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Abstract

It is well-known that the Brouwer �xed point theorem (BFPT), the weak Sperner combinatorial lemma, and
the Knaster-Kuratowski-Mazurkiewicz (KKM) theorem are mutually equivalent and have scores of equivalent
formulations and several thousand applications. It is well-known that KKM deduced the BFPT from Sperner
Lemma. In this article, we recall some KKM theoretic results implying the BFPT.
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1. Introduction

In 1929, Knaster, Kuratowski, and Mazurkiewicz (simply, KKM) obtained the so-called KKM theorem
from the weak Sperner lemma and applied it to a new proof of the Brouwer �xed point theorem. Later
in 1961, Fan extended the KKM theorem to any topological vector spaces and applied it to various results
including the Schauder �xed point theorem.

Since then there have appeared a large number of works devoting applications of the KKM theory to
Analytical Fixed Point Theory, that is, the theory mainly concerns to topological vector spaces.

In the present article, we recall some KKM theoretic results applicable to a proof of the Brouwer �xed
point theorem. Actually we give some modern versions of the proof of the Brouwer theorem by applying the
KKM theorem and its generalized form.

This paper is an abridged version of our forthcoming work [18].
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2. Old mathematical trinity

In 1912, the following Brouwer �xed point theorem appeared:

Theorem. (Brouwer [1]) A continuous map from an n-simplex to itself has a �xed point.

In this theorem, an n-simplex can be replaced the unit ball Bn or any compact convex subset in Rn

without a�ecting its conclusion.
In 1928, Sperner obtained the following combinatorial lemma and its applications:

Lemma. (Sperner [20]) Let K be a simplicial subdivision of an n-simplex v0v1 · · · vn. To each vertex of

K, let an integer be assigned in such a way that whenever a vertex u of K lies on a face vi0vi1 · · · vik
(0 ≤ k ≤ n, 0 ≤ i0 ≤ i1 ≤ · · · ≤ ik ≤ n), the number assigned to u is one of the integers i0, i1, · · · , ik. Then

the total number of those n-simplices of K, whose vertices receive all n + 1 integers 0, 1, · · · , n, is odd. In

particular, there is at least one such n-simplex.

The particular case of the above is usually called the weak Sperner lemma.

Indeed, using the weak Sperner lemma as a starting point, three of the greatest topologists of all times,
Polish academician S. Mazurkiewicz and two of his former doctoral students, B. Knaster and K. Kuratowski
published in 1929 the following so-called the KKM theorem, which is the origin of the KKM theory:

Theorem. (KKM [7]) Let Ai (0 ≤ i ≤ n) be n+1 closed subsets of an n-simplex p0p1 · · · pn. If the inclusion

relation

pi0pi1 · · · pik ⊂ Ai0 ∪Ai1 ∪ · · · ∪Aik

holds for all faces pi0pi1 · · · pik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), then
⋂n

i=0Ai ̸= ∅.

This is �rst applied to a direct proof of the Brouwer �xed point theorem by KKM in 1929, and then to
a von Neumann type minimax theorem for arbitrary topological vector spaces by Sion in 1958. Later it was
known that the KKM theorem also holds for open-valued KKM map; see [15].

In fact, those three theorems are regarded as a sort of mathematical trinity. All are extremely important
and have many applications. See [15].

Brouwer

1974 ↙ ↖ 1929

weak Sperner −→
1929

KKM

Recall that the KKM theorem follows from the Sperner lemma and is used to obtain one of the most
direct proof of the Brouwer theorem. Therefore, it was conjectured that those three theorems are mutually
equivalent. This was clari�ed by Yoselo� in 1974. In fact, those three theorems are regarded as a sort of
mathematical trinity. All are extremely important and have many applications. Moreover, Park and Jeong
[19] also gave a proof of the weak Sperner lemma from the Brouwer �xed point theorem.

Halpern [4] �rst introduced the outward and, later, inward sets:
Let E be a t.v.s. and X ⊂ E. The inward and outward sets of X at x ∈ E, IX(x) and OX(x), are

de�ned by as follows:

IX(x) = x+
⋃
r>0

r(X − x), OX(x) = x+
⋃
r<0

r(X − x).

Recall that a map f : X → E is said to be

weakly inward if f(x) ∈ IX(x) for each x ∈ Bd X.
weakly outward if f(x) ∈ OX(x) for each x ∈ Bd X.
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In [9], we deduced a generalization or an equivalent form of the Brouwer �xed point theorem by applying
the Fan-Browder �xed point theorem, which is equivalent to the KKM theorem.

Theorem (Park [9]) Let X be a nonempty compact convex subset of a t.v.s. E on which E∗ separates points,

and f : X → E a weakly inward [resp. outward] functions such that

{x ∈ X : Re p(x) < Re p(f(x))}

is open for all p ∈ E∗. Then f has a �xed point.

Our aim in this paper is to give a variant of the proof of the fact that KKM implies the Brouwer �xed
point theorem.

3. Abstract convex spaces

Let ⟨D⟩ denote the set of all nonempty �nite subsets of a set D. Multimaps are also called simply maps.

De�nition. [10]-[12] Let E be a topological space, D a nonempty set, and Γ : ⟨D⟩ ⊸ E a multimap with
nonempty values ΓA := Γ(A) for A ∈ ⟨D⟩. The triple (E,D; Γ) is called an abstract convex space whenever
the Γ-convex hull of any D′ ⊂ D is denoted and de�ned by

coΓD
′ :=

⋃
{ΓA | A ∈ ⟨D′⟩} ⊂ E.

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such case, a subset X of E is said to be Γ-
convex if coΓ(X ∩ D) ⊂ X; in other words, X is Γ-convex relative to D′ := X ∩ D. In case E = D, let
(E; Γ) := (E,E; Γ).

Examples of abstract convex spaces are given, for example, in [10]-[12], [16], [17].

De�nition. Let (E,D; Γ) be an abstract convex space and Z a set. For a multimap F : E ⊸ Z with
nonempty values, if a multimap G : D ⊸ Z satis�es

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) or ΓA ⊂ F+G(A) for all A ∈ ⟨D⟩,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a KKM map with respect to
the identity map 1E .

A multimap F : E ⊸ Z to a set Z is called a K-map and we say that F belongs to the KKM family if,
for a KKM map G : D ⊸ Z with respect to F , the family {G(y)}y∈D has the �nite intersection property.
We denote

K(E,Z) := {F : E ⊸ Z | F is a K-map}.

Similarly, when Z is a topological space, a KC-map is de�ned for closed-valued maps G, and a KO-map for
open-valued maps G. In this case, we denote F ∈ KC(E,Z) [resp. F ∈ KO(E,Z)].

De�nition. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement 1E ∈
KC(E,E), that is, for any closed-valued KKM map G : D ⊸ E, the family {G(y)}y∈D has the �nite
intersection property.

The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E), that is, the same property also holds
for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satis�es the (partial) KKM principle, resp.

In our previous works, we studied elements or foundations of the KKM theory on abstract convex spaces
and noticed there that many important results therein are related to the (partial) KKM principle. See
[10]-[12], [16] and the references therein.

We already obtained the following diagram for subclasses of abstract convex spaces (E,D; Γ):



S. Park, Results in Nonlinear Anal. 3 (2020), 12�17 15

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space

=⇒ Horvath space =⇒ G-convex space ⇐⇒ ϕA-space

=⇒ KKM space =⇒ Partial KKM space

=⇒ Abstract convex space.

Recall that any simplex is a KKM space by the KKM theorem and its open-valued version, and that any
convex subset of a t.v.s. is a KKM space by the proof of the 1961 KKM Lemma of Ky Fan; see [3]. For
other subclasses of (partial) KKM spaces in the diagram, all proofs were well-established in the literature;
see [12]-[15].

4. KKM maps in metric type spaces

We introduce a more general concept than metric spaces introduced by Khamsi and Hussain [6] as follows:

De�nition. Let M be a set. Let δ : M ×M → [0,∞) be a function which satis�es
(1) δ(x, y) = 0 if and only if x = y;
(2) δ(x, y) = δ(y, x) for any x, y ∈ M ;
(3) δ(x, y) ≤ k(δ(x, z) + δ(z, y)) for any points x, y, z ∈ M , for some constant k > 0.

Then the pair (M, δ) is called a metric type space.

In [6], examples of metric type spaces are given and, for metric type spaces, the concepts of convergence,
completeness, openness, closedness, closure, topology, compactness, totally boundedness, and others are
de�ned as usual. Moreover, the following are de�ned in [6]:

Let A be a nonempty bounded subset of a metric type space (M, δ). Then we de�ne as follows:

(i) BI(A) = ad(A) :=
⋂
{B ⊂ M | B is a closed ball in M such that A ⊂ B}.

(ii) A(M) := {A ⊂ M | A = ad(A)}, i.e., A ∈ A(M) i� A is an intersection of closed balls. In this case
we will say A is an admissible subset of M .

(iii) A is called subadmissible, if for each N ∈ ⟨A⟩, ad(N) ⊂ A. Obviously, if A is an admissible subset of
M , then A must be subadmissible.

For an x ∈ M and ε > 0, let

B(x, ε) := {y ∈ M | δ(x, y) ≤ ε} and N(x, ε) := {y ∈ M | δ(x, y) < ε}.

It is amazing that, in metric type spaces, when we do not know whether open balls are open and closed

balls are closed; see [6].
We introduce new de�nitions:

De�nition. An abstract convex space (M,D; Γ) is called simply a metric type space if (M, δ) is a metric
type space, D ⊂ M is a nonempty subset, and Γ : ⟨D⟩ → A(M) is a map such that ΓA := BI(A) ∈ A(M)
for each A ∈ ⟨D⟩. A map G : D ⊸ M is a KKM map if ΓA ⊂ G(A) for each A ∈ ⟨D⟩.

A Γ-convex subset of (M ⊃ D; Γ) is said to be subadmissible.

Remark. 1. For a metric space M , (M ⊃ D; Γ) is given in [4], where ΓA := ad(A). This is a metric type
space.

2. Let M be a metric space and D a nonempty set. For each A := {a0, a1, . . . , an} ∈ ⟨D⟩, choose a subset
B := {x0, x1, . . . , xn} ∈ ⟨M⟩ and de�ne ΓA := ad(B). Then (M,D; Γ) is not a metric type space. For this
space, the so-called generalized gKKM mapping in [2] is not a KKM map.

In [14], we obtained a Schauder type �xed point theorem for metric type spaces:

Theorem 3.1. Let (M ⊃ D; Γ) be a metric type space and X a Γ-convex subset of M such that X ∩ D
is dense in X. If the identity map 1X ∈ KC(X,X) [resp. 1X ∈ KO(X,X)], then any compact continuous

function f : X → X has a �xed point.
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5. KKM maps in normed vector spaces

From Theorem 3.1, we obtain new proofs of the Schauder and Brouwer �xed point theorems.
Recall the following well-known Schauder conjecture in 1935; see The Scottish Book [7], Problem 54.

Conjecture (Schauder) Every nonempty compact convex subset X of a (metrizable) t.v.s. E has the �xed

point property; that is, every continuous map f : X → X has a point x0 ∈ X such that x0 = f(x0).

This is not resolved yet. Here we give a partial solution as follows:

Theorem 4.1. Let E be a metrizable t.v.s. and X a Γ-convex subset of M . If the identity map 1X ∈
KC(X,X) [resp. 1X ∈ KO(X,X)], then any compact continuous function f : X → X has a �xed point.

Here X is a Γ-convex whenever, for any A ∈ ⟨X⟩, we have ΓA := BI(A) ⊂ X.

Proof. Put M = D = E in Theorem 3.1. 2

From Theorem 3.1 or Theorem 4.1, we have the following form of the Schauder �xed point theorem:

Theorem 4.2. Let M be a normed vector space, X := B(O, r) be a closed ball of M with center the origin

O. Then any compact continuous function f : X → X has a �xed point.

Proof. For any A ∈ ⟨X⟩, let ΓA := BI(A). Since there is a closed ball in X containing A, we have ΓA ⊂ X.
For any two points x, y ∈ X, the line segment xy ⊂ BI({x, y}) ⊂ X. Hence X is a convex subset of a t.v.s.
and a KKM space. Therefore, by Theorem 3.1, any compact continuous function f : X → X has a �xed
point. 2

From Theorem 4.2, we immediately have the following:

Theorem 4.3. Let Rn be a Euclidean space, Bn := B(O, 1) be a closed ball with center the origin O. Then

any continuous function f : Bn → Bn has a �xed point.

Since any homeomorphic image of a space having the �xed point property has the same property, we
have the following Brouwer �xed point theorem:

Theorem 4.4. (Brouwer [1]) A continuous map from an n-simplex to itself has a �xed point.
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