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GRAND LORENTZ SEQUENCE SPACE AND ITS
MULTIPLICATION OPERATOR
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ABSTRACT. In this paper, we introduce the grand Lorentz sequence spaces
KG
P,q)
properties of the multiplication operator, such as compactness, Fredholmness

etc., defined on ¢¢ ..
P,q)

and study on some topological properties. Also, we characterize some

1. INTRODUCTION

Let (X, S, i) be a c—finite measure space and let g be a complex-valued measur-
able function defined on X. The non-increasing rearrangement g* of g is defined
by

g"(s) =inf{t >0: F,(t) <s}, s>0,

where F,(t) = p{z € X : |g(z)| > t}, t > 0, is the distribution function of g. If p
is counting measure on S = 2V, then we can write the distribution function and
the non-increasing rearrangement of a complex-valued sequence (x,,), respectively,
as follows;

F,t)=p{neN: |z, >t},t>0
and
Zp(n) =inf{t>0: Fu(t) <n-1}

if n—1 <t < n with F,(t) < co. By the definition of non-increasing rearrangement,
we can interpret that (w¢(n)) can be obtained by permuting (|z,|),,c 5, where R =
{n € N: 1z, # 0}, in the decreasing order. Here, x4,y = 0 for n > pu(R) if p(R) <

oo [2].
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Lorentz introduced the classical Lorentz space Aq ., 0 < ¢ < 0o, which the space
of all measurable functions f defined on (0, 1) with

T / (f (@) )z |
0

where f* is the non-increasing rearrangement of f and w is a weight function [12],
[13]. The space Ag. and its special case L, 0 < ¢,p < oo, have been widely
studied by many authors. For more details see [3], [5], [7].

The Lorentz sequence spaces ¢, , is the space of all complex-valued sequences
x = (z,,) such that

1

<Z ng_l(‘rqﬁ(n))q) ’ 1§P§007 1§q<OO
n=1

Sup,, NP Ty(n), 1<p<oo, g=x

]l,.q =

is finite, where (x¢(n)) is non-increasing rearrangement of x. The spaces £, ; have
been used to introduce and investigate some classes of operators, like (p, ¢) —nuclear,
(p, ¢; 7)—absolutely summing operator [I4]. Kato [II] characterized the dual space
of ¢, 4 {E}, where E is a Banach space. See also [2], [10], [15].

The idea of grand spaces was raised by Iwaniec and Sbordone [§]. They intro-
duced the grand Lebesgue spaces LP) for 1 < p < co. Samko and Umarkhadzhiev
[I7] studied some properties of grand Lebesgue spaces on sets of infinite measure.
Jain and Kumari [J] introduced the grand Lorentz spaces Ay ., 0 < ¢ < oo and
studied on its basic properties. Also, they characterized boundedness of maximal
operator on the space A, .. Later, Rafeiro and others [16] introduced the grand
Lebesgue sequence space £):¢ = ¢P):%(X) by the norm

p(1+5>
2]
e S fa PO = sup 79 2| ppror )
kex e>0

where X is one of the sets Z™, Z, N and Ny for 1 < p < 00, § > 0. They studied
various operators of harmonic analysis, e. g. maximal, convolution, Hardy etc.
In this paper, we are inspired by this work and introduce the grand Lorentz

sequence spaces £? ) B8 follows; let # > 0. The grand Lorentz sequence space ¢/ pa)

is the set of all sequences a = (a,) such that |al| g is

defined by

g < 00, where |[al

2:9), P:9),

& 1 q(1+e) a(1+e)
sup.~o (€ 20 (nv(1+€>a¢(n)) n-! , 1<p<o0,1<g<

1

SUPy,>1 NP Ag(n), 1<p<oo,g=00

where (a¢(n)) is the non-increasing rearrangement of the sequence a = (a,,). In case
p = q, the grand Lorentz sequence space Zz 9 coincides with the grand Lebesgue
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space £P)%(N). In this work, we study on some topological properties and inclusion
theorems of the space Eg o) Also, we characterize some properties of multiplication

operator on the ¢/ .
We will need the following lemma:

Lemma 1. (Hardy, Littlewood and Polya) Let (r) and (*r,) be the non-increasing
and non-decreasing rearrangements of a finite sequence (ry) of positive numbers.
Then, we have for any two sequences (a,) and (by) of positive numbers such that

Zaz*bn < Zanbn < Za:}b;
[6].
2. MAIN RESULTS

2.1. Grand Lorentz Sequence Space.

Theorem 2. The grand Lorentz sequence space Ez a) is a normed space for 1 < q <
p < o0 and a quasi-normed space for 1 <p < q < 0.

Proof. By definition of the norm of Eg g)» We can write

0
ally.q),0 = sUPE T [lall, ;1) - (1)
e>0

0 1

Let 1 < g < p < . For any a,b € qu),
positive numbers and so by Lemma 1, we have

. 4_1 . .
simce ne 1S decreasmg sequence of

1
oo q(1+e)
q_ 1+¢
”a+b”p,q),9 = Sup (5627” 1(aﬁ(n)+bﬂ(n))q( )>
e>0 n=1
o q(11+5)
_ 6 (-1 7t 1
= sup|e (n p)a0Fe) (agn) + by(n )
5>0( Z::l (@o(n) + bon))
1
o) v (1+¢) q(1+¢)
< sup g? nr 1 ay(n 1
sup n; (@9 (n))
1
oo v (1+¢) a(1+e)
+sup SGZnifl (bﬁ(n))q
e>0 n—1
1
(e} - a(1+e) q(1+e)
< sup e? nr " (Gyn
sup ; (ag(m))

1
0 o P a(1+e) q(1+e)
+sup | e an (bw(n))
n=1

e>0
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||a||p,q),9 + ||b||Pa‘1)x0

where (aﬂ(”) + bﬂ(n)), (a¢(n)) and (b¢(,L)) are the non-increasing rearrangements
of (an + by), (a,) and (by,), respectively.
Let 1 <p < ¢ < co. Then, we have p < ¢(1 + ¢) for ¢ > 0 and hence |al|

pq(1+e)
is a quasi-norm. Thus, we get
e
lla+bll,.4).0 sup £ 905 Jla +bl|,, 4 14c)
e>0
0 1
< swpe® (2 (Jlall g1se) + 1l gsn)))
e>0
1
< 25 (Jlal g0 + [8.g00) -
For 1 < p < oo and g = oo, we have [lal|,, ) = |lal, .- The proof is complete(é

Remark 3. Let a > 0 and let us take the sequence

(an) = (n* (In(n + 1))*“)

as in [I6]. It is easy to see that the sequence (ay) is decreasing and thus the non-
increasing rearrangement of (a,) is itself. Therefore, we have

(oo}

Z (n% 5 (In(n+1))" ) Zn (In(n + 1))~

n=1
If a > %, then (ay) € Ly, 4. Using similar technique as in [10], we get (a,) € Ep 9
if and only if o > %. Thus, we get (an) € ﬁzyq) and (an) ¢ {4 whenever

120 <1,
g — = q

Definition 4. The vanishing grand Lorentz sequence space éf) a)’ 1<p<o0, 1<

q < oo, consists of all sequences (ay,) € Eg 9 such that

0 e 1 q(1+€) 1
Eliirg)a Z (nP<1+5) a¢(n)> n~ - =0.
n=1

Lemma 5. The space Zg g 8 a closed subspace of the space Ez a)
Proof. The proof can be obtained by using similar technique as in [I6]. |

Remark 6. [t is enough to take the supremum in (1) on the finite interval for e,
which means ,
Ha”p,q)ﬂ = sup gattte) ||aH
O<s<m
where W (t) is the Lambert function. Note that W(l/ 7 = 3.59 (see [], [16]).

p,q(1+e)
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Lemma 7. Let a = (a,) € Ez oy 1 <p,g<ooandf > 0. Then, we have the

following inequalities for all n € N:

1 i) -1
q P a =1
oo <4 (g7 (560 Wl

if1<p<g<ooand

2]
1
oo <4 (7

@

Te 1
—1) ne p”a”p,Q),@

if 1 <q<p<oo, where h(z) = xTE R(z)=(1+ x)fl%r and g9 = 1,7182.

Proof. Let a = (ay,) € Kz 2 and let 1 < p < g < co. Since p < ¢(1 + €), we have by
Lemma 2 in [I1] that

la

sup ()7 ||al]

0,q),0 p,q(1+e)
0<e< Wie—T)
Tare
0 1 p q(14e
> sup  h(g)d | n» () ag
O<a<W(j,1) q(l + E) (n)
1
q 1
> sup_ h(e)s (p> (142) T nrage)
0<e< Wie—T) q
0 p % 1 1
= SUPl h(g)q = (R(E))q NP Ag(n)
0<e< Wie=T) q
0 P % 1 1
> sup hg)e (=) (R(e0))? nPag(m)-
0<e<irT I

Q=

6 1
1 a/p\a 1
- Hmem) (5) et
Here R(x) = (1+ m)fl%ﬂﬂ attains the minimum at the point g = 1,7182.
Let 1 < ¢ < p < co. Then, since n»!is decreasing, we have

A
lallpg0 = sup (&) 7 [|ally, 146

1
0<E<m

vV
w0
=i
e
=
N
Q|
(]
~
S
2
v
N
S
=
N
<
=
+
3
S
—
N——
2]
7
N

Vv
S
=
=
w0
=i
ol
>
—~
N
Q|
/P?
S
S
|
N——
=
[~
2
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Y

1
ﬁ 1 €
ag(ky ~ Sup fKE)Q(kg 1)q“+)

1
O<s<m

1\7 1
= M) v ew:

Theorem 8. The space Equ) is complete for 1 < p,q < co.
Proof. Let al® = (a@) S thq) such that

lim ’a(s) —a®
s,t—00

=0.
P,q),0

For ¢ = 0o, the proof is clear. Let ¢ < co. Then, there exists a natural number sqg
such that

(s) (t)
a’’ —a <
H P,q),0 g
whenever s,t > sg. By Lemma 3, we have
11
‘ (s) O < ( 1 >_g o Ha( ) _a(t)Hp,q)ﬁ’ a<p
a,” —ap | = S TPESEY T o1 s
W(e 1) (53(50)) o [l —a®] o, p<q
— ( ki3
_ h( 1 ) q B . q<p
W(e™) (%R(so)) "kin, p<gq

where h(z) = T R(z) = (1 +a?)_1+%. This shows that (af)) is a Cauchy
sequence in C. Thus, we have (aj) € C such that lims_, ’a,(j) — ak‘ = 0. By using
the equality (1) with classical method, we get Ez q)is a complete space. O

Lemma 9. Let 1 <p < oo, 1 <q<q <oo. Then, we have the following

0

0
ezuq) c Zp,ql)'

Proof. Let a = (a,) € Ez 0 and p < ¢. Then, we have by Proposition 2 in [I1] that

6
”a”p,ql)ﬂ - supl h(e) |la p,q1(L+e)
0<8<m
1 1
o (q(l+4¢e)) @ a
< swaeh (1) T
O<E<m p

1_

q 1 q i
< p 1+ W(e 1) la p:9),0

< 0o0.
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where h(z) = 2T+ . The inclusion can be obtained by similar way for p > ¢ with
Lemma 3. (]

Theorem 10. Let either 1 <p<p; < oo, 1<g<ooorl <p<p; <o0, ¢g=o00.
Then, the inclusion

0 0
Epyq) c gpl,q)
holds.
Proof. Let a € Eg o) Then, we have
o
||aHp1,q),9 = sup h(E) E ”a‘”pl,q(l-l—e)
0<E<m
6
S sup h‘(s) a ||a||p,q(1+6)
0<5<7W(§_1)
= llallq.0
< o0
. 0
which shows a € Epl)q). O

Corollary 11. Let 1 <p; <p < q < q1 <o0o. Then, the inclusions
0 0 0
el o)
hold.

Theorem 12. The grand Lorentz sequence space ﬁg Q) is strictly convex for 1 <
p<ooandl < q< oo.

Proof. Let a,b € Ez’q) such that [lall,, ) o = [0l ;o = 1 and HaTerHp,q),G = 1. Then,
we have by using similar technique as in [I] that
a+b 0 a+b
1 = 5 = sup ga(l+e) 5
pa)f  0<e<ymy pa(l+e)
S NP L
0<e< ity 2
= (Nalpg.o 100,00
- 2
=1

which shows a = b. O
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2.2. Multiplication Operator. In this section, we characterize some properties
of the multiplication operators on 827 0 Let v = (v,,) be a complex-valued sequence
and let us define the linear transformation M, on the sequence space X into the
linear space of all complex-valued sequences by

M, (z) = ve = (vp2y).
If the linear transformation M, is bounded with range in X, then it is called

multiplication operator on X.

Theorem 13. Let v = (v,) be a complez-valued sequence. Then, M, is a multipli-

cation operator on Eg 0’ 1 <p,qg <o if and only if v is a bounded sequence.

Proof. Let M, be a multiplication operator on é‘; Q) and let ¢ < co. Then, there
exists a positive number K > 0 such that

[ M(a) < K|lal

Hp,q)ﬂ P,q),0

for all a € thq). Let us define

o(k) — 37%, k=n
0, k#n

w(e—1)

671 . .
where s = (m) D for all n e N. Then, the non-increasing rearrangement

B — s75 n=1
s\ 0 mAl
Then, we have (éﬁ)) € (9 | with ||e(’“)H = 1. By the boundedness of M,,, it
p,q) p,q),0

can be written HMve(k)Hp_q),a <K ||e(’“){|p7q) 0= K. Thus, we get

> 1 p \a(Fe) ) 1Y o \a(i+e)
sup (59 Z (n*’<1+€>vw(n>6fp()n>> n~t = sup e? (Uﬁi(l)e;}()l))
n=1

e>0 e>
_0 0
= § P Sup (5q(1+s)vw(1))
e>0
K

which gives that vyq) < K.s~T#. This shows that v is bounded. If q = 00, the
proof is similar as was used in the classical Lorentz sequence spaces.

Conversely, let v be a bounded sequence. Then, there exists 7' > 0 such that
|vg| < T for all k € N. Thus, we get

1
o0 . q(1+¢) B q(1+e)
Mol g9 = sup (562(1‘?”(”5)”1&(1@)%(@) ; )
e> ke1

IN

1
a(1+e)
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1
oo a(1+e) q(1+e)
T sup (5‘9 Z (kp(‘lia aw(k)) k_1>

e>0 b1

IN

= T ”a”p,q),@
for ¢ < oo. If ¢ = 0o, then

1
sup k» vy gy aypry < T Ha||p7q)79 .

kEN
O
Theorem 14. Let M, be a multiplication operator on EZ )7 1 <p,q<oo. Then,
M, is invertible if and only if there exists pu > 0 such that |v,| > p.s_%+279, where

w1

5= (W(e*l)) HWETD o alln € N.

Proof. Let M, be invertible operator on éz ) 1 < p,q < . Then, there exists
p > 0 such that

[Myall, g0 = tllall, g0
) )

for all a € Kg)q). Thus, for (eslk)> el? | we get

p,q)’
|poe®|| =T o] 2 st
P,q),0
which gives |vg| > si§+2179,u. Conversely, let define z;, = (vk)fl. By using Theorem
5, the proof can be obtained. ([l

Theorem 15. Let M, be a multiplication operator on E;q), 1 <p,qg<oo. Then,
a necessary and sufficient condition for M, to have closed range is that for some
0>0

[vn| > 0
for eachn € R={n € N:wv, #0}.

Proof. Assume that |v,| > o for o > 0 and for all n € R. Let ¢ < oo and let
g® g e 8103 Q) such that M,g"*) — ¢ as k — oo. Then, we write

lim HMvg(m)—Mv (m) -
P,q),0

m,n— 00

Put 2" = ¢g(m) — ¢(")  Thus, we have

.| (mn) - ’ (mn)‘
{lEN.‘xl >g}_{l€N.wxl >7“}

)

(mn) n) (mmn)

for each » > 0 and so 0% ) < ”w(lﬁ%) , where Ty and vw(l)xfﬁbg are the non-

increasing rearrangement of the sequences (xl(m")) and (lel(mn)), respectively.
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Thus, we have

Hmmn) - H M, g™ — M, g™
P,q),0 P,q),0
1
q(1+e)
. 0 1 (mn)>q(1+s) 1
= sup|le [P+ vy n T l
E>18< zz:( PO Ly (1)
€R
- O]
> sup (59 qu(1+5) (lﬁx((;(r;;l))‘ﬂ €) ll>
e>0 IeR
= o Hx(mn) .
P,q),0

mn)

Since ||vx(m”)||p 9 — 0 as m,n — oco. This
),

means that ¢(™ is a Cauchy sequence in Ez q)| R, Where
Kz’q)hg = {a = (ag) € Kg’q) tap=0if k€ N\R} is a closed subspace of ﬁg’q). Thus,

we get f € K;G),q)|R such that g™ — f as m — oo. Since M, is bounded lin-

g — 0 asm,n — oo, we have !

ear operator, we can write M,g("™ — M,f. This gives M,f = g. Because of
Ker (M,) = Ez q)|N\R, M, has closed range.

Conversely, assume that M, has closed range and there exists (I,,) € R such that
v, | < L. Let

_8
) =4 87 m=ln
0

, mFEl,
Wb
e—1
where s = (W(;,l)) T and let ¢ < oo. Then, He(l“) ) = 1. Thus, we get
HMve”") _ H”e(l")
p,q),0 P,q),0
1
00 q(1+e)
1 In q(1+e) _
= sup |’} (m”‘wvw(m)@fm)n)) m~
e>0 m—1
( . ) q(1+5))<1(11+5)
= sup|e (v e )
g P(1) (1)
o_o
= SpP QUln
< 18%72 elin)
n p,q),0

which means M, is not bounded different from zero. Thus, |v,| > g for some o > 0
and all n € R. For the case ¢ = oo the proof can be obtained by similar way. O

Theorem 16. Let M, be a multiplication operator on 62 Q) Then, M, is compact
if and only if |v,] — 0 as n — oo.



Proof. The proof can be obtained by the similar way used in the classical Lorentz
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sequence space. (]

Corollary 17. Let M, be a multiplication operator on 62’(1). Then, M, is Fredholm
if and only if the set N\R has finite elements and there exists p > 0 such that

lon| > 0

for alln € N, where R={n € N: v, # 0}.
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