Jeodezik ve Sismik Verilerden Yararlanarak Kabuk Deformasyonu Alanının Belirlenmesi

Haluk ÖZENER¹, Aslı DOĞRU¹

Özet:

Bu çalışmada, GPS hızları ve jeodezik veri ile zorlanmış sismik veriler kullanılarak hız alanı ve gerinim oranları elde edilmiştir. Çalışma alanı Kuzey Anadolu Fay Zonu (KAFZ) batı kesimidir. Haines ve Holt tarafından geliştirilen algoritma kullanılmıştır. Jeodezik veri, GPS hızlarıdır (2003-2005). Sismik veriler, 30 yılık zaman aralığında büyüklüğü 4'ün üzerindeki depremlerin odak mekanizması çözümleridir. Elde edilen sonuçlardaki doğu-batı kısalması Kuzey Anadolu Fay Zonu batı kesiminin sağ yanal atımlı karakteristiğini yansıtmaktadır. GPS kampanyalarından elde edilen minimum hız 0.42mm/yıl, maksimum hız 25mm/yıl'dır. Güney koldaki hareket batı-güneybatı yönündedir. Gerinim oranları Kuzey Anadolu Fay Zonu batı kesimindeki kuzey-güney genişlemesini göstermektedir.

Anahtar Sözcükler

GPS, Gerinim, Deprem Odak Mekanizmaları, Deformasyon, KAFZ.

Abstract:

Determination of Crustal Deformation Field Utilizing Geodetic and Seismic Data

In this study, velocity field and strain rates were obtained by GPS velocities solely and GPS data with constraints from seismicity. The study area is the western part of North Anatolian Fault Zone (NAFZ). The algorithm developed by Haines and Holt was applied to the dataset. Geodetic data were GPS velocities (2003-2005) and seismic data were focal mechanism solutions of earthquakes with magnitude larger than 4 in a 30-year time interval. Results show that the east-west shortening of western NAFZ are related to right-lateral faulting. The minimum velocity value by the evaluation of GPS campaigns is 0.42 mm/yr and the maximum velocity is 25 mm/yr. The south branch of western NAFZ have movements towards west and south-west direction. Strain rates show the north-south extension of the western NAFZ.

Key Words

GPS, Strain, Earthquake Focal Mechanisms, Deformation, NAFZ.

1. Giriş

Yeryüzündeki en aktif fay zonlarından biri olan KAFZ, Mudurnu Vadisi civarında üç kola ayrılır. KAFZ'nin batı kesiminde gerçekleşen depremler, KAFZ'nin Doğu Marmara Depremi'ne neden olan kuzey kolu üzerinde yoğunlaşmaktadır. Bu durum, kuzey kolun diğer kollara göre daha aktif olduğunun göstergesidir. İznik bölgesindeki kol ise sismik olarak daha düşük bir aktiviteye sahiptir. Bu bölgede gerçekleştirilen çeşitli çalışmalar, düşük

sismisiteye	sahip	alanların	sismik	boşluk	olabileceğini
belirtmekte		ve		bu	böl

gede detaylı çalışmalarla sismik tehlikenin belirlenmesine ihtiyaç duyulmaktadır (AMBRASEYS ve FINKEL 1991, STEIN vd. 1997, BARKA ve REILINGER 1997, REILINGER vd. 2000, AYHAN vd. 2002, ERGINTAV vd. 2002, MEADE vd. 2002, REILINGER vd. 2006, OZENER vd. 2009, AKAY ve OZENER 2009).

Dünyada olduğu gibi ülkemizde de kıtasal dinamiklerin anlaşılması ve sismik tehlikenin belirlenebilmesi için gerinim ve hız alanı modeli tanımlama çalışmaları sürdürülmektedir. Yerkabuğu deformasyonunun belirlenmesi başlığı altındaki bu çalışmalar, yeryüzü üzerinde konumlandırılmış karakteristik noktalarda zamana ve/veya etkiyen kuvvetlere bağlı olarak anlamlı bir hareketin var olup olmadığının tespitini kapsamaktadır.

Jeodinamik amaçlar için tasarlanmış GPS ağlarında kabuk deformasyonu çalışmalarından elde edilen GPS hızları, elastik deformasyon hakkında önemli bilgiler sağlamakta ve tekrarlı jeodezik ölçmelerden gelen bu verilerin analizi, yerkabuğu deformasyonu belirleme çalışmalarına ışık tutmaktadır. Diğer yandan, mekanizma çözümlerini içeren sismik veriler de kabuk deformasyonu kinematiği araştırmalarına katkı vermektedir. Bu çalışmada, deformasyon alanı belirlenirken iki ayrı veri seti kullanılmıştır. GPS verileri önce tek başına daha sonra da sismik veri ile zorlanarak değerlendirilmiş ve bölge tektoniği ile uyumlu sonuçlar elde edilmiştir.

2. Hız Alanı ve Gerinim

Dünyada yılda ortalama 700 adet hasar yaratıcı deprem meydana gelmektedir. Depremlerin önceden belirlenmesi çalışmaları bilim adamları tarafından sürdürülmekle beraber, deprem zararlarına karşı alınacak önlemlerle kayıpların azaltılması mümkündür. Gereken önlemlerin alınabilmesi öncelikle tehlike analizini gerektirmektedir. Gerinim analizi, afetlerle sıkça karşı karşıya kalan ülkemizde risk yönetiminin ilk aşaması olan tehlike analizine olanak sağlamaktadır. Gerinim en basit olarak birim deformasyon şeklinde tanımlanabilir. Hız alanından farklı olarak gerinim alanı, bölgeden bölgeye hızdaki değişimi de gösterir.

Çalışma alanı olarak seçilen bölge, Kuzey Anadolu Fay Zonu batı kesimi olup, 26° – 32° doğu boylamları ile 39° – 42° kuzey enlemlerini kapsamaktadır. Jeodezik veri, 2003-2005 yılları arasında 5 kez gerçekleştirilen GPS kampanyalarından GAMIT/GLOBK bilimsel değerlendirme yazılımları kullanılarak elde edilen 66 adet

¹Prof. Dr., Dr., BÜ Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Jeodezi Anabilim Dalı, Çengelköy, İstanbul

istasyona ait hızlardır (Şekil 1). Hassas yörünge bilgisi, Uluslararası GPS Servisi (IGS) tarafından SP3 formatında, SOPAC adresinden alınmıştır.

Şekil 1. Marmara Bölgesi Avrasya sabit hız alanı (2003–2005 arası). Koordinat ve hız değerleri için referans yüzeyi, 14 IGS noktası ile tanımlanmıştır.

Yer dönme parametreleri, USNO bull b değerlerinden alınarak kullanılmıştır. Değerlendirmeye IGS global izleme ağından 10 istasyon dahil edilmiştir. Referans sistemi tanımlamada ITRF2000 koordinat çözümü kullanılmıştır. Radyasyon-basınç etkileri için SOPAC tarafından da standart olarak kullanılan 9 parametreli Berne modeli kullanılmıştır. Okvanus yüklemesi etkisi için Scherneck modeli (IERS standarts, 1992) ile çalışılmıştır. Zenith gecikme bilinmeyenleri, Saastamoinen öncül standart troposfer modeline dayalı aralıklarla olarak 2 saatlik hesaplanmıştır. Değerlendirmede, L1 ve L2 taşıyıcı dalga fazlarının iyonosferden bağımsız LC (L3) doğrusal kombinasyonu kullanılmıştır. Anten faz merkezleri için yüksekliğe bağlı model tercih edilmiştir. GAMIT çözümleri sonrasında elde edilen gevşek-zorlamalı (loosely-constrainted) günlük çözümler ITRF2000 referans sisteminde, sabit olarak tanımlanan ve McClusky vd. (2000) ile Ergintav vd. (2006) çalışmaları tarafından da kullanılan 14 global IGS noktasından yararlanarak 7 parametreli (3 öteleme, 3 dönüklük ve 1 ölçek) dönüşüm ile tanımlanmıştır. Günlük hassas koordinatlar Kalman analizi ile birleştirilerek, oluşturulan zaman serilerinden yapılan trend analizi ile istasyonların hızları elde edilmiştir (Tablo 1).

Tablo 1 : Marmara Bölgesi GPS hızları. (Koordinat ve hız değerleri için referans yüzeyi, 14 IGS noktası ile tanımlanmıştır).

İstasyon	Boylam (o)	Enlem (o)	E _{vel} (mm/yr)	N _{vel} (mm/yr)	E _{sig} (mm/yr)	N _{sig} (mm/yr)	RHO
AGOK	30.761	40.589	-17.73	0.78	1.10	1.05	-0.103
AGUZ	30.680	40.538	-22.79	1.20	0.98	0.88	-0.083
AKCO	29.973	41.034	4.48	-1.41	1.10	0.78	-0.056
AKKO	31.198	41.045	7.05	9.77	3.08	2.65	-0.093
ALAN	27.424	39.785	-21.26	-9.15	1.31	1.54	-0.013
ALAP	31.417	41.201	7.42	5.23	4.35	3.08	-0.076
ASMT	27.204	40.054	-16.01	-6.70	0.87	0.97	-0.046
ATHT	26.524	40.126	-14.28	-6.59	1.17	0.96	-0.042
AVCT	28.724	40.989	-4.90	3.10	0.41	0.42	-0.053
BAD1	29.118	40.852	0.26	1.21	0.31	0.29	-0.037
BALI	27.906	39.722	-21.20	0.08	1.65	1.69	-0.104
BGNT	26.570	40.932	-1.56	-2.86	0.66	0.72	-0.037
BKCT	27.091	40.203	-18.83	-11.33	0.93	1.05	-0.037
BLOT	29.033	39.899	-22.61	-1.93	1.03	1.19	-0.021
BOZT	28.782	40.534	-15.92	-2.82	0.46	0.48	-0.042
CALT	30.405	40.880	4.76	1.19	1.12	1.34	-0.080
CINA	29.143	40.639	-15.87	5.07	1.66	1.81	-0.091
CMLN	30.916	40.118	-24.81	2.19	0.97	0.82	-0.063
DERB	29.681	40.362	-23.49	-1.42	0.82	0.76	-0.067

DGCT	30.462	40.478	-25.01	0.82	0.93	1.08	-0.073
DOKU	26.706	40.739	-3.45	-3.01	0.71	0.80	-0.048
DRGT	29.145	40.909	8.18	-0.27	0.77	0.85	-0.033
DUMT	29.372	40.566	-20.16	-1.16	0.32	0.31	-0.039
EGMI	27.269	39.577	-15.95	-12.24	3.61	3.33	-0.020
ERCT	29.243	40.319	-24.05	-1.44	0.81	0.91	-0.028
ERDT	27.808	40.393	-17.65	-2.56	0.31	0.30	-0.043
ESKI	30.637	39.658	-24.38	-0.35	0.81	0.81	-0.118
FIST	28.882	40.481	-18.27	-1.47	0.92	1.01	-0.014
HART	29.310	40.927	0.42	-1.60	2.10	2.43	-0.029
HMZA	29.514	40.164	-22.00	-0.24	1.37	1.42	-0.029
IBBT	29.321	40.866	2.82	-2.22	1.02	1.18	0.014
IGAZ	29.908	40.438	-23.31	-3.09	1.16	1.10	-0.097
ISTA	29.019	41.104	1.84	0.35	0.29	0.27	-0.037
IUCK	29.929	40.425	-24.64	-1.89	1.99	1.63	-0.062
KABI	27.301	40.381	-13.88	-12.43	1.28	1.45	-0.106
KAMI	29.273	40.834	9.78	2.75	1.09	1.23	0.030
KANK	30.294	41.048	7.88	-0.81	0.66	0.67	-0.094
KANI	29.001	41.001	2.90	0.87	0.31	0.30	-0.038
	28.333	40.205	-19.73	-2.10	0.28	0.26	-0.043
KAZI	30.303	40.785	0.79	3.83 2.40	0.85	0.79	-0.047
KDEK	30.827	40.733	-9.02	2.49	0.94	1.83	-0.007
KRDM	29 362	41.107	3 79	-2.48	0.67	0.74	-0.029
KRDT	26.999	40.951	-0.44	-0.37	1 39	1 37	-0.051
KUTE	29 288	40 485	-21.64	-2 77	0.55	0.59	-0.043
KVAK	26.871	40 601	-9.59	-4.65	0.69	0.73	-0.004
MADT	27.587	40.611	-15.91	-3.29	0.37	0.38	-0.036
MER1	27.962	40.967	1.07	1.88	0.29	0.26	-0.035
MHGZ	30.570	40.028	-23.34	-0.65	0.91	0.76	-0.048
OLUK	29.585	40.667	-14.29	-1.96	1.10	1.26	-0.061
OVCT	29.539	40.980	3.41	-3.46	0.68	0.75	-0.038
SEFI	30.325	40.612	-22.25	-1.63	0.88	0.96	-0.107
SELP	28.365	41.052	2.09	1.01	0.75	0.76	-0.051
SEVK	26.880	40.396	-13.90	-6.14	0.61	0.67	-0.029
SEYH	30.453	40.351	-25.32	2.15	0.90	0.76	-0.051
SILE	29.623	41.179	4.04	0.37	0.63	0.67	-0.063
SMAS	30.134	40.690	-20.73	1.08	1.83	1.75	-0.091
TEBA	30.804	40.386	-23.00	2.25	1.07	0.94	-0.052
TUBI	29.451	40.787	-1.15	0.80	0.29	0.26	-0.037
TYFT	26.487	40.383	-11.54	-4.66	1.12	1.10	-0.05
UCG2	29.962	40.846	4.71	0.98	0.40	0.41	-0.038
ULUT	29.131	40.098	-23.02	-2.59	0.30	0.28	-0.041
YACT	29.238	40.917	4.94	1.14	1.03	1.19	0.000
YANI	29.113	40.820	-1.05	0.96	0.70	0.76	-0.050
YENN	28.373	40.398	-19.10	-2.82	0.93	0.85	-0.069
YIGI	31.439	40.937	1.01	5.63	0.8/	0.82	-0.032

GPS hızlarından yararlanarak gerinimi hesaplamak için kullanılan değişik yöntemler mevcuttur. Bu çalışmada Haines ve Holt tarafından geliştirilen algoritma kullanılmıştır (HAINES ve HOLT 1993, HOLT ve HAINES 1995, HAINES vd. 1998, SHEN-TU vd. 1999, KREEMER vd. 2000, BEAVEN ve HAINES 2001). Sismik veriler, 30 yıllık zaman aralığında büyüklüğü 4'ün üzerinde olan depremlerin odak mekanizması çözümleridir (Şekil 2). Bu veri Harvard Üniversitesi Sismoloji Kataloğu'ndan (URL-1) temin edilmiştir.

Şekil 2. 1976-2006 yılları arasında Türkiye'de gerçekleşen büyüklüğü 4'ün üzerindeki depremlerin odak (kaynak/faylanma) mekanizması çözümleri

Gerinimi hesaplamak için kullanılan yöntemler birbirine benzer olmakla birlikte, onları ayıran en önemli özellik, gerinimin homojen kabul edilebileceği küçük bölgelerin belirlenmesidir (DEMİR, 1999). Bu çalışmada grid kenarları 0.5 derece olarak alınmıştır. Sismik veri ile ters çözümde KOSTROV (1974) formülü (1) kullanılmaktadır. Kayma (shear) modülü 3.5*10¹⁰ N/m² ve sismojenik kalınlık 30 km kabul edilmiştir.

$$\varepsilon_{ij} = \frac{1}{2\mu VT} \sum M_0 m_{ij} \tag{1}$$

Formülde μ kayma modülü, V grid hacmi (grid alanının sismojenik kalınlık ile çarpımı), T kullanılan sismik veri zaman aralığı, M₀ sismik moment ve m_{ij}

birim moment tensörünü ifade etmektedir.

Sadece GPS verisi ile ters çözümde, odak mekanizması çözümleri dikkate alınmamış ve ölçülen değerlere en uygun modeli sağlayacak olan gerinim alanı üretilmiştir (Şekil 3). Sismik veri ile zorlamalı çözümde, bilinmeyenlerin yaklaşık değerleri için öngörülen varyanslar odak mekanizması çözümlerinin kullanılması ile elde edilmiştir. Gerinim alanı haritası Şekil 4'te verilmektedir. Bu yöntemde sismik veriler, beklenen gerinim oranlarının biçimini ve yönünü etkilemektedir.

Tablo 2 : GPS hızlarından ve GPS verilerinin sismik veri ile zorlanmasından elde edilen Marmara Bölgesi gerinim oranları

İstasyon	Fnlem	Boylam	£,	£.,	Azimut	c.*	£_*	Azimut*
istusyon	(0)	(0)	$(10^{-8} \text{ v1}^{-1})$	$(10^{-8} \text{ v1}^{-1})$	(0)	$(10^{-8} \text{ v}\text{l}^{-1})$	$(10^{-8} \text{ vl}^{-1})$	(0)
YIGI	40 937	31 439	9 35E+01	-4 52E+01	45 56942	1.06E+02	-4 60E+01	46 39526
ALAP	41 201	31 417	-4 47E+00	-3 87E+01	71 70198	-5.08E+00	-4 82E+01	87 05141
AKKO	41 045	31 198	1.09E+02	-7.15E+01	52 50258	1.33E+02	-8 17E+01	54 47167
CMLN	40 118	30.916	7.82E+01	-3 74E+00	76 12229	7 44E+01	-1 28E+01	67 33168
KDER	40.735	30.827	1.95E+02	-1.51E+02	47.01615	2.31E+02	-1.73E+02	46.99589
TEBA	40 386	30.804	2.06E+02	-2.68E+01	64 98734	2.25E+02	-1 94E+01	66 80573
AGOK	40 589	30 761	2.55E+02	-1 15E+02	54 88405	2.94E+02	-1 21E+02	55 80985
AGUZ	40 538	30,680	2.53E+02	-1 12E+02	54 89217	2.83E+02	-1 12E+02	56 27994
ESKI	39 658	30.637	452E+01	-6.84E+00	91 39754	4.93E+01	-8 92E+00	88 11359
MHGZ	40.028	30.570	4.55E+01	-1.07E+01	133.34147	4.26E+01	-1.87E+01	143.76578
DGCT	40 478	30 462	1.64E+02	-1.85E+02	40 76966	1.68E+02	-1 87E+02	40 73035
SEYH	40 351	30 453	7 98E+01	-6.29E+01	40 32979	6.42E+01	-4.16E+01	37 08253
CALT	40 880	30 405	1 47E+02	-2.64E+02	35 14267	1 74E+02	-2.96E+02	37 00093
SEFI	40.612	30.325	2.17E+02	-3.84E+02	34,18945	2.44E+02	-4.30E+02	34.69529
KAZI	40.785	30.303	1.92E+02	-3.44E+02	33,18175	2.24E+02	-3.86E+02	34.56675
KANR	41.048	30.294	3.20E+01	-9.25E+01	34,94153	2.90E+01	-7.49E+01	43,49988
KFKT	41 187	30.229	6.63E+00	-3 48E+01	113 38246	4 63E+01	-5 75E+01	109 97771
SMAS	40 690	30 134	2.22E+02	-3 53E+02	34 35644	2.52E+02	-3 97E+02	34 89381
AKCO	41.034	29.973	2.44E+01	-4.98E+01	40.56859	1.27E+01	-3.15E+01	53.35855
UCG2	40 846	29 962	1 58E+02	-1 65E+02	40 82757	1 74E+02	-1 78E+02	41 57117
IUCK	40.425	29.929	2.47E+02	-1.44E+02	49.81148	2.44E+02	-1.42E+02	48.96687
IGAZ	40 438	29 908	2.67E+02	-1 44E+02	50 82616	2.65E+02	-1 42E+02	50 11219
DERB	40.362	29.681	1.79E+02	-3.59E+01	57.18704	1.53E+02	-1.16E+01	56.89224
SILE	41.179	29.623	6.86E+01	-6.38E+01	119.52922	8.74E+01	-8.87E+01	118,17218
OLUK	40.667	29.585	3.92E+02	-2.68E+02	48.16590	4.26E+02	-2.96E+02	47.90819
OVCT	40,980	29.539	9.00E+01	-5.37E+01	52,14987	8.81E+01	-5.01E+01	55.67428
HMZA	40.164	29.514	1.06E+02	-9.71E+01	139.64236	1.31E+02	-1.25E+02	140.16344
TUBI	40.787	29.451	2.82E+02	-2.39E+02	45.44367	3.08E+02	-2.66E+02	45.53616
DUMT	40.566	29.372	2.75E+02	-3.14E+02	40.88949	2.86E+02	-3.42E+02	40.40645
KRDM	41.017	29.362	5.85E+01	-1.11E+01	79.37024	6.19E+01	-2.01E+01	92.74700
IBBT	40.866	29.321	1.87E+02	-1.35E+02	46.92647	1.94E+02	-1.43E+02	47.43625
HART	40.927	29.310	1.27E+02	-6.63E+01	51.76610	1.25E+02	-6.47E+01	53.74674
KUTE	40.485	29.288	1.72E+02	-2.61E+02	35.82676	1.64E+02	-2.75E+02	34.67306
KAMT	40.834	29.273	2.10E+02	-1.57E+02	45.48965	2.19E+02	-1.67E+02	45.74847
ERCT	40.319	29.243	4.49E+01	-1.18E+02	19.50919	3.57E+01	-1.13E+02	15.38849
YACT	40.917	29.238	1.33E+02	-5.86E+01	52.04134	1.29E+02	-5.41E+01	54.20594
DRGT	40.909	29.145	1.43E+02	-4.45E+01	52.86775	1.40E+02	-3.62E+01	55.33766
CINA	40.639	29.143	2.76E+02	-2.86E+02	39.42724	2.90E+02	-3.07E+02	38.97477
ULUT	40.098	29.131	6.26E+01	-5.30E+01	140.35834	6.92E+01	-3.66E+01	133.96682
BAD1	40.852	29.118	1.92E+02	-9.08E+01	47.29726	1.97E+02	-8.64E+01	47.93491
YANT	40.820	29.113	2.16E+02	-1.21E+02	45.35097	2.25E+02	-1.20E+02	45.59601
KANT	41.061	29.061	1.00E+02	-3.32E+01	103.13804	1.17E+02	-6.52E+01	108.84359
BLOT	39.899	29.033	3.07E+01	-2.75E+01	133.69402	2.94E+01	-1.85E+01	125.78227
ISTA	41.104	29.019	1.00E+02	-5.16E+01	107.18313	1.15E+02	-8.88E+01	111.06316
FIST	40.481	28.882	1.59E+02	-1.95E+02	36.84132	1.63E+02	-1.99E+02	36.79893
BOZT	40.534	28.782	1.86E+02	-1.78E+02	38.38290	1.96E+02	-1.79E+02	38.49259
AVCT	40.989	28.724	2.09E+02	9.35E+00	73.35557	2.30E+02	1.38E+01	74.92037
YENN	40.398	28.373	8.88E+01	-8.70E+01	38.47360	6.75E+01	-7.72E+01	39.65020
SELP	41.052	28.365	2.90E+01	-1.92E+02	24.36009	4.25E+01	-2.43E+02	26.05438

KART	40.265	28.333	3.15E+01	-5.63E+01	29.55011	1.25E+01	-5.23E+01	32.48306
MER1	40.967	27.962	1.74E+02	-8.95E+01	48.01960	1.87E+02	-1.01E+02	47.83224
BALI	39.722	27.906	6.57E+00	-1.32E+01	31.26632	1.61E+01	-1.78E+01	49.73991
ERDT	40.393	27.808	8.76E+01	-5.80E+01	35.58503	8.03E+01	-5.78E+01	32.02193
MADT	40.611	27.587	1.94E+02	-1.01E+02	41.37362	2.04E+02	-1.04E+02	39.68141
ALAN	39.785	27.424	1.03E+01	-5.85E+01	29.42632	2.19E+01	-7.75E+01	28.80212
KABI	40.381	27.301	5.28E+01	-9.63E+01	30.77814	5.53E+01	-8.66E+01	35.30415
EGMI	39.577	27.269	-1.54E+01	-4.51E+01	165.93846	-1.22E+01	-5.65E+01	167.36989
ASMT	40.054	27.204	-7.36E+00	-3.13E+01	25.02171	-6.37E+00	-3.58E+01	38.62196
BKCT	40.203	27.091	3.42E+00	-3.14E+01	1.79730	0.44E+00	-2.01E+01	156.46041
KRDT	40.951	26.999	8.45E+01	-6.19E+01	22.68024	9.38E+01	-6.82E+01	21.20307
SEVK	40.396	26.880	6.62E+01	-9.70E+01	20.52324	6.96E+01	-9.98E+01	16.99650
KVAK	40.601	26.871	1.06E+02	-1.17E+02	24.67538	1.15E+02	-1.22E+02	23.77378
DOKU	40.739	26.706	9.24E+01	-8.27E+01	27.19328	1.03E+02	-8.87E+01	29.61178
BGNT	40.932	26.570	4.86E+01	-2.43E+01	27.52429	5.62E+01	-2.61E+01	33.27428
ATHT	40.126	26.524	3.02E+01	-6.77E+01	169.54282	3.80E+01	-6.98E+01	171.15668
TYFT	40.383	26.487	4.97E+01	-7.48E+01	18.83460	5.97E+01	-8.20E+01	19.27124

Şekil 3. GPS hızlarından elde edilen Marmara Bölgesi gerinim alanı

Şekil 4. GPS verilerinin sismik veri ile zorlanması ile elde edilmiş Marmara Bölgesi gerinim alanı

Her iki yöntemden elde edilen sonuçlardaki doğu-batı kısalması ve kuzey-güney genişlemesi, Kuzey Anadolu Fay Zonu batı kesiminin sağ yanal atımlı karakteristiğini yansıtmaktadır. GPS kampanyalarından elde edilen minimum hız 0.42mm/yıl, maksimum hız 25mm/yıl'dır. Sonuçlar bölge tektoniği ile uyumludur. Güney koldaki hareket batı-güneybatı yönündedir. Gerinim oranları Kuzey Anadolu Fay Zonu batı kesimindeki kuzey-güney genişlemesini göstermektedir.

3. Sonuç

Bu çalışmada tektonik bilgi, sismik veri ve jeodezik veri kullanılarak gerinim alanı elde edilmiştir. Uygulanan iki farklı yöntemin sonuçları bölge tektoniği ile uyumlu olmakla birlikte, sismik veri ile zorlamada elde edilen gerinim oranlarının daha büyük olduğu gözlenmiştir. Marmara Bölgesi'nin güneyinde, sismik verilerin gerinimin yönününe olan etkisinin daha belirgin olduğu gözlenmiştir. Çalışma bölgesinde yoğun jeodezik veri bulunması ve 30 yıllık sismik veri kataloğu böyle bir çalışmayı mümkün kılmıştır. Ülke ölçeğinde yeterli yoğunlukta elde edilecek jeodezik veri ve daha geniş zaman aralığına ait sismik veriler ile çalışmanın sonuçları zenginleştirilebilir. Söz konusu algoritmaya üçüncü bir veriseti olarak jeolojik veriler entegre edilebilir.

Yer bilimlerinde deprem araştırma çalışmalarının önemli sonuçlara ulaşabilmesi, geniş zaman aralığında elde edilmiş, farklı disiplinlerden gelen verilerin anlamlı olarak bütünleşmesi ile mümkün olacaktır. Yerkabuğu deformasyonu çalışmaları, tekrarlı jeodezik ölçmelerin analizi ve bunların jeolojik ve jeofizik araştırmalardan elde edilen sonuçlar ile birlikte değerlendirilmesine dayanır. Bir disiplinin ürettiği sonuç, diğer bir disiplinin girdi verisi olduğundan, tek tip veri üreten bir çalışmanın, diğer çalışmalardan üretilmiş değişik tipteki verileri kendi verisi ile entegre etmediği sürece anlamlı bilgi üretemeceği açıktır.

Kaynaklar:

- AKAY G. ve OZENER H.: Investigation of long period crustal deformation on the silent branch of the North Anatolian Fault, Nat. Hazard Earth Syst. Sci., 9 (2009), 663-671.
- AMBRASEYS N. N. ve FINKEL C. F.: Long-term Seismicity of Istanbul and of the Marmara Sea Region, Terra Nova, 3 (1991), 527-539.
- AYHAN M. E., DEMİR C., LENK O., KILICOGLU A., ALTINER Y., BARKA A. A., ERGINTAV S., OZENER H.: Interseismic Strain Accumulation in the Marmara Sea Region, B. Seismol. Soc. Am., 92 (2002), 216-229.
- BARKA A. ve REILINGER R.: Active Tectonics of the Eastern Mediterranean Region: Deduced from GPS, Neotectonic and Seismicity Data, Ann. Geofís., XL (1997), 587-610.
- BEAVAN, J. ve HAINES, J.: Contemporary Horizontal Velocity and Strain Rate Fields of the Pacific-Australian Plate Boundary Zone Through New Zealand, Journal of Geophysical Research, 106 (2001), 741-770.

- DEMİR, C.: Investigation of Horizontal Crustal Motion and Strain Accumulation in Western Part of North Anatolian Fault, Doktora Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul, 1999.
- ERGINTAV S., BURGMANN R., MCCLUSKY S., CAKMAK R., REILINGER R. E., LENK O., BARKA A., OZENER H.: Postseismic Deformation near the Izmit Earthquake (17 August 1999, M 7.5) Rupture Zone, B. Seismol. Soc. Am., 92 (2002), 194-207.
- ERGINTAV S., DOGAN U., GERSTENECKER C., CAKMAK R., BELGEN A., DEMIREL H., AYDIN C., REILINGER R.: A Snapshot (2003–2005) of the 3D Postseismic Deformation for the 1999, Mw = 7.4 Izmit Earthquake in the Marmara Region, Turkey, by First Results of Joint Gravity and GPS Monitoring, J. Geodyn., 44 (2007), 1-18.
- HAINES, A.J. ve HOLT, W.E.: A Procedure to Obtain the Complete Horizontal Motions Within Zones of Distributed Deformation From the Inversion of Strain Rate Data, Journal of Geophysical Research, 98 (1993), 12057-12082.
- HAINES, A.J., JACKSON, J.A., HOLT, W.E., AGNEW, D.C.: Representing Distributed Deformation by Continuous Velocity Fields, Sci. Rept. 98/5, Inst. of Geol. and Nucl. Sci., Wellington, New Zealand, 1998.
- HOLT, W. E. ve HAINES, A. J.: The Kinematics of Northern South Island New Zealand Determined From Geologic Strain Rates, Journal of Geophysical Research, 100 (1995), 17991-18010.
- KOSTROV, V.V.: Seismic Moment and Energy of Earthquakes, and Seismic Flow of Rocks, Izv Acad. Sci., USSR, Phys, Solid Earth, English Translation, 1 (1974), 23-44.
- KREEMER, C., HOLT, W.E., GOES, S., GOVERS, R.: Active Deformation in Eastern Indonesia and the Philippines From GPS and Seismicity Data, Journal of Geophysical Research, 105 (2000), 663-680.
- MEADE B. J., HAGER B. H., MCCLUSKY S. C., REILINGER R. E., ERGINTAV S., LENK O., BARKA A., OZENER H.: Estimates of Seismic Potential in the Marmara Sea Region from Block Models of Secular Deformation Constrained by Global Positioning System Measurements, B. Seismol. Soc. Am., 92 (2002), 208-215.
- OZENER H., DOGRU A., UNLUTEPE, A.: An Approach for Rapid Assessment of Seismic Hazards in Turkey by Continuous GPS Data, Sensors, 9,1 (2009), 602-615.
- REILINGER R. E., ERGINTAV S., BURGMANN R., MCCLUSKY S., LENK O., BARKA A., GURKAN O., HEARN L., FEIGL K. L., CAKMAK R., AKTUG B., OZENER H., TOKSOZ M. N.: Coseismic and Postseismic Fault Slip for the 17 August, 1999, M= 7.5, Izmit, Turkey Earthquake, Science, 289 (2000), 1519-1524.
- REILINGER R., MCCLUSKY S., VERNANT P., LAWRANCE S., ERGINTAV S., CAKMAK R., OZENER H., KADIROV F., GULIEV I., STEPANYAN R., NADARIYA M., HAHUBIA G., MAHMOUD S., SAKR K., ARRAJEHI A., PARADISSIS D., AL-AYDRUS A., PRILEPIN M., GUSEVA T., EVREN E., DMITROTSA A., FILIKOV S. V.,

GOMEZ F., AL-GHAZZI R., KARAM G.: GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions, J. Geophys. Res., 111 (2006), B05411, doi: 10.1029/2005JB004051.

- SHEN-TU, B., HOLT, W. E., HAINES, A. J.: The Kinematics of the Western United States Estimated From Quaternary Rates of Slip and Space Geodetic Data, Journal of Geophysical Research, 104 (1999), 28927-28955.
- STEIN R. S., BARKA A. A., DIETERICH J. H.: Progressive Failure on the North Anatolian Fault since 1939 by Earthquake Stress Triggering, Geophys. J. Int, 128 (1997), 594-604.
- URL-1: Global CMT Catalog, Global Centroid Moment Tensor Project, <u>http://www.globalcmt.org/</u>, 03.02.2009.