On involutiveness of linear combinations of a quadratic matrix and an arbitrary matrix

Nurgül Kalaycı¹, Murat Sarduvan²

¹Bolu Provincial Directorate of Youth and Sports, TR14100 Bolu, Turkey
²Department of Mathematics, Sakarya University, TR54187 Sakarya, Turkey

Abstract
We characterize the involutiveness of the linear combinations of the form $aA + bB$ when a, b are nonzero complex numbers, A is a quadratic $n \times n$ nonzero matrix and B is an arbitrary $n \times n$ nonzero matrix, under certain properties imposed on A and B.

Mathematics Subject Classification (2020). 15A24

Keywords. quadratic matrix, partitioned matrix, linear combination, diagonalization, direct sum of matrices

1. Introduction
Let \mathbb{C}, \mathbb{C}^*, $\mathbb{C}^{m \times n}$, and \mathbb{C}^n denote the sets of complex numbers, nonzero complex numbers, all $m \times n$ complex matrices, and all $n \times n$ complex matrices, respectively. $\mathbf{0}$, $\mathbf{0}_n$, and \mathbf{I}_n stand for a zero matrix of appropriate size, the zero matrix of order n, and the identity matrix of order n, respectively. The symbol \oplus will denote the direct sum of matrices. Let $\alpha, \beta \in \mathbb{C}$, a matrix $A \in \mathbb{C}^n$ is called an idempotent, an involutive, and an $\{\alpha, \beta\}$–quadratic matrix if $A^2 = A$, $A^2 = \mathbf{I}_n$, and $(A - \alpha \mathbf{I}_n)(A - \beta \mathbf{I}_n) = \mathbf{0}$, respectively. It is noteworthy that a $\{0, 1\}$–quadratic matrix is idempotent and a $\{-1, 1\}$–quadratic matrix is involutive. Moreover, a matrix $A \in \mathbb{C}^n$ is called a generalized $\{\alpha, \beta\}$–quadratic matrix with respect to an idempotent matrix $P \in \mathbb{C}^n$ if $(A - \alpha P)(A - \beta P) = \mathbf{0}$ and $AP = PA = A$ hold for $\alpha, \beta \in \mathbb{C}$.

In [1, 2, 4, 7, 13], it has been characterized the involutiveness of the form $aA + bB$ when $a, b \in \mathbb{C}$ and A, B are special types of matrices. Moreover, there are a lot of studies related to the linear combinations including involutive matrices [4, 7, 9, 14] and quadratic, generalized quadratic matrices [2, 3, 5, 6, 8, 10, 11]. These special types of matrices have applications to digital image encryption (for example, [12]).

Consider a linear combination of the form
$$K = aA + bB, \ A, B \in \mathbb{C}^n, \ a, b \in \mathbb{C}^*.$$ (1.1)
Liu et al. characterized the involutiveness of the linear combinations of the form (1.1) when A is a quadratic or a tripotent matrix and B is an arbitrary matrix [2]. Sarduvan and Kalaycı established necessary and sufficient conditions for the idempotency of linear

*Corresponding Author.
Email addresses: nrglklyc@hotmail.com (N. Kalaycı), msarduvan@sakarya.edu.tr (M. Sarduvan)
Received: 18.03.2020; Accepted: 17.02.2021
combinations of the form (1.1) when A is a quadratic matrix and B is an arbitrary matrix.

This paper aims to give necessary and sufficient conditions in which a linear combination of the form (1.1) is an involutive matrix when A is a quadratic matrix and B is an arbitrary matrix with some certain conditions.

Now we can give the main results.

2. Main results

In this section, we will investigate the involutiveness of the linear combinations of the form (1.1), under some certain conditions.

Theorem 2.1. Let $a, b, \alpha \in \mathbb{C}^*$, $\beta \in \mathbb{C}$, and $\alpha \neq \beta$. Moreover, let A and $B \in \mathbb{C}^n \setminus \{0\}$ be an $\{\alpha, \beta\}$–quadratic matrix and an arbitrary matrix, respectively. Furthermore, let K be their linear combination of the form $K = aA + bB$. Then K is an involutive matrix and $A^2BA = A^2B$ if and only if there exists a nonsingular matrix $V \in \mathbb{C}^n$ such that

$$A = V \left(\begin{array}{cc} \alpha I_p & 0 \\ 0 & \beta I_{n-p} \end{array} \right) V^{-1}$$

and B satisfies one of the following cases.

(a) $\alpha = 1$ and $\beta = 0$.

$$B = V \left(\begin{array}{cccc} \frac{1-a}{p} I_q & 0 & 0 & 0 \\ 0 & \frac{-1-a}{b} I_{p-q} & 0 & 0 \\ 0 & Z_2 & \frac{1}{b} I_r & 0 \\ Z_3 & 0 & 0 & \frac{-1}{b} I_{n-p-r} \end{array} \right) V^{-1},$$

being $Z_2 \in \mathbb{C}^{r \times (p-q)}$ and $Z_3 \in \mathbb{C}^{(n-p-r) \times q}$ arbitrary.

(b) $\alpha = 1$, $a\beta = 1$, and $a \neq 1$.

$$B = V \left(\begin{array}{cccc} \frac{-1-a}{b} I_q & 0 & 0 & 0 \\ 0 & \frac{1-a}{b} I_{p-q} & 0 & 0 \\ 0 & Z_2 & 0 & 0 \\ 0 & Z_3 & 0 & 0 \end{array} \right) V^{-1},$$

being $Z_3 \in \mathbb{C}^{(n-p-r) \times q}$ arbitrary.

(c) $\alpha = 1$, $a\beta = -1$, and $a \neq -1$.

$$B = V \left(\begin{array}{cccc} \frac{-1+1}{b} I_q & 0 & 0 & 0 \\ 0 & \frac{-1+1}{b} I_{p-q} & 0 & 0 \\ Z_1 & 0 & 0 & 0 \\ Z_2 & 0 & 0 & 0 \end{array} \right) V^{-1},$$

being $Z_1 \in \mathbb{C}^{(n-p-r) \times q}$ arbitrary.

(d) $\beta = 0$, $a\alpha = 1$, and $a \neq 1$.

$$B = V \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{b} I_r & 0 & 0 \\ Z_2 & 0 & 0 & 0 \\ \frac{-1}{b} I_{n-p-r} & 0 & 0 \end{array} \right) V^{-1},$$

being $Z_2 \in \mathbb{C}^{n \times (p-r)}$ arbitrary.

(e) $\beta = 0$, $a\alpha = -1$, and $a \neq -1$.

$$B = V \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ Z_1 & \frac{1}{b} I_r & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) V^{-1},$$

being $Z_1 \in \mathbb{C}^{r \times p}$ arbitrary.
(f) \(\beta = 1, \alpha \alpha = 1, \) and \(\alpha \neq 1 \).

\[
B = V \begin{pmatrix}
0 & 0 & Y_2 \\
0 & \frac{a-1}{ab}I_r & 0 \\
0 & 0 & -\frac{a+1}{ab}I_{n-p-r}
\end{pmatrix} V^{-1},
\]

being \(Y_2 \in \mathbb{C}^{p \times (n-p-r)} \) arbitrary.

(g) \(\beta = 1, \alpha \alpha = -1, \) and \(\alpha \neq -1 \).

\[
B = V \begin{pmatrix}
0 & Y_1 \\
0 & \frac{a+1}{ab}I_r \\
0 & 0 & -\frac{a-1}{ab}I_{n-p-r}
\end{pmatrix} V^{-1},
\]

being \(Y_1 \in \mathbb{C}^{p \times r} \) arbitrary.

Proof. From Theorem 2.1 in \([5]\), we can write a quadratic matrix \(A \) as

\[
A = U (\alpha I_p \oplus \beta I_{n-p}) U^{-1},
\]

where \(p \in \{0, \ldots, n\} \) and \(U \in \mathbb{C}^n \) is a nonsingular matrix. We can represent \(B \) as

\[
B = U \begin{pmatrix} X & Y \\ Z & T \end{pmatrix} U^{-1},
\]

where \(X \in \mathbb{C}^p \). In view of the hypotheses \(A^2BA = A^2B \) and \(\alpha \neq 0 \) we can write

\[
\alpha X = X, \quad \beta Y = Y, \quad \alpha \beta^2Z = \beta^2Z, \quad \beta^3T = \beta^2T.
\] (2.1)

Now let us assume that \(K \) is an involutive matrix then we can write

\[
(aaI_p + bX)^2 + b^2YZ = I_p, \quad ab(\alpha + \beta)Y + b^2(XY + YT) = 0, \\
ab(\alpha + \beta)Z + b^2(ZX + TZ) = 0, \quad b^2ZY + (a\beta I_{n-p} + bT)^2 = I_{n-p}.
\] (2.2)

Depending on the scalar \(\beta \), we have the following cases.

(i) Let \(\beta \neq 1 \). From (2.1), it is seen that \(Y = 0 \). We can split this case into four cases depending on the values of \(\alpha \) and \(\beta \).

(i-1) Let \(\alpha = 1 \) and \(\beta = 0 \). Reorganizing the equations of (2.2), it can be written

\[
(aaI_p + bX)^2 = I_p, \quad (bT)^2 = I_{n-p}, \quad abZ + b^2(ZX + TZ) = 0.
\] (2.3)

It is clear that \(aI_p + bX \) and \(bT \) are involutive matrices from the first and second equations in (2.3), respectively. Since an involutive matrix is a \(\{-1, 1\} \)-quadratic matrix, there exist \(q \in \{0, \ldots, p\}, r \in \{0, \ldots, n-p\} \) and nonsingular matrices \(S_1 \in \mathbb{C}^p, S_2 \in \mathbb{C}^{(n-p)} \) such that

\[
X = S_1 \begin{pmatrix} \frac{1-a}{b}I_q & \frac{-1-a}{b}I_{p-q} \end{pmatrix} S_1^{-1}, \quad T = S_2 \begin{pmatrix} \frac{1}{b}I_r & \frac{-1}{b}I_{n-p-r} \end{pmatrix} S_2^{-1}.
\] (2.4)

Let us write \(Z \) as

\[
Z = S_2 \begin{pmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{pmatrix} S_1^{-1},
\] (2.5)

where \(Z_1 \in \mathbb{C}^{r \times q} \). Substituting (2.4) and (2.5) into the third equation in (2.3) it is obtained that \(2(Z_1 \oplus -Z_4) = 0 \). Then \(Z \) reduces to

\[
Z = S_2 \begin{pmatrix} 0 & Z_2 \\ Z_3 & 0 \end{pmatrix} S_1^{-1},
\] (2.6)

where \(Z_2 \in \mathbb{C}^{r \times (p-q)} \) and \(Z_3 \in \mathbb{C}^{(n-p-r) \times q} \) are arbitrary matrices.

Let us define \(V := U(S_1 \oplus S_2) \). Then we get \(A \) as

\[
A = U(I_p \oplus 0_{n-p}) U^{-1} = V \left(S_1^{-1} \oplus S_2^{-1} \right) (I_p \oplus 0_{n-p}) (S_1 \oplus S_2) V^{-1}
\]

\[= V (I_p \oplus 0_{n-p}) V^{-1}.
\]
In view of (2.4) and (2.6), \(B \) is obtained that
\[
B = V \begin{pmatrix}
\frac{1-a}{b} I_q & 0 & 0 & 0 \\
0 & -\frac{1-a}{b} I_{p-q} & 0 & 0 \\
0 & Z_2 & \frac{1}{b} I_r & 0 \\
Z_3 & 0 & 0 & -\frac{1}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]
which establishes part (a).

(i-2) Let \(\alpha = 1 \) and \(\beta \neq 0 \). From (2.1), it is seen that \(T = 0 \). Reorganizing the equations of (2.2), it can be written
\[
(aI_p + bX)^2 = I_p, \quad (a\beta I_{n-p})^2 = I_{n-p}, \quad ab(1 + \beta)Z + b^2ZX = 0.
\]
It is clear that \(aI_p + bX \) is an involutive matrix from the first equation in (2.7), so there exist \(q \in \{0, \ldots, p\} \) and a nonsingular matrix \(S_3 \in \mathbb{C}^p \) such that
\[
X = S_3 \left(\frac{1-a}{b} I_q \oplus -\frac{1-a}{b} I_{p-q} \right) S_3^{-1}.
\]
Let us define \(Z = (Z_1, Z_2) S_3^{-1} \), where \(Z_1 \in \mathbb{C}^{(n-p) \times q} \). Substituting (2.8) and (2.9) into the third equation in (2.7) it is obtained that \((a\beta + 1)Z_1, \quad (a\beta - 1)Z_2 = (0, 0) \). Moreover, it is clear that \(a\beta \in \{-1, 1\} \) from the second equation in (2.7). Then \(Z \) reduces to
\[
Z = (0, Z_2) S_3^{-1}
\]
when \(a\beta = 1 \) or
\[
Z = (Z_1, 0) S_3^{-1}
\]
when \(a\beta = -1 \).
Let us define \(V := U (S_3 \oplus I_{n-p}) \). Then we get \(A \) as
\[
A = U (I_p \oplus bI_{n-p}) U^{-1} = V \left(S_3^{-1} \oplus I_{n-p} \right) (I_p \oplus bI_{n-p}) (S_3 \oplus I_{n-p}) V^{-1}
\]
\[
= V (I_p \oplus bI_{n-p}) V^{-1}.
\]
In view of (2.8), (2.10) and (2.8), (2.11) we obtain, respectively, that
\[
B = V \begin{pmatrix}
\frac{\beta-1}{\beta b} I_q & 0 & 0 \\
0 & -\frac{\beta-1}{\beta b} I_{p-q} & 0 \\
0 & Z_2 & 0_{n-p}
\end{pmatrix} V^{-1}
\]
and
\[
B = V \begin{pmatrix}
\frac{\beta+1}{\beta b} I_q & 0 & 0 \\
0 & -\frac{\beta+1}{\beta b} I_{p-q} & 0 \\
Z_1 & 0 & 0_{n-p}
\end{pmatrix} V^{-1},
\]
which establish parts (b) and (c).

(i-3) Let \(\alpha \neq 1 \) and \(\beta = 0 \). From (2.1), it is seen that \(X = 0 \). Reorganizing the equations of (2.2), it can be written
\[
(a\alpha I_p)^2 = I_p, \quad (bT)^2 = I_{n-p}, \quad ab\alpha Z + b^2TZ = 0.
\]
It is clear that \(bT \) is an involutive matrix from the second equation in (2.12), so there exist \(r \in \{0, \ldots, n-p\} \) and a nonsingular matrix \(S_4 \in \mathbb{C}^{(n-p)} \) such that
\[
T = S_4 \left(\frac{1}{b} I_r \oplus -\frac{1}{b} I_{n-p-r} \right) S_4^{-1}.
\]
Let us write Z as
\[
Z = S_4 \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix},
\] (2.14)
where $Z_1 \in \mathbb{C}^{r \times p}$. Substituting (2.13) and (2.14) into the third equation in (2.12) it is obtained that \[
\begin{pmatrix} (aa + 1)Z_1 \\ (aa - 1)Z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]
Moreover, it is clear that $aa \in \{-1, 1\}$ from the first equation in (2.12). Then Z turns to
\[
Z = S_4 \begin{pmatrix} 0 \\ Z_2 \end{pmatrix}
\] (2.15)
when $aa = 1$ or
\[
Z = S_4 \begin{pmatrix} Z_1 \\ 0 \end{pmatrix}
\] (2.16)
when $aa = -1$.

Let us define $V := U(I_p \oplus S_4)$. Then we get A as
\[
A = U(aI_p \oplus 0_{n-p})U^{-1} = V \left(I_p \oplus S_4^{-1} \right) (aI_p \oplus 0_{n-p})(I_p \oplus S_4)V^{-1}
\]
\[
= V(aI_p \oplus 0_{n-p})V^{-1}.
\]
In view of (2.13), (2.15) and (2.13), (2.16) we obtain, respectively, that
\[
B = V \begin{pmatrix} 0_p & 0 & 0 \\ 0 & \frac{1}{b}I_r & 0 \\ Z_2 & 0 & \frac{-1}{b}I_{n-p-r} \end{pmatrix} V^{-1}
\]
and
\[
B = V \begin{pmatrix} 0_p & 0 & 0 \\ Z_1 & \frac{1}{b}I_r & 0 \\ 0 & 0 & \frac{-1}{b}I_{n-p-r} \end{pmatrix} V^{-1},
\]
which establish parts (d) and (e).

(i) Let $\alpha \neq 1$ and $\beta \neq 0$. From (2.1), it is seen that $B = 0$ which contradicts the hypothesis $B \neq 0$. So, in this case there is no matrix form of B.

(ii) Let $\beta = 1$. From the first and third equations in (2.1), we obtain $X = 0$ and $Z = 0$, respectively. Reorganizing the equations of (2.2), it is obtained that
\[
(aa)^2I_p = I_p, \quad (aI_{n-p} + bT)^2 = I_{n-p}, \quad ab(a + 1)Y + b^2YT = 0.
\] (2.17)

It is obvious that $aa \in \{1, -1\}$ and $aI_{n-p} + bT$ is an involutive matrix from the first and second equations in (2.17), respectively. Hence, there exist $r \in \{0, \ldots, n-p\}$ and a nonsingular matrix $S \in \mathbb{C}^{(n-p)}$ such that
\[
T = S \begin{pmatrix} 1-a/b & 0 \\ b & 1-a/b \end{pmatrix} S^{-1}.
\] (2.18)

Let us write Y as
\[
Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} S^{-1},
\] (2.19)
where $Y_1 \in \mathbb{C}^{p \times r}$. Substituting (2.18) and (2.19) into the third equation in (2.17) yields
\[
\begin{pmatrix} b(aa + 1)Y_1 \\ b(aa - 1)Y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]
Using $aa \in \{1, -1\}$, Y obtain that
\[
Y = \begin{pmatrix} 0 \\ Y_2 \end{pmatrix} S^{-1}
\] (2.20)
when $aa = 1$ or
\[
Y = \begin{pmatrix} Y_1 \\ 0 \end{pmatrix} S^{-1}
\] (2.21)
when $aa = -1$.

Hence, we can easily write
\[
A = U(aI_p \oplus I_{n-p})U^{-1} = U(I_p \oplus S)(aI_p \oplus I_{n-p})(I_p \oplus S^{-1})U^{-1}.
\]
In view of (2.18), (2.20) and (2.18), (2.21) we obtain, respectively, that
\[
B = U \left(I_p \oplus S \right) \begin{pmatrix}
0_p & 0 & Y_2 & 0 \\
0 & a_{1b} I_r & 0 & 0 \\
0 & 0 & -a_{1b} I_{n-p-r} & 0 \\
\end{pmatrix} \left(I_p \oplus S^{-1} \right) U^{-1}
\]
and
\[
B = U \left(I_p \oplus S \right) \begin{pmatrix}
0_p & Y_1 & 0 & 0 \\
0 & a_{1b} I_r & 0 & 0 \\
0 & 0 & -a_{1b} I_{n-p-r} & 0 \\
\end{pmatrix} \left(I_p \oplus S^{-1} \right) U^{-1},
\]
which establish parts of (f) and (g) by defining \(V := U \left(I_p \oplus S \right). \) So, the necessity part of the proof is completed and the sufficiency is obvious.

Theorem 2.2. Let \(a, b, \alpha \in \mathbb{C}^{*}, \beta \in \mathbb{C}, \) and \(\alpha \neq \beta. \) Moreover, let \(A \) and \(B \in \mathbb{C}^n \setminus \{0\} \) be an \(\{\alpha, \beta\} \)-quadratic matrix and an arbitrary matrix, respectively. Furthermore, let \(K \) be their linear combination of the form \(K = aA + bB. \) Then \(K \) is an involutive matrix and \(A^2 B^2 = (AB)^2 \) if and only if there exists a nonsingular matrix \(V \in \mathbb{C}^n \) such that
\[
A = V \begin{pmatrix}
\alpha I_p & 0 \\
0 & \beta I_{n-p} \\
\end{pmatrix} V^{-1}
\]
and \(B \) satisfies one of the following cases.

(a) \(\beta = 0, \)
\[
B = V \begin{pmatrix}
1 - a_{1b} I_q & 0 & 0 & 0 \\
0 & 1 - a_{1b} I_{p-q} & 0 & 0 \\
0 & 0 & Z_2 & 1_{b} I_{r} \\
Z_3 & 0 & 0 & 0_{n-p-r} \\
\end{pmatrix} V^{-1}.
\]

(b) \(\beta \neq 0, a\alpha = 1, \) and \(a\beta = -1, \)
\[
B = V \begin{pmatrix}
0_q & 0 & 0 & Y_2 \\
0 & -1_{b} I_{p-q} & 0 & 0 \\
0 & 0 & Z_2 & 1_{b} I_{r} \\
Z_3 & 0 & 0 & 0_{n-p-r} \\
\end{pmatrix} V^{-1}.
\]

(c) \(\beta \neq 0, a\alpha \neq 1, \) and \(a\beta = -1, \)
\[
B = V \begin{pmatrix}
1 - a_{1b} I_q & 0 & 0 & Y_2 \\
0 & 1 - a_{1b} I_{p-q} & 0 & 0 \\
0 & 0 & Z_2 & 1_{b} I_{r} \\
0 & 0 & 0 & 0_{n-p-r} \\
\end{pmatrix} V^{-1}.
\]

(d) \(\beta \neq 0, a\alpha = -1, \) and \(a\beta = 1, \)
\[
B = V \begin{pmatrix}
\frac{1}{b} I_q & 0 & 0 & 0 \\
0 & 0_{p-q} & Y_3 & 0 \\
0 & Z_2 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{b} I_{n-p-r} \\
\end{pmatrix} V^{-1}.
\]

(e) \(\beta \neq 0, a\alpha \neq -1, \) and \(a\beta = 1, \)
\[
B = V \begin{pmatrix}
1 - a_{1b} I_q & 0 & 0 & 0 \\
0 & -1_{a} I_{p-q} & 0 & 0 \\
0 & 0 & Z_2 & 0 \\
0 & 0 & 0 & -\frac{1}{b} I_{n-p-r} \\
\end{pmatrix} V^{-1}.
\]
We can write a quadratic matrix

\[
B = V \begin{pmatrix}
\frac{2}{b}I_q & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1-a\beta}{b}I_r & 0 \\
0 & 0 & 0 & \frac{-1-a\beta}{b}I_{n-p-r}
\end{pmatrix} V^{-1}.
\] (2.28)

Let \(\beta \neq 0, a\alpha = -1, \) and \(a\beta \neq 1, \)

\[
B = V \begin{pmatrix}
o_q & 0 & 0 & 0 \\
0 & -\frac{2}{b}I_{p-q} & 0 & 0 \\
0 & 0 & \frac{1-a\beta}{b}I_r & 0 \\
z_4 & 0 & 0 & \frac{-1-a\beta}{b}I_{n-p-r}
\end{pmatrix} V^{-1}.
\] (2.29)

Let \(\beta \neq 0, a\alpha = 1, \) and \(a\beta \neq -1, \)

\[
B = V \begin{pmatrix}
\frac{1-a\alpha}{b}I_q & 0 & 0 & 0 \\
0 & -\frac{1-a\alpha}{b}I_{p-q} & 0 & 0 \\
0 & 0 & \frac{1-a\beta}{b}I_r & 0 \\
0 & 0 & 0 & \frac{-1-a\beta}{b}I_{n-p-r}
\end{pmatrix} V^{-1}.
\] (2.30)

Here \(Y_2 \in \mathbb{C}^{q \times (n-p-r)}, Y_3 \in \mathbb{C}^{(p-q) \times r}, Z_2 \in \mathbb{C}^{r \times (p-q)}, Z_3 \in \mathbb{C}^{(n-p-r) \times q} \) arbitrary matrices and \(Z_3 Y_2 = 0, Y_2 Z_3 = 0, Z_2 Y_3 = 0, Y_3 Z_2 = 0. \)

Proof. We can write a quadratic matrix \(A \) as

\[
A = U (aI_p \oplus \beta I_{n-p}) U^{-1},
\]

where \(p \in \{0, \ldots, n\} \) and \(U \in \mathbb{C}^n \) is a nonsingular matrix. We can represent \(B \) as \(B = U \begin{pmatrix} X & Y \\ Z & T \end{pmatrix} U^{-1}, \) where \(X \in \mathbb{C}^p. \) Observe that under the hypotheses \(A^2 B^2 = (AB)^2, \) \(\alpha \neq 0, \) and \(\alpha \neq \beta, \) one has

\[
YZ = 0, \ YT = 0, \ ZX = 0, \ \beta ZY = 0.
\] (2.31)

Let us assume that \(K \) is an involutive matrix then

\[
(a\alpha I_p + bX)^2 + b^2 YZ = I_p, \ a\beta (\alpha + \beta) Y + b^2 (XY + YT) = 0,
abla (\alpha + \beta) Z + b^2 (ZX + TZ) = 0, \ (a\beta I_{n-p} + bT)^2 + b^2 ZY = I_{n-p}.
\] (2.32)

Now, let us separate the proof according to \(\alpha \) and \(\beta. \) Firstly, we use the values of \(\beta. \)

(i) Let \(\beta = 0. \) Considering (2.31) and (2.32), we get

\[
(a\alpha I_p + bX)^2 = I_p, \ a\beta Y + b^2 XY = 0,
(bT)^2 + b^2 ZY = I_{n-p}, \ a\beta Z + b^2 (ZX + TZ) = 0.
\] (2.33)

It is clear that \(a\alpha I_p + bX \) is an involutive matrix from the first equation in (2.33). So, there exist \(q \in \{0, \ldots, p\} \) and a nonsingular matrix \(S_1 \in \mathbb{C}^q \) such that

\[
X = S_1 \left(\frac{1-a\alpha}{b}I_q \oplus \frac{-1-a\alpha}{b}I_{p-q} \right) S_1^{-1}.
\] (2.34)

Let \(Y \) be written as

\[
Y = S_1 \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix},
\] (2.35)

where \(Y_1 \in \mathbb{C}^{q \times r}. \) Substituting (2.34) and (2.35) into the second equation in (2.33) it is obtained that \(Y = 0. \) Considering the last result, the third equation of (2.33) turns to \((bT)^2 = I_{n-p}. \) Thus, it is clear that \(bT \) is an involutive matrix. So, there exist \(r \in \{0, \ldots, n-p\} \) and a nonsingular matrix \(S_2 \in \mathbb{C}^{(n-p)} \) such that

\[
T = S_2 \left(\frac{1}{b}I_r \oplus \frac{-1}{b}I_{n-p-r} \right) S_2^{-1}.
\] (2.36)
Let Z be written as
\[Z = S_2 \begin{pmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{pmatrix} S_1^{-1}, \tag{2.37} \]
where $Z_1 \in \mathbb{C}^{r \times q}$. Substituting (2.34), (2.36), and (2.37) into the fourth equation in (2.33) it is obtained that $2 (Z_1 + Z_4) = 0$ in other words
\[Z = S_2 \begin{pmatrix} 0 & Z_2 \\ Z_3 & 0 \end{pmatrix} S_1^{-1}. \tag{2.38} \]

Hence, defining $V := U (S_1 \oplus S_2)$, we can write A as
\[
A = U (\alpha I_p + \beta I_{n-p}) U^{-1} = V \left(S_1^{-1} \oplus S_2^{-1} \right) (\alpha I_p + \beta I_{n-p}) (S_1 \oplus S_2) V^{-1} = V (\alpha I_p + \beta I_{n-p}) V^{-1}.
\]

In view of (2.34), (2.36), and (2.38), B is obtained that
\[
B = V \begin{pmatrix} \frac{1 - \alpha a}{b} I_q & 0 & 0 & 0 \\
0 & -\frac{1 - \alpha a}{b} I_{p-q} & 0 & 0 \\
0 & Z_2 & \frac{1 - \alpha a}{b} I_r & 0 \\
Z_3 & 0 & 0 & -\frac{1 - \alpha a}{b} I_{n-p-r} \end{pmatrix} V^{-1},
\]

which establishes part of (a).

(ii) Now, let $\beta \neq 0$. From the third and fourth equations in (2.31), we can write $ZX = 0$ and $ZY = 0$. Then, reorganizing the equations in (2.32), we get
\[
(a \alpha I_p + bX)^2 = I_p, \quad (a \alpha I_{n-p} + bT)^2 = I_{n-p}, \\
abla b (\alpha + \beta) Y + b^2 XY = 0, \quad \abla b (\alpha + \beta) Z + b^2 TZ = 0. \tag{2.39}
\]

It is clear that $a \alpha I_p + bX$ and $a \alpha I_{n-p} + bT$ are involutive matrices from the first and second equations in (2.39), respectively. So, there exist $q \in \{0, \ldots, p\}$, $r \in \{0, \ldots, n-p\}$ and nonsingular matrices $S_3 \in \mathbb{C}^p$, $S_4 \in \mathbb{C}^{(n-p)}$ such that
\[
X = S_3 \left(\frac{1 - \alpha a}{b} I_q \oplus -\frac{1 - \alpha a}{b} I_{p-q} \right) S_3^{-1}, \quad T = S_4 \left(\frac{1 - \alpha a}{b} I_r \oplus -\frac{1 - \alpha a}{b} I_{n-p-r} \right) S_4^{-1}. \tag{2.40}
\]

Defining $V := U (S_3 \oplus S_4)$, we can write A as
\[
A = U (\alpha I_p + \beta I_{n-p}) U^{-1} = V \left(S_3^{-1} \oplus S_4^{-1} \right) (\alpha I_p + \beta I_{n-p}) (S_3 \oplus S_4) V^{-1} = V (\alpha I_p + \beta I_{n-p}) V^{-1}.
\]

Now, let Y and Z be written as
\[
Y = S_3 \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix} S_3^{-1} \quad \text{and} \quad Z = S_4 \begin{pmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{pmatrix} S_4^{-1}, \tag{2.41}
\]
where $Y_1 \in \mathbb{C}^{q \times r}$ and $Z_1 \in \mathbb{C}^{r \times q}$. Substituting (2.40) and (2.41) into the third and fourth equations in (2.39), it is obtained that
\[
\begin{pmatrix} (a \beta + 1) Y_1 & (a \beta + 1) Y_2 \\ (a \beta - 1) Y_3 & (a \beta - 1) Y_4 \end{pmatrix} = 0, \quad \begin{pmatrix} (a \alpha + 1) Z_1 & (a \alpha + 1) Z_2 \\ (a \alpha - 1) Z_3 & (a \alpha - 1) Z_4 \end{pmatrix} = 0. \tag{2.42}
\]

Depending on the values of $a \alpha$ and $a \beta$, we have the following cases.

(ii–1) Let $a \alpha = 1$ and $a \beta = -1$. It is clear that Y_3, Y_4 and Z_1, Z_2 are zero matrices from the equations in (2.42). Considering all of (2.31), (2.40), (2.41) and these facts, we obtain
\[
Y = S_3 \begin{pmatrix} 0 & Y_2 \\ 0 & 0 \end{pmatrix} S_3^{-1} \quad \text{and} \quad Z = S_4 \begin{pmatrix} 0 & 0 \\ Z_3 & 0 \end{pmatrix} S_4^{-1},
\]
where \(Y_2 \in \mathbb{C}^{q \times (n-p-r)} \) and \(Z_3 \in \mathbb{C}^{(n-p-r) \times q} \) are arbitrary matrices that satisfy the equalities \(Y_2 Z_3 = 0 \) and \(Z_3 Y_2 = 0 \). Therefore, we get \(B \) as

\[
B = V \begin{pmatrix}
0 & 0 & 0 & Y_2 \\
0 & -\frac{2}{b} I_{p-q} & 0 & 0 \\
0 & 0 & \frac{2}{b} I_r & 0 \\
Z_3 & 0 & 0 & 0_{n-p-r}
\end{pmatrix} V^{-1},
\]

which establishes part (b).

(ii–2) Let \(a\alpha \neq 1 \) and \(a\beta = -1 \). From the equations in (2.42), it is clear that \(Y_3, Y_4, \) and \(Z \) are zero matrices. Thus, as in (ii–1), \(Y \) reduces to \(Y = S_3 \left(\begin{array}{cc} 0 & Y_2 \\ 0 & 0 \end{array} \right) S_4^{-1} \) and then

\[
B = V \begin{pmatrix}
\frac{1-a\alpha}{b} I_q & 0 & 0 & Y_2 \\
0 & -\frac{1-a\alpha}{b} I_{p-q} & 0 & 0 \\
0 & 0 & \frac{2}{b} I_r & 0 \\
0 & 0 & 0 & 0_{n-p-r}
\end{pmatrix} V^{-1}.
\]

So, it is completed part (c).

(ii–3) Let \(a\alpha = -1 \) and \(a\beta = 1 \). It is clear that \(Y_1, Y_2, \) and \(Z_3, Z_4 \) are zero matrices from the equations in (2.42). Considering all of (2.31), (2.40), (2.41) and these facts, we obtain

\[
Y = S_3 \left(\begin{array}{cc} 0 & 0 \\ 0 & Y_3 \end{array} \right) S_4^{-1} \quad \text{and} \quad Z = S_4 \left(\begin{array}{cc} 0 & Z_2 \\ 0 & 0 \end{array} \right) S_3^{-1},
\]

where \(Y_3 \in \mathbb{C}^{(p-q) \times r} \) and \(Z_2 \in \mathbb{C}^{r \times (p-q)} \) are arbitrary matrices that satisfy the equalities \(Y_3 Z_2 = 0 \) and \(Z_2 Y_3 = 0 \). Therefore, we get the matrix \(B \) as

\[
B = V \begin{pmatrix}
\frac{2}{b} I_q & 0 & 0 & 0 \\
0 & 0_{p-q} & Y_3 & 0 \\
0 & Z_2 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

which establishes part (d).

(ii–4) Let \(a\alpha \neq -1 \) and \(a\beta = 1 \). From the equations in (2.42), it is clear that \(Y_1, Y_2, \) and \(Z \) are zero matrices. Thus, as in (ii–3), \(Y \) reduces to \(Y = S_3 \left(\begin{array}{cc} 0 & 0 \\ 0 & Y_3 \end{array} \right) S_4^{-1} \) and then

\[
B = V \begin{pmatrix}
\frac{1-a\alpha}{b} I_q & 0 & 0 & 0 \\
0 & -\frac{1-a\alpha}{b} I_{p-q} & Y_3 & 0 \\
0 & 0 & 0 & 0_r \\
0 & 0 & 0 & -\frac{2}{b} I_{n-p-r}
\end{pmatrix} V^{-1}.
\]

So, it is completed part (e).

(ii–5) Let \(a\alpha = -1 \) and \(a\beta \neq 1 \). It is obvious that \(Z_3, Z_4, \) and \(Y \) are zero matrices from the equations in (2.42). Thus, as in (ii–3), \(Z \) reduces to \(Z = S_4 \left(\begin{array}{cc} 0 & Z_2 \\ 0 & 0 \end{array} \right) S_3^{-1} \) and then

\[
B = V \begin{pmatrix}
\frac{2}{b} I_q & 0 & 0 & 0 \\
0 & 0_{p-q} & Z_2 & 0 \\
0 & Z_2 & \frac{1-a\beta}{b} I_r & 0 \\
0 & 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

where \(Z_2 \in \mathbb{C}^{r \times (p-q)} \) is an arbitrary matrix and which completes part (f).
(ii–6) Let \(a\alpha = 1\) and \(a\beta \neq -1\). It is obvious that \(Z_1, Z_2,\) and \(Y\) are zero matrices from the equations in (2.42). Thus, as in (ii–1), \(Z\) reduces to
\[
Z = S_4 \begin{pmatrix} 0 & 0 \\ Z_3 & 0 \end{pmatrix} S_4^{-1}
\]
and then
\[
B = V \begin{pmatrix} 0_q & 0 & 0 & 0 \\ 0 & -2\frac{a}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & 1-a\frac{\alpha}{b} I_r & 0 \\ Z_3 & 0 & 0 & -1-a\frac{\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1},
\]
where \(Z_3 \in \mathbb{C}^{(n-p-r) \times q}\) is an arbitrary matrix. So, the part (g) of the proof is completed.
(ii–7) Let \(a\beta \neq \pm 1\) and \(a\alpha \neq \pm 1\). From the equations in (2.42), it is clear that \(Y = 0\) and \(Z = 0\). Hence,
\[
B = V \begin{pmatrix} 1-a\frac{\alpha}{b} I_q & 0 & 0 & 0 \\ 0 & -1-a\frac{\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & 1-a\frac{\beta}{b} I_r & 0 \\ 0 & 0 & 0 & -1-a\frac{\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1},
\]
which completes the part (h) of the proof. Therefore, the part of the necessity of the proof is completed.

On the other hand, it is evident that if \(A\) and \(B\) are represented as in (2.22) and (2.23)–(2.30) and if the scalars \(\alpha, \beta\) satisfy the corresponding conditions, then \(K^2 = I\). □

Theorem 2.3. Let \(a, b, \alpha \in \mathbb{C}^*, \beta \in \mathbb{C},\) and \(\alpha \neq \beta\). Moreover, let \(A\) and \(B \in \mathbb{C}^n \setminus \{0\}\) be an \(\{\alpha, \beta\}\)-quadratic matrix and an arbitrary matrix, respectively. Furthermore, let \(K\) be their linear combination of the form \(K = aA + bB\). Then \(K\) is an involutive matrix and \(BAB = AB^2\) if and only if there exists a nonsingular matrix \(V \in \mathbb{C}^n\) such that
\[
A = V \begin{pmatrix} \alpha I_p & 0 \\ 0 & \beta I_{n-p} \end{pmatrix} V^{-1}
\]
and \(B\) satisfies one of the following cases.

(a) \(a\alpha = 1\) and \(a\beta = -1\),
\[
B = V \begin{pmatrix} 0_q & 0 & 0 & Y_2 \\ 0 & -2\frac{a}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & \frac{a}{b} I_r & 0 \\ Z_3 & 0 & 0 & 0_{n-p-r} \end{pmatrix} V^{-1}.
\]

(b) \(a\alpha \neq 1\) and \(a\beta = -1\),
\[
B = V \begin{pmatrix} 1-a\frac{\alpha}{b} I_q & 0 & 0 & Y_2 \\ 0 & -1-a\frac{\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & \frac{a}{b} I_r & 0 \\ 0 & 0 & 0 & 0_{n-p-r} \end{pmatrix} V^{-1}.
\]

(c) \(a\alpha = -1\) and \(a\beta = 1\),
\[
B = V \begin{pmatrix} 2\frac{a}{b} I_q & 0 & 0 & 0 \\ 0 & 0 & 0 & Y_3 \\ 0 & Z_2 & 0 & 0 \\ 0 & 0 & 0 & -\frac{a}{b} I_{n-p-r} \end{pmatrix} V^{-1}.
\]

(d) \(a\alpha \neq -1\) and \(a\beta = 1\),
\[
B = V \begin{pmatrix} 1-a\frac{\alpha}{b} I_q & 0 & 0 & 0 \\ 0 & -1-a\frac{\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & 0 & Y_3 \\ 0 & 0 & 0 & -2\frac{a}{b} I_{n-p-r} \end{pmatrix} V^{-1}.
\]
This theorem is given under the condition
\[a \alpha = -1 \text{ and } a \beta \neq 1, \]
\[B = V \begin{pmatrix} \frac{2}{b} I_q & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & Z_2 & \frac{1-a\beta}{b} I_r & 0 \\ 0 & 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1}. \]

(f) \(a \alpha = 1 \) and \(a \beta \neq -1, \)
\[B = V \begin{pmatrix} 0_q & 0 & 0 & 0 \\ 0 & \frac{2}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & \frac{1-a\beta}{b} I_r & 0 \\ Z_3 & 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1}. \]

(g) \(a \alpha \neq \pm 1 \) and \(a \beta \neq \pm 1, \)
\[B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 & 0 \\ 0 & -\frac{1-a\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & \frac{1-a\beta}{b} I_r & 0 \\ 0 & 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1}. \]

Here \(Y_2 \in \mathbb{C}^{q \times (n-p-r)}, Y_3 \in \mathbb{C}^{(p-q) \times r}, Z_2 \in \mathbb{C}^{r \times (p-q)}, Z_3 \in \mathbb{C}^{(n-p-r) \times q} \) are arbitrary matrices and \(Z_3 Y_2 = 0, Y_2 Z_3 = 0, Z_2 Y_3 = 0, Y_3 Z_2 = 0. \)

Proof. This theorem is given under the condition \(BAB = AB^2. \) Premultiplying this condition by \(A \) leads to \(A^2 B^2 = (AB)^2. \) Therefore, we get the proof if we apply Theorem 2.2.

Lastly, let us give the following theorem.

Theorem 2.4. Let \(a, b, \alpha \in \mathbb{C}^*, \beta \in \mathbb{C}, \alpha \neq \beta, \text{ and } (\alpha, \beta) \notin \{(-1, 1), (1, -1)\}. \) Moreover, let \(A \) and \(B \in \mathbb{C}^{n \times n} \) be an \(\{\alpha, \beta\} \)-quadratic matrix and an arbitrary matrix, respectively. Furthermore, let \(K \) be their linear combination of the form \(K = aA + bB. \) Then \(K \) is an involutive matrix and \(A^2 B^2 = (AB)^2 \) if and only if there exists a nonsingular matrix \(V \in \mathbb{C}^n \) such that
\[A = V \begin{pmatrix} \alpha I_p & 0 \\ 0 & \beta I_{n-p} \end{pmatrix} V^{-1} \] (2.43)
and \(B \) satisfies one of the following cases.

(a) \(\beta^2 \neq 1, \alpha^2 = 1, \text{ and } \beta = 0. \)
\[B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 & Y_2 \\ 0 & \frac{1-a\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & \frac{1-a\beta}{b} I_r & 0 \\ 0 & 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} V^{-1}, \] (2.44)

being \(Y_2 \in \mathbb{C}^{q \times (n-p-r)} \) and \(Y_3 \in \mathbb{C}^{(p-q) \times r} \) arbitrary.

(b) \(\beta^2 \neq 1, \alpha^2 = 1, \beta \neq 0, \text{ and } a\beta = 1. \)
\[B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 & Y_2 \\ 0 & \frac{1-a\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & 0 & 0_{n-p} \end{pmatrix} V^{-1}, \] (2.45)

being \(Y_2 \in \mathbb{C}^{(p-q) \times (n-p)} \) arbitrary.

(c) \(\beta^2 \neq 1, \alpha^2 = 1, \beta \neq 0, \text{ and } a\beta = -1. \)
\[B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 & Y_1 \\ 0 & \frac{1-a\alpha}{b} I_{p-q} & 0 & 0 \\ 0 & 0 & 0 & 0_{n-p} \end{pmatrix} V^{-1}, \] (2.46)

being \(Y_1 \in \mathbb{C}^{q \times (n-p)} \) arbitrary.
(d) \(\beta^2 \neq 1, \alpha^2 \neq 1, \beta = 0, \) and \(a\alpha = 1. \)

\[
B = V \begin{pmatrix}
0 & 0 & Y_2 \\
0 & \frac{1}{b} I_r & 0 \\
0 & 0 & -\frac{1}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

(2.47)

being \(Y_2 \in \mathbb{C}^{p \times (n-p-r)} \) arbitrary.

(e) \(\beta^2 \neq 1, \alpha^2 \neq 1, \beta = 0, \) and \(a\alpha = -1. \)

\[
B = V \begin{pmatrix}
0 & Y_1 & 0 \\
0 & \frac{1}{b} I_r & 0 \\
0 & 0 & -\frac{1}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

(2.48)

being \(Y_1 \in \mathbb{C}^{p \times r} \) arbitrary.

(f) \(\beta^2 = 1 \) and \(a\alpha = 1. \)

\[
B = V \begin{pmatrix}
0 & 0 & 0 \\
0 & \frac{1-a^2}{b} I_r & 0 \\
Z_2 & 0 & -\frac{1-a^2}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

(2.49)

being \(Z_2 \in \mathbb{C}^{(n-p-r) \times p} \) arbitrary.

(g) \(\beta^2 = 1 \) and \(a\alpha = -1. \)

\[
B = V \begin{pmatrix}
0 & 0 & 0 \\
0 & \frac{1-a^2}{b} I_r & 0 \\
Z_1 & 0 & -\frac{1-a^2}{b} I_{n-p-r}
\end{pmatrix} V^{-1},
\]

(2.50)

being \(Z_1 \in \mathbb{C}^{r \times p} \) arbitrary.

Proof. Let us write a quadratic matrix \(A \) as

\[
A = U (\alpha I_p \oplus \beta I_{n-p}) U^{-1},
\]

where \(p \in \{0, \ldots, n\} \) and \(U \in \mathbb{C}^n \) is a nonsingular matrix. We can represent \(B \) as

\[
B = U \begin{pmatrix} X & Y \\ Z & T \end{pmatrix} U^{-1}
\]

where \(X \in \mathbb{C}^p \). In view of the hypotheses \(A^2BA = BA \) and \(\alpha \neq 0 \) we can write

\[
\alpha^2 X = X, \quad \alpha^2 \beta Y = \beta Y, \quad \beta^2 Z = Z, \quad \beta^3 T = \beta T.
\]

(2.51)

Let us assume that \(K \) is an involutive matrix then it follows that

\[
(a\alpha I_p + bX)^2 + \beta^2 YZ = I_p, \quad ab(a + \beta) Y + b^2 (XY + YT) = 0,
 \]

\[
ab(a + \beta) Z + b^2 (ZX + TZ) = 0, \quad (a\beta I_{n-p} + bT)^2 + b^2 ZY = I_{n-p}.
\]

(2.52)

The proof can be split into following cases depending on the scalar \(\beta. \)

(i) Let \(\beta^2 \neq 1. \) From (2.51), it is seen that \(Z = 0. \) We can split this case into four cases depending on the values of \(\alpha \) and \(\beta. \)

(i-1) \(\alpha^2 = 1 \) and \(\beta = 0. \) Reorganizing the equations of (2.52), it can be written

\[
(a\alpha I_p + bX)^2 = I_p, \quad (bT)^2 = I_{n-p}, \quad ab\alpha Y + b^2 (XY + YT) = 0.
\]

(2.53)

It is clear that \(a\alpha I_p + bX \) and \(bT \) are involutive matrices from the first and second equations in (2.53), respectively. So, there exist \(q \in \{0, \ldots, p\}, r \in \{0, \ldots, n-p\} \) and nonsingular matrices \(S_1 \in \mathbb{C}^p, S_2 \in \mathbb{C}^{(n-p)} \) such that

\[
X = S_1 \left(\frac{1}{b} - \frac{\alpha}{b} I_q \oplus -\frac{1}{b} I_{p-q} \right) S_1^{-1} \quad \text{and} \quad T = S_2 \left(\frac{1}{b} I_r \oplus -\frac{1}{b} I_{n-p-r} \right) S_2^{-1}.
\]

(2.54)

Let us write \(Y \) as

\[
Y = S_1 \begin{pmatrix} Y_1 \\ Y_3 \end{pmatrix} S_2^{-1},
\]

(2.55)
where $Y_1 \in \mathbb{C}^{q \times r}$. Substituting (2.54) and (2.55) into the third equation in (2.53) yields $2(Y_1 \oplus -Y_4) = 0$. Then Y reduces to

$$Y = S_1 \begin{pmatrix} 0 & Y_2 \\ Y_3 & 0 \end{pmatrix} S_2^{-1},$$

(2.56)

where $Y_2 \in \mathbb{C}^{q \times (n-p-r)}$ and $Y_3 \in \mathbb{C}^{(p-q) \times r}$ are arbitrary matrices.

Let us define $V := U(S_1 \oplus S_2)$. Then we can write A as

$$A = U(\alpha I_p \oplus 0_{n-p}) U^{-1} = V \left(S_1^{-1} \oplus S_2^{-1}\right) (\alpha I_p \oplus 0_{n-p}) (S_1 \oplus S_2) V^{-1}$$

$$= V(\alpha I_p \oplus 0_{n-p}) V^{-1}.$$

In view of (2.54) and (2.56) we obtain that

$$B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 & Y_2 \\ 0 & -1/a I_{p-q} & Y_3 & 0 \\ 0 & 0 & 1/b I_r & 0 \\ 0 & 0 & 0 & -1/b I_{n-p-r} \end{pmatrix} V^{-1},$$

which yields part (a).

(i-2) Let $a^2 = 1$ and $\beta \neq 0$. From (2.51), it is seen that $T = 0$. Reorganizing the equations of (2.52), it can be written

$$(a \alpha I_p + bX)^2 = I_p, \quad (a \beta I_{n-p})^2 = I_{n-p}, \quad ab(\alpha + \beta) Y + b^2 X Y = 0.$$

(2.57)

It is clear that $a \alpha I_p + bX$ is an involutive matrix from the first equation in (2.57), so there exist $q \in \{0, \ldots, p\}$ and a nonsingular matrix $S_3 \in \mathbb{C}^p$ such that

$$X = S_3 \left(\frac{1-a\alpha}{b} I_q \oplus -\frac{1-a\alpha}{b} I_{p-q}\right) S_3^{-1}.$$

(2.58)

Let us write Y as

$$Y = S_3 \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix},$$

(2.59)

where $Y_1 \in \mathbb{C}^{q \times (n-p)}$. Substituting (2.58) and (2.59) into the third equation in (2.57) it is obtained that

$$\begin{pmatrix} (a \alpha + 1) Y_1 \\ (a \beta - 1) Y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Moreover, it is clear that $a \beta \in \{-1,1\}$ from the second equation in (2.57). Then Y reduces to

$$Y = S_3 \begin{pmatrix} 0 \\ Y_2 \end{pmatrix}$$

(2.60)

when $a \beta = 1$ or

$$Y = S_3 \begin{pmatrix} Y_1 \\ 0 \end{pmatrix}$$

(2.61)

when $a \beta = -1$.

Let us define $V := U(S_3 \oplus I_{n-p})$. Then we get A as

$$A = U(\alpha I_p \oplus \beta I_{n-p}) U^{-1} = V \left(S_3^{-1} \oplus I_{n-p}\right) (\alpha I_p \oplus \beta I_{n-p}) (S_3 \oplus I_{n-p}) V^{-1}$$

$$= V(\alpha I_p \oplus \beta I_{n-p}) V^{-1}.$$

In view of (2.58), (2.60) and (2.58), (2.61) we obtain, respectively, that

$$B = V \begin{pmatrix} \frac{1-a\alpha}{b} I_q & 0 & 0 \\ 0 & -1/a I_{p-q} & Y_2 \\ 0 & 0 & 0_{n-p} \end{pmatrix} V^{-1},$$
Let

\[
B = V \begin{pmatrix}
\frac{1-a\alpha}{b} I_q & 0 & Y_1 \\
0 & -\frac{1-a\alpha}{b} I_{p-q} & 0 \\
0 & 0 & 0
\end{pmatrix} V^{-1},
\]

which establish parts (b) and (c).

(i-3) Let \(a^2 \neq 1\) and \(\beta = 0\). From (2.51), it is seen that \(X = 0\). Reorganizing the equations of (2.52), it can be written

\[
(a\alpha I_p)^2 = I_p, \quad (b\mathbf{T})^2 = I_{n-p}, \quad ab\mathbf{Y} + b^2 \mathbf{YT} = 0. \tag{2.62}
\]

It is clear that \(b\mathbf{T}\) is an involutive matrix from the second equation in (2.62), so there exist \(r \in \{0, \ldots, n-p\}\) and a nonsingular matrix \(S_1 \in \mathbb{C}^{(n-p)}\) such that

\[
\mathbf{T} = S_1 \left(\frac{1}{b} I_r \oplus \frac{-1}{b} I_{n-p-r} \right) S_1^{-1}. \tag{2.63}
\]

Let us write \(\mathbf{Y}\) as

\[
\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 & \mathbf{Y}_2 \end{pmatrix} S_1^{-1}, \tag{2.64}
\]

where \(\mathbf{Y}_1 \in \mathbb{C}^{p \times r}\). Substituting (2.63) and (2.64) into the third equation in (2.62) it is obtained that \((a\alpha + 1)\mathbf{Y}_1 = (a\alpha - 1)\mathbf{Y}_2 = (0, 0)\). Moreover, it is clear that \(a\alpha \in \{-1, 1\}\) from the first equation in (2.62). Then \(\mathbf{Y}\) turns to

\[
\mathbf{Y} = \begin{pmatrix} 0 & \mathbf{Y}_2 \end{pmatrix} S_1^{-1} \tag{2.65}
\]

when \(a\alpha = 1\) or

\[
\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 & 0 \end{pmatrix} S_1^{-1} \tag{2.66}
\]

when \(a\alpha = -1\).

Let us define \(\mathbf{V} := U(\mathbf{I}_p \oplus S_1)\). Then we get \(\mathbf{A}\) as

\[
\mathbf{A} = U(\alpha \mathbf{I}_p \oplus 0_{n-p}) U^{-1} = V \left(I_p \oplus S_1^{-1} \right) \left(\alpha \mathbf{I}_p \oplus 0_{n-p} \right) (I_p \oplus S_1) V^{-1}
\]

\[
= V (\alpha \mathbf{I}_p \oplus 0_{n-p}) V^{-1}.
\]

In view of (2.63), (2.65) and (2.66), (2.63) we obtain, respectively, that

\[
B = V \left(\begin{array}{ccc}
0 & 0 & Y_2 \\
0 & \frac{1}{b} I_r & 0 \\
0 & 0 & \frac{-1}{b} I_{n-p-r}
\end{array} \right) V^{-1},
\]

and

\[
B = V \left(\begin{array}{ccc}
0 & Y_1 & 0 \\
0 & \frac{1}{b} I_r & 0 \\
0 & 0 & \frac{-1}{b} I_{n-p-r}
\end{array} \right) V^{-1},
\]

which establish parts (d) and (e).

(i-4) Let \(a^2 \neq 1\) and \(\beta \neq 0\). From (2.51), it is seen that \(B = 0\) which contradicts the hypothesis \(B \neq 0\). So, in this case there is no matrix form of \(B\).

(ii) Let \(\beta^2 = 1\). From the first and second equations in (2.51) and considering hypotheses \((a, \beta) \notin \{(-1, 1), (1, -1)\}\) and \(a \neq \beta\), it is obvious that \(X = 0\) and \(Y = 0\). Reorganizing the equations of (2.52), it can be written

\[
(a\alpha)^2 \mathbf{I}_p = \mathbf{I}_p, \quad (a\beta \mathbf{I}_{n-p} + b\mathbf{T})^2 = \mathbf{I}_{n-p}, \quad ab(\alpha + \beta) \mathbf{Z} + b^2 \mathbf{TZ} = 0. \tag{2.67}
\]

It is explicit that \(a\alpha \in \{-1, 1\}\) and \(a\beta \mathbf{I}_{n-p} + b\mathbf{T}\) is an involutive matrix from the first and second equations in (2.67). So, there exist \(r \in \{0, \ldots, n-p\}\) and a nonsingular matrix \(S \in \mathbb{C}^{(n-p)}\) such that

\[
\mathbf{T} = S \left(\frac{1-a\beta}{b} I_r \oplus \frac{-1-a\beta}{b} I_{n-p-r} \right) S^{-1}. \tag{2.68}
\]
Let us write Z as

$$Z = S \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix},$$

where $Z_1 \in \mathbb{C}^{r \times p}$. Substituting (2.68) and (2.69) into the third equation in (2.67), it is obtained that

$$\begin{pmatrix} (a\alpha + 1) Z_1 \\ (a\alpha - 1) Z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$ \hspace{1cm} (2.70)

Using $a\alpha \in \{-1, 1\}$, Z obtained that

$$Z = S \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

when $a\alpha = 1$ or

$$Z = S \begin{pmatrix} 0 \\ Z_2 \end{pmatrix}$$

when $a\alpha = -1$.

Hence, we can easily write

$$A = U (\alpha I_p \oplus \beta I_{n-p}) U^{-1} = U (I_p \oplus S) (\alpha I_p \oplus \beta I_{n-p}) (I_p \oplus S^{-1}) U^{-1}.$$ \hspace{1cm} (2.80)

In view of (2.68), (2.70) and (2.68), (2.71) we obtain, respectively, that

$$B = U (I_p \oplus S) \begin{pmatrix} 0_p & 0 & 0 \\ 0 & \frac{1-a\beta}{b} I_p & 0 \\ Z_2 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} (I_p \oplus S^{-1}) U^{-1}$$

and

$$B = U (I_p \oplus S) \begin{pmatrix} 0_p & 0 & 0 \\ Z_1 & 0 & 0 \\ 0 & 0 & -\frac{1-a\beta}{b} I_{n-p-r} \end{pmatrix} (I_p \oplus S^{-1}) U^{-1}.$$ \hspace{1cm} (2.81)

The necessity part of the proof is completed by defining V as $V := U (I_p \oplus S)$.

Now, it is evident that if A is represented as in (2.43), B is represented as in (2.44)–(2.50) and the scalars α, β satisfy the corresponding conditions, then $K^2 = I$. \hfill \Box

Acknowledgment. The authors wish to extend their sincere gratitude to the referees for their precious comments and suggestions.

References

