LINEAR FUNCTIONALS IN SOME SPACES OF ENTIRE FUNCTIONS OF FINITE ORDER

KONSTANTIN G. MALYUTIN and TAISIYA I. MALYUTINA

Abstract

We consider the the linear topology space of entire functions of a proximate order and normal type with respect to the proximate order. We obtain the form of continuous linear functional on this space.

1. Introduction

We introduce the necessary definitions. A function $\rho(r)$, defined on the ray $(0, \infty)$ and satisfying the Lipschitz condition on any segment $[a, b] \subset(0, \infty)$, that satisfies the conditions

$$
\lim _{r \rightarrow \infty} \rho(r)=\rho \geq 0, \text { and } \lim _{r \rightarrow \infty} r \rho_{+}^{\prime}(r) \ln r=0
$$

is called a proximate order.
A detailed exposition of the properties of proximate order can be found in $[\mathbf{1}, \mathbf{2}]$. In this paper we use the notation $V(r)=r^{\rho(r)}$. We will assume that $V(r)$ is an increasing function on $(0, \infty)$ and $\lim _{r \rightarrow+0} V(r)=0$.
We now formulate some simple property of proximate order that we shall need frequently [1, (2), p.33].
For $r \rightarrow \infty$ and $0<a \leq k \leq b<\infty$ asymptotic inequality

$$
\begin{equation*}
(1-\varepsilon) k^{\rho} V(r)<V(k r)<(1+\varepsilon) k^{\rho} V(r) \tag{1}
\end{equation*}
$$

holds uniformly in k.
Let $M_{f}(r)=\max _{|z|=r}|f(z)|$. If for the entire function $f(z)$ the quantity

$$
\sigma_{f}=\limsup _{r \rightarrow \infty} \frac{\log M_{f}(r)}{V(r)}
$$

is different from zero and infinity, then $\rho(r)$ is called a proximate order of the given entire function $f(z)$ and σ_{f} is called the type of the function $f(z)$ with respect to the proximate order $\rho(r)$.
Let $\rho(r)$ be a proximate order, $\lim _{r \rightarrow \infty} \rho(r)=\rho \geq 0$. A single valued function $f(z)$ of the complex variable z is said to belong to the space $[\rho(r), p]$ if $f(z)$ has the order less than $\rho(r)$ or equal $\rho(r)$ but in this case type less than or equal p.

Received Dec, 2014.
2010 Mathematics Subject Classification. Primary 30D15; Secondary 30D20.
Keywords and phrases. Entire function, proximate order, continuous linear functional.

A sequence of functions $\left\{f_{n}(z)\right\}$ from $[\rho(r), p]$ converges in the sense of $[\rho(r), p]$ if (i) it converges uniformly on compacts, (ii) for all $\varepsilon>0$ there exists $r_{0}(\varepsilon)$ does not depend on n such that

$$
\left|f_{n}(z)\right|<\exp [(p+\varepsilon) V(|z|)], \quad|z|>r_{0}(\varepsilon)(n \geq 1) .
$$

For a suitable $C(\varepsilon)$, which does not depend on n, for all z

$$
\begin{equation*}
\left|f_{n}(z)\right|<C(\varepsilon) \exp [(p+\varepsilon) V(|z|)] \quad(n \geq 1) \tag{2}
\end{equation*}
$$

The space $[\rho(r), p]$ is the linear topology space with sequence topology.
We introduce the function $\varphi(t)$ defined to be the unique solution of the equation $t=V(r)$. So

$$
\begin{equation*}
\varphi(V(t))=t \tag{3}
\end{equation*}
$$

Theorem 1.1. ([1, Theorem 2', p.42]) The type σ_{f} of the entire function $f(z)=$ $\sum_{n=0}^{\infty} c_{n} z^{n}$ with the proximate order $\rho(r)(\rho>0)$ is given by the equation

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \varphi(n) \sqrt[n]{\left|c_{n}\right|}=\left(e \sigma_{f} \rho\right)^{1 / \rho} \tag{4}
\end{equation*}
$$

Set

$$
d_{n}=\frac{(e p \rho)^{n / \rho}}{(\varphi(n))^{n}} \quad n \geq 1, d_{0}=1
$$

For a function $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in[\rho(r), p]$, we associate the function

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, \quad b_{n}=\frac{c_{n}}{d_{n}}(n \geq 0) \tag{5}
\end{equation*}
$$

It is regular, in any case in the circle $|z|<1$. Indeed, by (4) we have

$$
\limsup _{n \rightarrow \infty} \varphi(n) \sqrt[n]{\left|c_{n}\right|} \leq(e p \rho)^{1 / \rho}
$$

from this $\varphi(n) \sqrt[n]{\left|c_{n}\right|} \leq\left(e p_{1} \rho\right)^{1 / \rho}, p_{1}>p, n>n_{0}$, and

$$
\left|b_{n}\right|<\left(\frac{p_{1}}{p}\right)^{n / \rho}, \quad n \geq n_{0}
$$

Since p_{1} is any more p then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|b_{n}\right|} \leq 1
$$

and the series (5) converges in the circle $|z|<1$. Conversely, for any analytical function $F(z)$ in the disk $|z|<1$, the function $f(z)$ from $[\rho(r), p]$ corresponds.
Mapping function $f(z)$ of $[\rho(r), p]$ to the function $F(z)$ as indicated above will be celebrating a record

$$
f(z) \sim F(z)
$$

It is obvious that if $F(z) \in[\rho(r), p]$ then $f(\lambda z) \sim F(\lambda z)$ in the sense of $\left[\rho(r), \lambda^{\rho} p\right]$, where λ is a parameter, and if $f_{n}(z) \sim F_{n}(z)(n=1,2, \ldots, m)$ then

$$
\sum_{n=1}^{m} a_{n} f_{n}(z) \sim \sum_{n=1}^{m} a_{n} F_{n}(z)
$$

In the present paper we prove two theorems.

Theorem 1.2. In order to be a sequence $\left\{f_{n}(z)\right\}$ of functions from $[\rho(r), p]$ to converge in the sense of $[\rho(r), p]$, necessary and sufficient condition is that the sequence $\left\{F_{n}(z)\right\}\left(f_{n}(z) \sim F_{n}(z)\right)$ converges uniformly inside the disk $|z|<1$.
Theorem 1.3. Continuous linear functional l on the space $[\rho(r), p]$ has the form

$$
\begin{equation*}
l(f)=\sum_{n=0}^{\infty} a_{n} c_{n}, \quad f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \tag{6}
\end{equation*}
$$

where the quantities a_{n} satisfy

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \varphi^{-1}(n) \sqrt[n]{\left|a_{n}\right|}<(e p \rho)^{-1 / \rho} \tag{7}
\end{equation*}
$$

The case $\rho(r) \equiv \rho>0$ was considered by A.F Leont'ev [3, Theorem 1.1.7, Theorem 1.1.9].

2. The space of entire functions $[\rho(r), p]$

We now prove the Theorem 1.2. Let

$$
f_{k}(z)=\sum_{n=0}^{\infty} c_{n}^{(k)} z^{n}, \quad F_{k}(z)=\sum_{n=0}^{\infty} b_{n}^{(k)} z^{n} \quad(k \geq 1)
$$

and let the sequence $\left\{f_{k}(z)\right\}$ converge in the sense of $[\rho(r), p]$. By Cauchy inequality and the condition (2), we have

$$
\left|c_{n}^{(k)}\right|<C(\varepsilon) \frac{\exp [(p+\varepsilon) V(r)]}{r^{n}}, \quad r>0
$$

Inserting $r=\frac{\varphi(n)}{\left(p_{1} \rho\right)^{1 / \rho}}, p_{1}=p+\varepsilon$ into the above inequality, by (1) and (3) we obtain

$$
\left|c_{n}^{(k)}\right|<\frac{C(\varepsilon)\left(p_{1} \rho\right)^{n / \rho}}{(\varphi(n))^{n}} \exp \left[p_{1} V\left(\frac{\varphi(n)}{\left(p_{1} \rho\right)^{1 / \rho}}\right)\right] \leq \frac{C_{1}(\varepsilon)\left(p_{1} e^{p_{1}} \rho\right)^{n / \rho}}{(\varphi(n))^{n}} \quad(n \geq 0, k \geq 1)
$$

From (2) for $z=0$

$$
\left|c_{0}^{(k)}\right|<C_{1}(\varepsilon) \quad(k \geq 1)
$$

Based on these estimates

$$
\left|b_{n}^{(k)}\right|=\frac{\left|c_{n}^{(k)}\right|}{d_{n}}<C_{1}(\varepsilon)\left(\frac{p_{1} e^{p_{1}}}{p e^{p}}\right)^{n / \rho} \quad(n \geq 0, k \geq 1)
$$

Take $r<\left(\frac{p e^{p}}{p_{1} e^{p_{1}}}\right)^{1 / \rho}, p_{1}=p+\varepsilon$. Due to this choice of ε, r may be taken arbitrarily close to unity. We have

$$
\left|F_{m}(z)-F_{k}(z)\right|<\sum_{n=1}^{s}\left|b_{n}^{(m)}-b_{n}^{(k)}\right| r^{n}+2 C_{1}(\varepsilon) \sum_{n=s+1}^{\infty}\left(\frac{p_{1} e^{p_{1}}}{p e^{p}}\right)^{n / \rho} r^{n}
$$

The series standing on the right converges. By ε_{1} choose s so that the second term is less than ε_{1}.

Uniform convergence of $\left\{f_{k}(z)\right\}$ on compacts follows that for each fixed n the coefficient $c_{n}^{(k)}$ has a limit if $k \rightarrow \infty$. Then $b_{n}^{(k)}$ also has a limit if $k \rightarrow \infty$. That is why

$$
\sum_{n=1}^{s}\left|b_{n}^{(m)}-b_{n}^{(k)}\right| r^{n}<\varepsilon_{1}
$$

if m and k are large. Therefore $\left|F_{m}(z)-F_{k}(z)\right|<2 \varepsilon_{1},|z|<r$.
To prove the second part of the Theorem, let the sequence $\left\{F_{k}(z)\right\}$ converge uniformly in the disk $|z|<1$. Then for fixed n the coefficient $b_{n}^{(k)}$ has a limit if $k \rightarrow \infty$ and $\left|F_{k}(z)\right|<M,|z|<r<1$. Thus

$$
\left|b_{n}^{(k)}\right|<\frac{M}{r^{n}} \quad(n \geq 0, k \geq 1)
$$

From this estimation, we have

$$
\left|c_{n}^{(k)}\right|=\left|b_{n}^{(k)}\right| d_{n}<M \frac{p e \rho)^{n / \rho}}{(r \varphi(n))^{n}} \quad(n \geq 0, k \geq 1)
$$

and

$$
\left|f_{k}(z)\right| \leq M \sum_{n=0}^{\infty} \frac{p e \rho)^{n / \rho}}{\left((r \varphi(n))^{n}\right.}|z|^{n} \quad(k \geq 1)
$$

Note that the right side does not depend k.
By Theorem 1.1 the function $\sum_{n=0}^{\infty} \frac{(p e \rho)^{n / \rho}}{(r \varphi(n))^{n}} z^{n}$ is entire function of the order ρ and the type $\frac{p}{r^{\rho}}$. This type is close to p when r is close to 1 . Therefore the condition (2) is true.
Since the coefficient $c_{n}^{(k)}$ has a limit if $k \rightarrow \infty$ for each fixed n it is possible to prove similarly that the sequence $\left\{f_{k}(z)\right\}$ converges uniformly on compact sets. So this sequence converges in the sense of $[\rho(r), p]$.
Note that if the sequence $\left\{f_{k}(z)\right\}$ converges to $f(z)$ in the sense of $[\rho(r), p]$ and $\left\{F_{k}(z)\right\}$ converges to $F(z)$ then $f(z) \sim F(z)$.

Remark. If the sequence $\left\{f_{k}(z)\right\}$ converges in the sense of $\left[\rho(r), p_{1}\right]$ then the sequence $\left\{F_{k}(z)\right\}$ converges uniformly in the disk $|z|<\left(\frac{p}{p_{1}}\right)$. The converse is true. One can verify this by tracing the previous calculations.

3. Functional form

By Theorem 1.2 it can be argued that the space $[\rho(r), p]$ of functions $f(z)$ with convergence in the sense of $[\rho(r), p]$ is converted into a space of functions $F(z)$ that are analytic in the disk $|z|<1$ with the convergence in the sense of uniform convergence on compacts. We use this fact to derive the form of a continuous linear functional on the space $[\rho(r), p]$.
Let $l(f)$ be a continuous linear functional on the space $[\rho(r), p]$. Set $l\left(z^{n}\right)=a_{n}$ $(n \geq 0)$. Let $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ be a function in $[\rho(r), p]$. Since the series converges in
the sense of $[\rho(r), p]$ then, by continuity of the functional,

$$
l(f)=\sum_{n=0}^{\infty} c_{n} l\left(z^{n}\right)=\sum_{n=0}^{\infty} c_{n} a_{n}
$$

Hence

$$
\begin{equation*}
l(f)=\sum_{n=0}^{\infty} a_{n} c_{n}, \quad f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \tag{8}
\end{equation*}
$$

Now consider the linear functional $L(F)$ on the space of functions $F(z)$ that are analytic in the disk $|z|<1$ by specifying its equalities:

$$
L\left(z^{n}\right)=a_{n} d_{n} \quad(n \geq 0) ; \quad d_{n}=\frac{(e p \rho)^{n / \rho}}{(\varphi(n))^{n}} \quad n \geq 1, d_{0}=1
$$

We do not yet know that it is a continuous functional.
Let $F(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be regular in $|z|<1$. Then

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in[\rho(r), p], \quad c_{n}=b_{n} d_{n}
$$

We have

$$
L\left(\sum_{n=0}^{m} b_{n} z^{n}\right)=\sum_{n=0}^{m} b_{n} L\left(z^{n}\right)=\sum_{n=0}^{m} c_{n} a_{n} .
$$

By (8) the right hand side has a limit if $m \rightarrow \infty$. Set

$$
\begin{equation*}
L(F)=\sum_{n=0}^{\infty} a_{n} c_{n}=\sum_{n=0}^{\infty} a_{n} d_{n} b_{n} \tag{9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
l(f)=L(F), \quad f(z) \sim F(z) \tag{10}
\end{equation*}
$$

Since $l(f)$ is the continuous linear functional it follows that $L(F)$ is the continuous linear functional.
A continuous linear functional on the space of analytic functions in the unit disk is given by the formula

$$
L(F)=\sum_{n=0}^{\infty} p_{n} b_{n}, \quad F(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

where $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|p_{n}\right|}<1$. Due to this and (9) we obtain $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right| d_{n}}<1$ or

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sqrt[n]{\left|a_{n}\right|}}{\varphi(n)}<(p e \rho)^{-1 / \rho} \tag{11}
\end{equation*}
$$

So a continuous linear functional $l(f)$ on the space $[\rho(r), p]$ has the form (8) where values a_{n} satisfy the condition (11). Converse is also true: if the condition (11) is true then the functional (8) is a continuous linear functional $l(f)$ on the space $[\rho(r), p]$ since by this condition the functional (9) is continuous linear functional.
Theorem 1.3 is proved.

The space of analytic functions in the unit disk $D=\{z:|z|<1\}$ with convergence in the sense of uniform convergence on compacts, is denoted by $A(D)$. We note the following known facts:

1) Let $F_{n}(z) \in A(D)(n \geq 1)$. In order to function $F_{0}(z) \in A(D)$ to be approximated with arbitrary accuracy by linear combinations of functions $F_{n}(z)$ (uniformly on compact sets of D), the necessary and sufficient condition is that

$$
\begin{equation*}
L\left(F_{n}\right)=0 \quad(n \geq 1) \tag{12}
\end{equation*}
$$

where $L(F)$ is a continuous linear functional on $A(D)$ and $L\left(F_{0}\right)=0$. In particular, for the system of the functions $\left\{F_{n}(z)\right\}$ to be complete in $A(D)$, the necessary and sufficient condition is that the equalities (12) should yield $L(F)=0$ for any function $F(z) \in A(D)$.
2) Let M be a closed set in $A(D)$ which does not coincide with $A(D)$ and the function $F_{0}(z) \in A(D)$ does not belong to M. Then there exists a functional $L(F)$ with property: $L(F)=0$ for all $F(z) \in M$ but $L\left(F_{0}\right) \neq 0$.

Note that a closed set M in $A(D)$, by the relation $f(z) \sim F(z)$, corresponds to a closed set in the space $[\rho(r), p]$.
On the basis of the noted facts and also taking into account the equality (10), we obtain the following statements:

1) Let $f_{n}(z) \in[\rho(r), p](n \geq 1)$. In order to function $f_{0}(z) \in[\rho(r), p]$ to be approximated with arbitrary accuracy by linear combinations of functions $f_{n}(z)$ (in the sense of $[\rho(r), p]$), the necessary and sufficient condition is that

$$
\begin{equation*}
l\left(f_{n}\right)=0 \quad(n \geq 1) \tag{13}
\end{equation*}
$$

where $l(f)$ is a continuous linear functional on $[\rho(r), p]$, and $l\left(f_{0}\right)=0$. In particular, for the system of the functions $\left\{f_{n}(z)\right\}$ to be complete in $[\rho(r), p]$, the necessary and sufficient is that equalities (13) should yield $l(f)=0$ for any function $f(z) \in[\rho(r), p]$.
2) Let N be a closed set in $[\rho(r), p]$ which does not coincide with $[\rho(r), p]$ and the function $f_{0}(z) \in[\rho(r), p]$ does not belong to N. Then there exists a functional $l(f)$ with the property: $l(f)=0$ for all $(z) \in N$ but $l\left(f_{0}\right) \neq 0$.

References

[1] Levin, B.Ya., Distribution of Zeros of Entire Functions, English revised edition Amer. Math. Soc, Providence, RI, 523pp. MR 81k:30011, 1980.
[2] Bingham N.H., Goldie C.M., Teugels J.L., Regular variation, Cambridge university press, Cambridge, London, New-York, New Rochele, Melburn, Sydney, 1987.
[3] Leont'ev, A.F., Obobshcheniye ryadov e'ksponent, Nauka, (Russian), 1981.
Konstantin G. MALYUTIN, Sumy State University, 2, Rimskogo-Korsakova str., UKR-40007, Sumy, Ukraine, e-mail: malyutinkg@gmail.com, http://www.mathnet.ru/php/person.phtml

Taisiya I. MALYUTINA, Ukrainian Academy of Banking, 57, Petropavlivska str., UKR-40030, Sumy, Ukraine, e-mail: malyutinkg@gmail.com

