufficiently small U1 the functions

bn(w) take U1 to the set {z1 : |x1| < 1/2, |y1 − y(0)
1 | < δ}. Put

b′n(w) = (bn(w) + bn(w̄))/2, b′′n(w) = (bn(w)− bn(w̄))/2i.

Clearly, for all u ∈ RN we have b′n(u) = Rebn(u), b′′n(u) = Imbn(u).

If b′′n(w) 6≡ y
(0)
1 for w ∈ U1, then N -dimensional Lebesgue measure of the set {w : b′′n(w) =

y
(0)
1 }∩RN is zero. Hence for almost all points u ∈ U1∩RN the function x1+iy

(0)
1 −bn(u) does

not vanish for x1 ∈ [−1/2, 1/2], and the functions ∆−1/2<x1<1/2 arg+(x1 + iy
(0)
1 − bn(u))

and ∆−1/2<x1<1/2 arg−(x1 + iy
(0)
1 − bn(u)) are continuous and coincide almost everywhere

on U1 ∩ RN .

Now consider the case b′′n(w) ≡ y
(0)
1 for w ∈ U1. The function b′n(u) is continuous in u,

therefore the function x1+iy
(0)
1 −bn(u) = x1−b′n(u) of the variable x1 has exactly one simple

zero for all u in a neighborhood U2 of a point u(2) ∈ U1∩RN . Hence, ∆−1/2<x1<1/2 arg+(x1+

iy1 − bn(u)) ≡ −π and ∆−1/2<x1<1/2 arg−(x1 + iy1 − bn(u)) ≡ π for all u ∈ U2.

Since u(0) is an arbitrary point of [0, 2π]N \M , we see that the functions I+(u) and I−(u) are

bounded and continuous almost everywhere in the cube [0, 2π]N . Therefore, these functions

are integrable in the sense of Riemann over the cube. By Lemma 1.4 we obtain the assertion

of Theorem 1.2.
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herrührendes Problem, Math. A00nn., 77 (1912), 417–439.

[4] Favorov S.Yu., Holomorphic almost periodic functions in tube domains and their amoebas, Computa-

tional Methods and Function Theory, 1(2) (2001), 403–415.

[5] Favorov S.Yu., Lagrange’s Problem on Mean Motion, Algebra and Analyse, 20(2) (2008), 218–225

(Russian).

[6] Favorov S.Yu, Girya N.P., A multidimensional version of Levin’s Secular Constant Theorem and its

Applications, Journal of Mathematical Physics, Analysis, Geometry, 3(3) (2007), 365–377.

[7] Gelfond O.A, Roots of systems of almost periodic polynomials, Preprint FIAN SSSR, no. 200, 1978

(Russian).

[8] Herve M., Several Complex Variables. Local Theory, Oxford University Press, Bombay, 1963.



8 SERGEY YU. FAVOROV and NATALYA P. GIRYA
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