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ABSTRACT. This article presents different parameter estimation methods for
flexible Weibull distribution introduced by Bebbington et al. (Reliability En-
gineering and System Safety 92:719-726, 2007), which is a modified version
of the Weibull distribution and is suitable to model different shapes of the
hazard rate. We consider both frequentist and Bayesian estimation methods
and present a comprehensive comparison of them. For frequentist estima-
tion, we consider the maximum likelihood estimators, least squares estima-
tors, weighted least squares estimators, percentile estimators, the maximum
product spacing estimators, the minimum spacing absolute distance estima-
tors, the minimum spacing absolute log-distance estimators, Cramér von Mises
estimators, Anderson Darling estimators, and right tailed Anderson Darling
estimators, and compare them using a comprehensive simulation study. We
also consider Bayesian estimation by assuming gamma priors for both shape
and scale parameters. We use a Markov Chain Monte Carlo algorithm to
compute the posterior summaries. A real data example is also a part of this
work.

1. INTRODUCTION

Weibull distribution is one of the most widely used distributions in reliability, and
has a monotonic hazard rate, which may be increasing or decreasing. In many relia-
bility applications, however, the failure rate often non-monotonic, which motivated
[1] to introduce a new extension of the Weibull distribution having bathtub-shaped
failure rate. To define it, let X have the flexible Weibull (FW for short) distribu-
tion, say X ~ FW(a, A). [I] defined the cumulative distribution function (cdf) of
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X as
G(z) =1 — exp(—exp(at — A/1)), (1)
where o and \ are the shape parameters. The exponential distribution is obtained
by A =0 and o = log(#). The probability density function (pdf) corresponding to
is given by
g(z) = (a+ A/z?) exp(at — A/z) exp(— exp(at — A/t)), x>0 (2)
[l pointed out that as A decreases, the failure rate function becomes more
bathtub-like while it becomes shallower as « increases.
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FIGURE 1. Density Plot of flexible Weibull for some selected parameter values.

Note that the FW distribution has the closed-form density, hazard and survival
functions. In Figure{l] we have depicted the density of FW distribution for various
combinations of parameters. It is clear from the figure that the distribution is very
flexible and adopts various shapes for different combinations of parameters.

In the literature, [2] developed a R Package 'reliaR’ to generate random num-
bers from FW to estimate its parameters and study other reliability characteristics.
[3] discussed Bayesian estimation and prediction for FW under type-II censoring
scheme. [4] discussed parameter estimation of the flexible Weibull distribution for
type I censored data. [5] proposed a new extension of FW distribution using the odd
generalized exponential generator. [6] proposed a generalized class of FW distribu-
tion for repairable systems. [7] proposed a generalized class of FW distribution. [§]
discussed estimation and prediction for type-II hybrid censored data assuming FW
distribution. [9] studied the penalized maximum likelihood estimation for the mod-
ified extended Weibull distribution. [I0] discussed the reliability properties of the
proportional hazard reverse transformation using FW distribution. [I1] presented
estimation and prediction for FW based on progressive type-II censored data. [12]
proposed exponentiated additive Weibull distribution where FW is a special case
of the proposed distribution.
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The aim of this article is to compare different parameter estimation methods,
including both classical and Bayesian. In particular, we compare the maximum like-
lihood, the maximum and the minimum spacing distances (minimum spacing ab-
solute distance and minimum spacing absolute-log distance), ordinary and weighted
least squares, percentiles, the minimum distance methods including Cramér-von-
Mises, Anderson-Darling and right-tail Anderson-Darling. Further, we also com-
pute the parameter estimates of FW by using the Bayesian method, where we use
the Markov Chain Monte Carlo (MCMC) to obtain the posterior summaries. Sev-
eral authors have used different methods of estimations for different distributions,
for example, [13] 14} [15] 16l 17, 18, 19, 20].

The rest of the article is organized as follows: Section 2 discusses some new
properties of the FW distribution. Section 3 deals with different methods of esti-
mation of the model parameters. Section 4 presents simulation study while a real
life example to show the practical application is presented in Section 5. Finally,
some concluding remarks are given in Section 6.

2. NEW PROPERTIES

This section discusses some statistical properties.

2.1. Moments, Skewness and Kurtosis. We calculate the mean, variance, skew-
ness and kurtosis numerically and depict in Figure2] It is clear from the figure that
as A increases, the mean and variance also increase. However, the skewness and
kurtosis decrease by increasing A. It is also noticed that a small value of a results
into large value of mean, variance, skewness and kurtosis.

2.2. Quantile function. To generate random variable from FW, we invert Equation-
as follows X = F~!(u), where u ~ Uniform(0,1). The simplified form is

X =F"1tu)= % <log(— logu) + v/{log(—logu)}2 + 4a)\> (3)

The skewness and kurtosis measures can be investigated using the quantile function.
For example, the Bowley skewness [21] based on quantiles is given by

F1(3/4) + F~1(1/4) — 2 F~1(2/4)
Fo1(3/4) — F1(1/4)

Similarly, the Moors’ kurtosis [22] is

F~1(3/8) — F~1(1/8) + F~1(7/8) — F~1(5/8)

F-1(6/8) — F-1(2/8)

B =

M= .
2.3. Reliability properties of FW distribution. A key property to characterize
the distribution is log-concave, i.e., the density is log-concave if d?/dz?log f < 0,
otherwise convex. The hazard would be decreasing if density is log-concave. For
the FW, it is observed that the density is log-concave for A > a.
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FIGURE 2. Plots of the FW (a) Mean (b) Variance (¢) Skewness, and
(d) Kurtosis for some selected parameter values.

2.4. Stochastic ordering. Stochastic ordering is an important tool in reliabil-
ity theory and finance to assess comparative behavior. Let X; and X5 be two
random variables having cdfs, sfs and pdfs Fy(z), Fy(z), Fi(z) = 1 — Fi(),
Fy(z) = 1 — Fy(x), fi(x), and fo(z), respectively. The random variable X is
said to be smaller than X in the following ordering as:

(i) stochastic order (denoted by X; < Xo) if Fy(x) < Fy(z) for all ;

(ii) likelihood ratio order (denoted by X; <;. X7) if fi(x)/f2(z) is decreasing in
x> 0;

(iii) hazard rate order (denoted by Xi <, X») if Fi(x)/Fs(z) is decreasing in
x > 0;

(iv) reversed hazard rate order (denoted by X <., X2) if F}(z)/Fs(z) is decreas-
ing in « > 0.

All these four stochastic orders defined in (i)—(iv) are related to each other [23]
and the following implications hold:

(X1 <rir X2) <= (X1 <ir X2) = (X1 <pr Xo) = (X1 <ot Xo). (4)
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The following theorem shows that the FW distribution has likelihood ratio ordering
when appropriate assumptions are satisfied.

Theorem 2.1. Let X1 ~ FW(aq, M) and Xo ~ FW(ag, A2). If a1 < ag for fized
AL =X =X, and Ay > Ao, for a1 = as = « then X7 <; Xo.

Proof. Tt is not difficult to show that d% log % < 0 for the following condi-
tions:

e o < g for fixed Ay = Ay = A,

e )\ > g and oy = g = .

Thus, likelihood ratio ordering holds and X; <. Xs. O

2.5. Stress and Strength Analysis. Stress-Strength reliability is defined as G =
P?"(Xl > XQ) = fooo fl(IL')FQ(Q?)dIZ', X1 ~ FW(Oq, )\1) and X5 ~ FW(O[Q, )\2),
whereas the fi(z) is the pdf of X; and Fy(x) cdf of X5.

0

X exp< exp(a1z — A1 /) — exp(apz — )\2/.T)>dl‘ (5)
The above equation can be solved numerically.

3. PARAMETERS ESTIMATION METHODS

This section describes ten different methods of estimation to obtain the estima-
tors of the parameters a and A of the FW distribution.

3.1. Maximum likelihood estimators. Let x1,zs,...,x, be a random sample
of size n from Equation . Then, the log-likelihood function is given by

Lo, N) = > log(a+A/z3F)
i=1
+a Z T — Z()\/wl) - Zexp(aaci — N ;) (6)
i=1 i=1 i=1
The resulting partial derivatives of the log-likelihood function are

n

9 (o, ) :Z#_szi—zbmexp(ami—)\/xi) (7)
i=1 i=1

da — o+ Nz}

000, )) o 1 S N
Ton " et Tl ewlenmMe) o (®)

Equating these partial derivatives to zero do not yield closed-form solutions for
the MLEs and thus a numerical method, like Newton Raphson, is used for solving
these equations simultaneously.

i=1
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3.2. Least Squares Estimators. The least squares and weighted least squares
estimators were proposed by [24] to estimate the parameters of beta distributions.
To define these, suppose F(X(;y) denote the distribution function of the ordered
random variables Xy < Xy < -+ < X,y where {X1, Xy, -, X,,} is a ran-
dom sample of size n from the distribution function F(-). Then, the least squares
estimators of @ and A, say &rsg and )\ LsE can be obtained by minimizing

n

S(a,/\):Z[F(azimm,/\)— ! ]2

p n+1

with respect to o and A, where F'(-) is the cdf . Equivalently, the estimators can
be obtained by solving;:

n

Z [F(xn | o, \) — ‘ } N (Tin | @, A) =0,

p n+1

n .
7

> {F (i [ @, A) = } Ny (Tin | @, A) =0,

= n+1
where
M (Tin | @, A) = aexp<(ax —Az) —exp(az — /\/m)>, (9)
and
Ny (T | @, A) = % exp((ozx —\z) —exp(az — A/x)) (10)

The weighted least squares estimators, Qw rsg and XW LSE, can be obtained by
minimizing
n

2 . 2
W(a,)\):gw [F(xmm,x)— n—ll-l] .

These estimators can be obtained by solving:

" (n+1)% (n+2) ; )
> D [ o 00 = ] ) =0
" (n+1)% (n+2) ; )
D T [F im0, = ] o i ) =0

=1

3.3. Percentile Estimators. If the data come from a distribution function which
has a closed form, then the unknown parameters can be estimated by fitting straight
line to the theoretical points obtained from the distribution function and the sample
percentile points. This method was originally suggested by [25, 26] and it has
been used for Weibull distribution and for generalized exponential distribution. In
this paper, we apply the same technique for the two-parameter FW distribution.
Let X(;) be the jth order statistic, i.e, X(1) < Xg) < -+ < X(,). If p; denote
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some estimate of F'(z(;);a, A), then the estimate of o and A can be obtained by
minimizing
i 2
Z (x(] (log( logp;) + \/{1Og —logp;)}? + 4a)\>> ,
=1

with respect to o and A. Several type of estimators for p; can be used [27] and this
paper considers p; = %4-1
3.4. Maximum and Minimum Product of Spacings Estimators. The max-
imum product spacing (MPS) method was introduced by [28] [29] as an alternative
to MLE for the estimation of the unknown parameters of continuous univariate dis-
tributions. The MPS method was also derived independently by [30] as an approx-
imation to the Kullback-Leibler measure of information. To motivate our choice,
[29] proved that this method is as efficient as the MLE estimators and consistent
under more general conditions.

We define the uniform spacings of a random sample from the FW distribution
as:

Di(a,\) = F (zjn | 0y A) — F (i1 | @, ), 1=1,2,...,n,

where F(zg., | @, A) =0 and F(2p11.n | @, A) = 1. Clearly Z"H Di(a,\) =

The maximum product of spacings estimators asps and hy MPs, of the parame-
ters a and A are obtained by maximizing the geometric mean of the spacings with
respect to a and A

n+1 ﬁ
= [H D,-(a,/\)] , (11)

or, equivalently, by maximizing the function

n+1
H (a, —Zlog[) a, \). (12)

The estimators ajrpg and XMPS of the parameters o and A can be obtained by
solving the nonlinear equations

0 1 &1

H = n |Gy - 1—1in |, = )
56 N = 1 Dy el X~ el N] = 0
) 1 n+1 1
ﬁ H (Oé )\) n+1 ; Di(OL, )\) [772(371‘:71‘04’ )\) - 772(37i71:n|047 )‘)] = 0;

where 7, (- | a,\) and 7, (- | @, \) are given by (9) and (10, respectively.
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Similarly, the minimum spacing distance estimators of aysapg and XMS ADE
of o and \ are obtained by minimizing

n+1 1
TN =3 (Dt 7). (13)
where h(z,y) is an appropriate distance. Some choices of h(x,y) are the absolute
distance |z — y| and the absolute-log distance |logxz —logy|. These estimators
are called the “minimum spacing absolute distance estimator" (MSADE) and the
“minimum spacing absolute-log distance estimator" (MSALDE). The MSADE and
MSALDE of parameters o and A can be obtained by minimizing

n+1

1
T =3 (i) = ] (14)
and
n+1
T(a,A) = Z log D;(a, A) — log il (15)

i=1
with respect to o and A\, respectively.
The estimators apsapr and Ayrsape of @ and A\ can be obtained by solving
the following nonlinear equations

a ntl D,;(O[, )\) — 1

—T(,\) =Y ntl
O P ‘Di(a,)\) - n%_l

[ (Tin | @, A) =11 (Tim1n | @, A)] =0

0 o l)l'(()[a)‘)_L

_T 7)\ — n+1
N (05 ) ;‘Di(a’)\)_ 1

M (Tin | @, A) = ng (Tiz1m | @, A)] = 0,
nt+1

where D;(a, \) # ni_l.
The estimators ayrsarpE, and XMSALDE of @ and X can be obtained by solving

the nonlinear equations
o 21 log Dy(a, A) — log

1
il 1
‘ Dl(a7A)

i=1 ‘log Dj(a, \) — log ﬁ_l
X [0y (Tim | @, ) =11 (Ti1m [ @, A)] =0

9 ! log Di(a, A) — log —L 1

7T(OL, )\) — n+1
oA ; ’log D;(a, \) — log ﬁ_l’ Di(a, \)

X Mg (Tim | @, A) = g (Tim1m | 0, )] =0,

where log D;(a, \) # log %ﬂ
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3.5. Minimum Distances Estimators. This section presents three estimation
methods for @ and A based on the minimization of the goodness-of-fit statistics
with respect to a and A. This class of statistics is based on the difference between
the estimate of the cumulative distribution function and the empirical distribution
function.

3.5.1. Cramér-von-Mises Estimators. To motivate our choice of Cramér-von-Mises
type minimum distance estimators, [31I] provided empirical evidence that the bias
of the estimator is smaller than the other minimum distance estimators. Thus,
the Cramér-von Mises estimators acag and :\\C MmE of the parameters o and \ are
obtained by minimizing the following function.

1 55 2i—1\°
i=1

These estimators can be obtained by solving the following non-linear equations

- 2 — 1
> (F (@ | . 3) — 2 ) M (@i [0 X) = 0,
i 2 —1
Z <F (xln | O‘,)‘) - o > Up) (xln | Of,)‘) = 0,

i=1

where 7, (- | @, A) and 7, (- | @, ) are given by (0) and respectively.

3.5.2. Anderson-Darling and Right-tail Anderson-Darling Estimators. The Anderson-
Darling (AD) test [32] is an alternative method to detect sample distribution depar-
ture from the assumed distribution. Specifically, the AD test converge very quickly
towards the asymptote [33] B4 [35]. The Anderson-Darling estimators a4pgr and
h) ApE of the parameters o and A are obtained by minimizing the following function
with respect to the parameters.

n

Ala,\) = —n — %Z (20 — 1) {log F (zimn | &, A) + 108 F (@pq1—i:n | @, N) . (17)

i=1

These estimators can be obtained by solving the following non-linear equations:

2": (22 _ 1) T (xi:n | o, )\) _ 711 (-T"Jrlﬂ.:n «, )\) _ 0
i=1 F (xzn | O[,)\) F (x’n-i-l—i:n | Oé,A) ’
i (22 _ 1) Up) ($zn | Ot,)\) B ZQ ($n+l—i:n, | a,)\) _ 0
i=1 F (xzn | Oz,)\) F (mn+17i:n | a7)‘) ,

where 7, (- | a,\) and 7, (- | @, \) are given by (9) and (10, respectively.
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The Right-tail Anderson-Darling estimators agrrapg and h) rTADE Of the para-
meters o and A are obtained by minimizing, with respect to o and A, the function:

n

R(a,\) = f—QZF xln\a)\)—fZ(Qi—l)logf(an_i;n|a,)\). (18)
i=1
Equivalently

1 nl(n+lzn‘a>\)

=2 (@i | @, N) + — (20 —1) = = 0,
Z ! n; F(Tpi1—im | 0, A)
1’ﬂ 772(“17"‘01)\)

-2 n A + — —1)= = 0,
277296 | o, A) nzl( )F(anmIa)\)

.
Il

where 7, (- | @, \) and 7, (- | @, \) are given by (9) and (10)), respectively.

4. BAYESIAN ANALYSIS

This section discusses the Bayesian estimation of the FW distribution. To this
end, the likelihood function can be written as

L(a, M) = exp (Z 1og(a+A/x;4‘)) exp(a ; Ti—\ ; z; ') exp (— ; exp(ozaci—/\/a:i)>

i=1

%oﬂfl exp(—ba), and \ ~

Gamma(c,d), the joint posterior of @ and A can be written as

Next assuming o ~ Gamma(a,b), ie., fla) =

P(a, \|z) L exp(— sz NAT exp(— d—i—Zx*l

Xexp(Zlog(a—i—)\/x?) —Zexp(a:ci —)\/:ci)) (19)
i=1

i=1
The marginal distribution of A is P(A|z) ~ Gamma(c,d+>"_, z; ) while P(a|), z) ~

exp(—a(b— Y1, x;)) exp <Z?_1 log(a+A/z?) =31 | exp(az; — )\/zz)> for

aafl

To generate marginal of «, we propose the adaptive rejection sampling. To
this end, it is not difficult to show that P(a|\, x) is log-concave and thus, the
idea of [36] can be used. For Metropolis Hastings (MH) sampling, we assume the
gamma density as transition kernel ¢(a(?|a*)) for sampling value of o. The choice
of gamma distribution has been done purely for illustration purpose, and other
suitable distributions can be considered. After generating the marginal densities,
the next step is to calculate the posterior summaries, E(6|z) = [, 6P(0|z). The
steps to calculate the Bayes estimates are as follow:

MH Algorithm-Step 1: Generate A\ from the Gamma distribution.
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(1) To generate the o, evaluate the acceptance probability by k(a(?, o)) =

min{ 1, i((z(m)“;”))g((z:i ‘\z((z;)) , where P(a|z, \) has been defined above.

(2) Generate a random u from Uniform(0,1)
(3) If k(a@, a)) > u, a1 = o) otherwise (it = (9,

Step 2: Suppose at the i-th step, a and A take the values «; and A; and we
can generate P(\;11]x), and P(a; 1|\, @);

Step 3: Repeat the above step IV times;

Step 4: Calculate the Bayes estimator of g(a, A) by 57 Zf\iMH glai, \i),
where M denotes the burn-in sample.

In the next section, a simulation study is done to assess the performance of
different estimation methods.

5. SIMULATION STUDY

This section presents Monte Carlo simulation studies to assess the performance
of the frequentist estimators derived in the previous section. In particular, we use
bias, the root mean squared error, the average absolute difference between the the-
oretical and the empirical estimate of the distribution functions, and the maximum
absolute difference between the theoretical and empirical distribution functions as
the performance assessment criteria. For comparison, we considered the follow-
ing sample sizes: n = 20, 40, 60, 80, 100. Ten thousand independent samples of
the aforementioned sizes were generated from EW distribution with parameters
(a, ) = {(0.5,0.5),(1.5,0.5), (1.5,2.0), (3.0,2.0)}. It is noticed that 10,000 repeti-
tions are sufficiently large to have stable results. For all the methods considered
in this study, first we estimated the parameters using the method of maximum
likelihood and then these estimates are used as the initial values. Since the MLE
are not in closed form, we used the ’fitdist’ function of R package fitdistrplus,
which optimized the logarithm of the likelihood function numerically, to estimate
the parameters. The results of the simulation studies are tabulated in Tables

For each estimate, we calculated the bias, the root mean-squared error (RMSE),
the average absolute difference between the theoretical and the empirical estimate
of the distribution functions (Dgps), and the maximum absolute difference between
the theoretical and the empirical distribution functions (D,,q.). The statistics are
obtained using the following formulae:

Bias(d) — % Y (@ —a), Bias(h) = % > (i- ) (20)
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K n
Ds(8) = 1y 22 D [ Flaglo ) = Flayla ) (22)
1 & .
Drax(é) = — Z max |F(zij]e, \) — F(xij|é, V)] (23)

where n denotes the sample size and K is the number of iterations. Simulated bias,
RMSE, D,pq, Dmax for the estimates are given in Tables EHE} The row with label
>~ Ranks shows the partial sum of the ranks and superscript indicates the rank
of each of the estimators among all the estimators for that metric. For example,
Table shows the bias of MLE(&) as 1.731% for n = 20. This indicates, bias of
& obtained using the method of maximum likelihood ranks 8** among all other
estimators.

The following observations can be drawn from the Tables [T}j4]

1. All the estimators show the property of consistency, i.e., the RMSE decreases
as the sample size increases, except in the case of PCE and MSALDE for a = 0.5.
However, assuming « > 1, the RMSE of MSALDE decreases by increasing the
sample size. Furthermore, assuming o« = 1.5, A = 0.5,the RMSE of assuming «
increases with the sample size for the MLE.

2. The bias of & and \ decreases with increasing n for all the method of estimations.
3. It is noticed that the MLE and PCE performed the worst than the rest methods.
The MSALDE performs the best when «, A > 1. The CVM and AD are suggested
only when a > 1.

4. D,y,q is smaller than Dy, for all the estimation techniques. Again, the statistics
gets smaller with the increase of sample size.

5. In terms of performance of the methods of estimation, the MSADE and AD es-
timators uniformly produces the least biases of the estimates with the least RMSE,
see the ranking of > Ranks rows in the tables, for the most configurations consid-
ered in our studies.

6. It is also observed that for the estimation of A, PCE performed the worst, as the
RMSE is the highest as compared to the other methods.

For the Bayesian analysis, we generated 12,000 samples of a and A, and the
Bayes estimates with other posterior summaries, like MCMC error, median, 95%
Bayesian intervals have been tabulated in Table{5} For the parameter combinations
mentioned above to compute the posterior summaries, hyperparameters are selected
in such a way that the mean of the priors equal to the parameters’ nominal values
with large variances. Moreover, we used M = 2,000 as a burn-in period for our
calculations. From the table, it is clear that as the sample size increases, the Bayes
estimates approaches to the nominal values and the Bayesian intervals become more
smaller for large sample sizes. Furthermore, the MCMC error decreases with the
increase of sample size.
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TABLE 1. Simulation results for o = A = 0.5.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias(&) 1.731° 1.6807 12.813'™ -0.381%7 1.409° -0.385° -0.3117 1.893Y 1.101% 1.629°
RMSE (&) 1.8207 1.925% 14.131'° 0.381%2 1.492° 0.389%  0.373'  2.159% 1.184% 1.7246
Bias(\) -0.365% -0.367° 0.0001 29.943° -0.3777 3.425% 12.480° -0.3602 -0.374% -0.363°
RMSE(}) 0.367% 0.369° 0.003' 32.900%° 0.378% 3.742% 13.973° 0.362% 0.3807 0.367°
D,ps  0.363'° 0.359¢ 0.327°  0.137° 0.3607 0.136"  0.137°  0.361% 0.315* 0.361°
Dmax 0.528% 0.5175 0.777'° 0.495% 0.500° 0.4832  0.494% 0.533° 0.442' 0.5177
S"Ranks 41'® 377  377® 31* 356 25'® 2515 39° 263 34°

40 Bias(a) 1.608% 1.5657 11.7331° -0.498% 1.419° -0.398%7 -0.2987 1.665° 1.064% 1.559°
RMSE (&) 1.6437 1.649% 12.976'° 0.498% 1.453° 0.399'  0.518% 1.753% 1.102% 1.5996
Bias()\) -0.370% -0.372° 0.0001 36.3211° -0.378% 4.038% 12.135° -0.3682 -0.3797 -0.370°
RMSE(A) 0.371% 0.373% 0.000' 38.809'° 0.379° 4.232% 13.750° 0.369% 0.3817 0.371°
D, 0.363'° 0.361° 0.321°  0.137° 0.363° 0.137'  0.137°  0.3627 0.315* 0.362°
Dmax  0.519° 0.513% 0.780%° 0.539° 0.503% 0.5337  0.538% 0.522° 0.439 0.514%
S"Ranks 38 346 3785 3785 335 271° 324 357 2715 30%

60 Bias(a) 1.568% 1.533% 11.14910 -0.3992 1.429° -0.399% -0.268T 1.599° 1.051% 1.537"
RMSE(&) 1.589% 1.5827 12.279'0 0.3991 1.449° 0.399%2  0.586% 1.650° 1.075* 1.562°
Bias(A) -0.372% -0.373°% 0.000' 50.076° -0.378% 4.431% 11.772° -0.3712 -0.3807 -0.372%
RMSE(X) 0.372% 0.374° 0.000* 54.888'C 0.378% 4.565% 13.445° 0.3712 0.3827 0.372*
Daps  0.363% 0.362° 0.318°  0.137° 0.363'° 0.137'  0.137°  0.362% 0.314* 0.3627
Dmax  0.515°% 0.511% 0.778'° 0.560° 0.503% 0.5557  0.558% 0.517° 0.437' 0.512%
S"Ranks 37%°% 3245 3795 357 346 292 3245 368 27! 313

80 Bias(a) 1.550% 1.520° 10.711° -0.403% 1.439° -0.398% -0.231T7 1.570° 1.0457 1.5277
RMSE (&) 1.566% 1.5547 11.731'0 0.403% 1.454°5 0.399"  0.788% 1.604° 1.063* 1.546°
Bias(A) -0.373% -0.374% 0.000' 58.6821° -0.378% 4.719% 11.443° -0.3722 -0.3817 -0.3733
RMSE(A) 0.373% 0.374° 0.000% 64.961*° 0.378% 4.847% 13.138° 0.373%2 0.3827 0.373*
D, 0.363% 0.362° 0.315°  0.137% 0.363'C 0.137'  0.137°  0.362% 0.314* 0.3627
Dmax  0.514% 0.511% 0.775%° 0.574° 0.504%> 0.5687  0.571% 0.515° 0.437* 0.511*
S"Ranks  37°  32%4° 37° 37° 346 2715 3245 367 27! 318
100 Bias(&) 1.540% 1.515% 10.478'0 -0.405% 1.445° -0.3947 -0.1917 1.555% 1.042T 1.5227
RMSE(a&) 1.552% 1.5417 11.406'° 0.405% 1.457°5 0.400*  0.898% 1.582° 1.056* 1.537°

Bias(\) -0.373% -0.374% 0.000' 57.713'° -0.378% 4.881% 11.130° -0.3732 -0.3827 -0.373>
RMSE(X) 0.374% 0.375° 0.000* 60.414%° 0.378¢ 5.045% 12.823° 0.3732 0.383"7 0.374%
Dy 0.3637 0.3627 0.314*  0.137% 0.363'° 0.137'  0.137® 0.363% 0.314° 0.362°
Dmax  0.513° 0.510% 0.774'° 0.583° 0.505% 0.5737  0.580% 0.514% 0.436* 0.511*

S Ranks 37°° 335  367°  37°% 346 27! 324 367> 282 303

6. DATA ANALYSIS

This section shows empirically that the FW distribution can be used as an alter-
native to some well-known two-parameter models like gamma, log-normal, Weibull,
exponentiated exponential (EE), Nadarajah and Haghighi (NH) [37], Birnbaum-
Saunders (BS), and inverse Gaussian (IG) distributions. For model comparison, we
consider three well-known statistics and three model selection criteria. These mea-
sures and selection criteria are: Anderson-Darling (A*), Cramér—von Mises (WW*)
and Kolmogorov-Smirnov (K-S) measures, Akaike information criterion (AIC),Bayesian
information criterion (BIC), and loglikelihood. The least value of these measures
and selection criteria may indicate better fit. The cdfs of the EE, NH, BS and pdf



FLEXIBLE WEIBULL DISTRIBUTION 807

TABLE 2. Simulation results for a« = 1.5, A = 0.5.

20 Bias(&) -0.770% -0.824% -0.817° -1.487% -0.857' 2.513° 2.546'° -0.758% -0.335° -0.321
RMSE(&) 0.785% 0.847% 0.837°  1.487% 0.8977 3.236° 3.468° 0.789* 0.3902 0.380'
Bias(\) 0.715% 0.642° 0.6507 121.751'° 0.565° -0.2252 0.038' 0.723° 0.245% 0.271%
RMSE(X) 0.773% 0.717% 0.719° 175.8111° 0.622% 1.735°  1.435% 0.8037 0.312% 0.3592

0.3327 0.332° 0.332% 0.831'° 0.325° 0.162* 0.110° 0.331° 0.154% 0.156>
Dmax  0.497% 0.486° 0.487° 1.000'° 0.470* 0.581° 0.356% 0.4977 0.218' 0.225>
S Ranks 36%°  36%° 365 5610 31° 42° 334 365 11t 132

40 Bias(&) -0.803T -0.8317 -0.825° -1.488% -0.819° 3.290° 1.953% -0.800% -0.1742 -0.168T
RMSE(&) 0.809% 0.840% 0.833° 1.488% 1.1027 3.891'° 2.712° 0.810* 0.228% 0.221"
Bias(A) 0.6677 0.631° 0.638¢ 143.170'C 0.578% -0.340°% 0.957° 0.669% 0.115' 0.1252
RMSE(X) 0.695% 0.666% 0.670° 207.450'° 0.607> 1.084%  4.460° 0.7057 0.159% 0.1812

Daps  0.3327 0.3325 0.332° 0.832'° 0.327° 0.164*  0.143%  0.332° 0.082' 0.083°
Dmax  0.494% 0.488° 0.489% 1.000'° 0.476* 0.657° 0.392% 0.4937 0.117' 0.1212
S_Ranks _ 35° 35° 377 5610 283 44° 428 35° 8? 102

60 Bias(&) -0.814% -0.832% -0.8277 -1.4887 -0.7407 3.846'° 0.287° -0.812° -0.0867 -0.082T

RMSE(&) 0.8172 0.8385% 0.832°  1.4887 1.551% 4.443'0 1.988° 0.818% 0.1512 0.146"

Bias(A) 0.6537 0.628° 0.635% 159.279'C 0.586* -0.321%  9.004° 0.653% 0.057' 0.063>
RMSE(A) 0.671% 0.651% 0.655° 227.698'° 0.616% 1.257% 13.300° 0.6777 0.099 0.1152
D,ps  0.332% 0.332° 0.3327 0.832'° 0.326* 0.167° 0.441° 0.332° 0.047' 0.049>
Dmax  0.4937 0.488% 0.490° 1.000'° 0.478% 0.696° 0.655% 0.492% 0.070' 0.0742

S Ranks 377 33%  35%° 5610 26° 43% 47° 35°°5 gl 102

80 Bias(a) -0.819%-0.833% -0.8297 -1.489% -0.663T 4.236'° 0.156° -0.818° -0.0897 -0.086T
RMSE(&) 0.821% 0.837% 0.832° 1.4897 1.874% 4.842"° 1.874° 0.822* 0.139%> 0.134"
Bias(A\) 0.6457 0.626° 0.632° 177.803'0 0.593* -0.307% 9.562° 0.645% 0.055' 0.0602
RMSE(X) 0.658% 0.644% 0.648% 259.177'° 0.632% 1.370%° 13.698° 0.6627 0.089% 0.1022
Daps  0.3327 0.332° 0.332%  0.832'° 0.325% 0.168%  0.463° 0.332° 0.044' 0.046°
Dmax  0.4927 0.488% 0.489° 1.000'° 0.479% 0.719°  0.675% 0.491°% 0.065' 0.068>
S"Ranks 365° 33% 365 5610 26> 438 47° 355 8! 102
100 Bias(&) -0.822°%-0.833% -0.8297 -1.4897 -0.589% 4.437'0  0.314° -0.821° -0.0917 -0.089T
RMSE(&) 0.824% 0.8365 0.832°  1.4897 2.171° 5.080'° 1.938% 0.824* 0.1312 0.127!
Bias(\) 0.6407 0.626° 0.631° 190.293'° 0.589% -0.281% 8.652° 0.641% 0.054 0.0582
RMSE(X) 0.651° 0.640% 0.643° 271.665'° 0.625% 1.539% 13.037° 0.6547 0.083% 0.0932
D,hs  0.3327 0.332° 0.332% 0.832'° 0.323* 0.168° 0.429° 0.332° 0.043' 0.044°
Dmax  0.4917 0.489% 0.489° 1.000'° 0.479% 0.729°  0.646% 0.491°% 0.063' 0.065>

S Ranks 36%°  33* 365 5610 273 438 46° 35° 8! 102

of the IG distributions are, respectively, given by
Fgp(r;a,)) = (1 - efAX)a, x,0 >0,

Fym(zia, ) = 1—e "0 g0 x>0,

1/2 1/2
(7)) e

fra@imA) = gy exp [-Ma - 0/ @), A >0

6.1. Strength of glass fibres. This data set corresponds to the strengths of 15 cm
fibres and taken from [38]. The data are: 0.37, 0.40, 0.70, 0.75, 0.80 ,0.81 ,0.83, 0.86,
0.92, 0.92, 0.94, 0.95, 0.98, 1.03, 1.06, 1.06, 1.08, 1.09, 1.10, 1.10, 1.13, 1.14, 1.15,
1.17, 1.20, 1.20, 1.21, 1.22, 1.25, 1.28, 1.28, 1.29, 1.29, 1.30, 1.35, 1.35, 1.37, 1.37,
1.38, 1.40, 1.40, 1.42, 1.43, 1.51, 1.53, 1.61. A summary of these data is: n = 46, &

—e
1
Fas(rio§) = @ |-
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TABLE 3. Simulation results for a = 1.5, A = 2.0.

Bias(a) -0.7797 -0. . -0.523° 0.253 . -0.774% 0.2427 0.264
RMSE(&) 0.791° 0.849% 0.8407  1.468° 2.258'° 0.775%  0.408% 0.795% 0.335' 0.3642
Bias()\) 2.839% 2.514% 2.5547 297.882'0 2.2455 1.455% -0.102' 2.855° -0.337% -0.2912
RMSE(A) 3.0247 2.764° 2.779% 416.378'° 2.515% 5.565° 0.382' 3.123% 0.5122 0.536°

Dy 0.456° 0.456% 0.4557 0.955'° 0.437° 0.110°  0.012" 0.455° 0.146° 0.146*
Dmax  0.796° 0.778% 0.7817 1.000'° 0.751° 0.260* 0.088 0.793% 0.218% 0.219>
Ranks 459  426-5  496-5 5910 34° 26% 8* 438 132 183

40 Bias(a@) -0.8077 -0.8357 -0.829% -1.470Y 0.323° 0.2717  0.0747 -0.807° 0.226% 0.235°
RMSE(&) 0.812* 0.842% 0.8357 1.470° 4.616'° 0.829° 0.272" 0.814° 0.274*> 0.285°
Bias()\) 2.661° 2.497% 2.5327 359.246'C 2.394° 1.856* -0.106' 2.659% -0.360% -0.3402
RMSE(A) 2.7487 2.612° 2.633°% 489.784'° 2.609* 6.308° 0.397' 2.778% 0.446% 0.450°

D, 0.455° 0.4557 0.455% 0.955'° 0.426° 0.137°  0.010" 0.455° 0.145* 0.145°
Dmax  0.798° 0.789% 0.7917 1.000'° 0.765° 0.339*  0.077'  0.797% 0.212% 0.213°
S"Ranks  45%  41%5 438 5910 34° 29* 6! 4165 152 173

60 Bias(&) -0.817%-0.835% -0.8307 -1.470'% 1.062° 0.464%  0.037! -0.816° 0.460% 0.467*

RMSE(&) 0.819% 0.8397 0.833%  1.470° 5.8581° 0.861%  0.227' 0.821° 0.4822 0.489°

Bias(A\) 2.605° 2.496° 2.5267 378.613'° 2.483% 0.597% -0.079' 2.602% -0.710* -0.700°

RMSE(A) 2.661% 2.572% 2.592° 514.546'0 2.739% 4.407° 0.757% 2.6797 0.730% 0.725'

D,ps  0.456° 0.4557 0.455° 0.955'° 0.412° 0.081°  0.009' 0.455° 0.269" 0.269°
Dmax  0.799° 0.792% 0.7947 1.000%° 0.767° 0.348%  0.068 0.798% 0.399% 0.400*
S"Ranks 43  38° 407 5910 428 264 8! 398 172 18°

80 Bias(&) -0.821°%-0.835% -0.8307 -1.471° 1.735'0 0.575%7  0.024T -0.821° 0.457° 0.463°
RMSE(&) 0.823* 0.8387 0.833° 1.471° 6.779'0 0.894%  0.199" 0.824° 0.473° 0.479%
Bias(A) 2.575% 2.493° 2.519% 393.765'C 2.5487 -0.044 -0.086% 2.572% -0.713* -0.706°
RMSE()) 2.618% 2.550* 2.569° 535.269'° 2.868% 3.119°  0.621' 2.6307 0.728% 0.7242

D,ps  0.455% 0.4557 0.455°% 0.955'°  0.397° 0.056>  0.008" 0.455° 0.269* 0.269°
Dmax  0.798° 0.794% 0.7957 1.000'° 0.770° 0.368% 0.062" 0.798% 0.399°® 0.399*
S Ranks 438 37° 3965 5810 45° 26 7! 3965 1825  18%°

100 Bias(&) -0.824° -0.835° -0.8317 -1.471° 2.478T0 0.6367  0.014T -0.8245 0.456% 0.460°
RMSE(&) 0.825% 0.8377 0.833%  1.471° 7.672'° 0.937%  0.182' 0.826° 0.4692 0.473°
Bias(\) 2.559% 2.493°% 2.516° 410.757'° 2.619° -0.3552 -0.069% 2.5567 -0.715% -0.7093
RMSE()) 2.5937 2.538% 2.555% 546.167'° 2.987° 2.385% 0.710% 2.602% 0.727% 0.7242

Daps  0.455° 0.4557 0.455°%  0.955'  0.382° 0.045>  0.008'  0.455° 0.269* 0.269°
Dmax  0.798° 0.795% 0.7967 1.000%° 0.771% 0.393%  0.056' 0.798% 0.399% 0.399*
S"Ranks 428  38% 4095 5810 48° 224 6 40%-° 1825 1825

= 1.13, s = 0.2713669, skewness = —0.79359, kurtosis = 0.59954. The boxplot of
these observations displayed in Figure a) indicates that the distribution is right-
skewed. The TTT plot [39] of these data is shown in Figure b). The TTT plot
suggests an increasing failure rate and thus, the FW distribution could in principle
be appropriate for modeling the current data. Table ?? provides the MLEs of
the parameters and the values of A*, W* K-S, AIC, BIC, and loglikelihood for
each model. On the basis of results listed in the table, we conclude that the FW
distribution provides the best fit with the lowest values of model selection criteria.
This indicates that the FW distribution has the ability to fit left-skewed data with
increasing failure rate. For a visual comparison, we provide QQ-plots for all fitted
models in Figure[dl Clearly, the FW model provides the closest fit to the data.
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TABLE 4. Simulation results for « = 2, A = 3.

! 0

RMSE(a) 2.474° 0.51% 0.51%  2.904'° 0.5367 0.51°  0.51° 0.51° 1.365° 0.364"
Bias(A) 2.862% 0.01% 0.01° 85.223'° 0.011° 0.01>  0.01' 0.01* 4.050° -0.2917
RMSE()) 2.862% 0.01% 0.01* 114.487'° 0.119% 0.01* 0.01°  0.01® 4.237° 0.5367

Dy 0.0137 0.00% 0.00" 1.000™ 0.000° 0.00°  0.00° 0.00° 0.495° 0.146°
Dmax  0.1727 0.00% 0.00" 1.000'° 0.000° 0.00% 0.00°  0.00% 0.923° 0.219%
Ranks 485 193 15! 6010 387 193 28° 193 52° 32¢
40 Bias(a) -2.4737 0.51% 0.51% -2.9177 0.509% 0.517 0.51 0.51° 0.2267 0.2352
RMSE(&) 2.474° 0.51° 0.51°  2.91'° 05128 051° 0517  0.51* 0.274' 0.285°
Bias(\) 2.862° 0.01% 0.01° 100.15'° 0.014° 0.012 0.01'  0.01* -0.360% -0.340"7
RMSE(A) 2.862° 0.012 0.01% 129.73'° 0.214% 0.01} 0.01>  0.01% 0.4467 0.450%
D, 0.0137 0.00% 0.00'  1.00'° 0.000° 0.00°  0.00° 0.00%® 0.145° 0.145%
Dmax  0.260° 0.00® 0.00"  1.00'° 0.000° 0.00® 0.00°  0.00% 0.2127 0.213%
S"Ranks  52° 223 18! 6010 3575 993 31° 223 3365 3575
60 Bias(a) -2.473% 0.51° 0.51% -2.912T0 0.509% 0.517 0.51%  0.51° 0.460% 0.467>
RMSE (&) 2.474° 0.51° 0.51%  2.912'° 0.518% 0.51¢ 0.517  0.51% 0.482' 0.4892
Bias(\) 2.862° 0.01% 0.01° 106.919° 0.017% 0.012 0.01'  0.01* -0.7108 -0.700"
RMSE(A) 2.862° 0.012 0.01* 137.635' 0.303° 0.01! 0.01°  0.01® 0.730% 0.7257
Dups  0.0137 0.00% 0.00" 1.000™ 0.000° 0.00*  0.00° 0.00%> 0.269? 0.269°
Dmax  0.3187 0.00% 0.00" 1.000'° 0.001% 0.00* 0.00°  0.00% 0.399% 0.400°
Ranks 50 223 18! 6010 357 244 31° 20% 357 357
80 Bias(a) -2.4737 0.51° 0.510% -2.913T0 0.508% 0.517 0.51 0.51° 0.457T7 0.4632
RMSE(&) 2.474° 0.51% 0.5117 2.913'° 0.516% 0.51°  0.51°  0.51° 0.473' 0.479°
Bias(A) 2.862° 0.01% 0.011° 112.751'° 0.019¢ 0.012 0.01'  0.01* -0.713% -0.706"
RMSE(X) 2.862° 0.01% 0.143% 144.653'° 0.350° 0.014 0.01%  0.01% 0.728% 0.7247
D, 0.0137 0.00% 0.000° 1.000° 0.000° 0.00°  0.00* 0.00" 0.269° 0.269°
Dmax  0.3627 0.00% 0.000° 1.000'° 0.001° 0.00® 0.00*  0.00" 0.399% 0.399°
S"Ranks  50° 182  31° 6010 357 243 26* 16 357 357
100 Bias(a) -2.473% 0.51° 0.510% -2.914™0 0.508% 0.517 0.51%  0.51° 0.456% 0.460>
RMSE(&) 2.474° 0.51* 0.5117 2.914'° 0.515% 0.51° 0.51°  0.51% 0.469' 0.4732
Bias(\) 2.862° 0.01° 0.011° 115.576° 0.020% 0.012 0.01'  0.01* -0.715% -0.709"
RMSE(X) 2.862° 0.01% 0.142° 149.3901° 0.372% 0.01% 0.01%  0.01% 0.727% 0.7247
Dups  0.0137 0.00% 0.000° 1.000™° 0.000° 0.00°  0.00* 0.00" 0.2697 0.269°
Dmax  0.3957 0.00% 0.000° 1.000'° 0.001% 0.00% 0.00*  0.00" 0.399% 0.399°
Ranks 50 182 31° 6010 357 243 264 16 357 357

7. CONCLUDING REMARKS

This article studied the performance of different estimation methods for flexible
Weibull distribution. The distribution parameters are estimated by eleven different
methods of estimation, namely, the maximum likelihood estimators, least squares
and weighted least squares estimators, the maximum product of spacings estima-
tors, the minimum spacing absolute distance estimators, the minimum spacing
absolute-log distance estimators, Cramér-von-Mises estimators, Anderson-Darling,
right-tail Anderson-Darling, and the Bayes estimators. The results of the simulation
study showed that among the frequentist estimators, Cramér-von-Mises estimators
and Anderson-Darling perform better than their counterparts. Contrary to frequen-
tist methods, Bayesian method outperformed the rest estimation methods. In the
future, different estimation methods can be compared using censored and record
data. Furthermore, different confidence intervals, like approximate, bootstrap, and
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TABLE 5. Monte Carlo Markov Chain results for Bayesian analysis.

Parameter n_ Estimate SD  MC error 95% CI Median

a=0.5 20 0.4990 0.5096 0.0051 (0.0125,1.912) 0.3418
40 0.4995 0.5045 0.0035 (0.0122,1.872) 0.3443
60 0.4992 0.4999 0.0029 (0.0124,1.865) 0.3455
80 0.4998 0.4977 0.0023 (0.0128,1.845) 0.346
100 0.4982 0.4950 0.0021 (0.0127,1.851
A=0.5 20 0.4968 0.5039 0.0051 (0.0119,1.866
40 0.4976 0.4969 0.0033 (0.0128,1.86)
60 0.4969 0.4968 0.0026 (0.0121,1.845
80 0.4964 0.4958 0.0023 (0.0122,1.841
100 0.4965 0.4948 0.0022 (0.0122,1.837
a=15 20 1.489 0.8649 0.0089 (0.3095,3.635
40 1.488 0.855 0.0058 (0.3104,3.561
60 1.493 0.835 0.0051 (0.3065,3.559
80 1.497 0.8246 0.0043 (0.3091,3.563
100 1.498 0.8157 0.0038 (0.3078,3.58)

A=0.5 20 0.4934 0.4977 0.0046 EOA0132,1A836§ 0.3365

40 0.4976 0.4975 0.0034 (0.0123,1.845

60 0.4991 0.4963 0.0028 (0.0119,1.838

80 0.5008 0.4927 0.0027 (0.0127,1.847

100 0.4996 0.4905 0.0023 (0.0127,1.846
a=15 20 1.501 0.8659 0.0093 (0.3163,3.629
40 1.501 0.8657 0.0065 (0.3155,3.611

60 1.497 0.8653 0.0050 (0.3118,3.606

80 1.498 0.8649 0.0046 (0.3125,3.607

100 1.499 0.8645 0.0039 (0.3119,3.604

A=2 20 1.97  0.9931 0.0099 (0.5345,4.331
40  1.977 0.9874 0.0069 (0.5475,4.289

60 1.977 0.9822 0.0058 (0.5536,4.297

80 1.980 0.9820 0.0048 (0.5502,4.301

100 1.989 0.9814 0.0045 (0.5475,4.308

a=15 20 2982 1.222 0.0116 1.098,5.859) 2. 813
40 2.979 1.220 0.0080 1.103,5.849) 2.807

60 2.976 1.218 0.0066 1.101,5.842) 2.806

80 2.99 1.188 0.0028 1.093,5.816) 2.822

100 2.989 1.176 0.0026 1.094,5.813) 2.822

A=2 20 1.98  0.991 0.0099 (0.5403,4.333) 1.816
40 1.986 0.9893 0.0075 (0.5383,4.324) 1.825

60 1.988 0.9891 0.0056 (0.5407,4.331) 1.829

80 1.989 0.9925 0.0028 (0.5408,4.361) 1.824

100 1.989 0.9913 0.0024 (0.5377,4.368) 1.824

Bayesian can also be compared. Also, bias-corrected estimators can be studied for
the flexible Weibull distribution.

8. CONFLICT OF INTEREST

On behalf of all authors, the corresponding author states that there is no conflict
of interest.



FLEXIBLE WEIBULL DISTRIBUTION 811
S — 37w T T T T
0.0 02 04 06 08 10
im
(a) (b)
FI1GURE 3. (a) Histogram (b) TTT plot for the strengths of glass
fibres data.
TABLE 6. MLEs, their standard errors (in parentheses) and
goodness-of-fit measures of the strengths of glass fibres data.
Distribution Estimates A* w= K-S AIC BIC Loglikelihood
FW(a, \) 1.9908  2.96114 0.4157 0.0622 0.0605 10.6989 14.3562 3.34946
(0.2304)  (0.3925)
Gamma(a,0) 11.6769  0.0979 1.3219 0.1920 0.1324 26.3742  30.0315 11.1871
(3.6130)  (0.0313)
Weibull(c, A) 2.79206  0.0490 0.5254  0.0661 0.0921 13.2132 16.8705 4.6065
(0.2133)  (0.0138)
Log-normal(y, o)  0.0850 0.2964 1.8996 0.2838 0.1596 30.5075 34.1648 13.2538
(0.0437)  (0.0309)
NH(a, ) 35.5990  0.0193 0.8102 0.1129 0.4296 79.2266 82.8838 37.6133
(27.5059)  (0.0150)
EE(a, A) 204136 3.1137 2.0367 0.3076 0.1601 33.2085 36.8658 14.6043
(6.6018)  (0.3384)
BS(a, B) 0.3042 1.0797 2.0263 0.3029 0.1714 31.9066 35.5639 13.9533
(0.0317)  (0.0478)
1G (1, A) 1.1312  311.8473 2.0538 0.3075 0.1712 32.2376  35.8949 14.1188
(0.0516)  (2.4703)
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