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ON THE SEQUENCE OF GELL NUMBERS

ORHAN DIŞKAYA AND HAMZA MENKEN

Abstract. In this paper, we consider Pell numbers. We define the gell num-
bers which generalize the Pell numbers. Moreover, we derive Binet-like for-

mula, generating function and exponential generating function for the gell

sequence. Also, we obtain the gell series and some important identities for the
gell sequence.

1. Introduction

Like the well-known Fibonacci, Pell numbers play important role in mathemat-
ics. Pell numbers too continue to amaze the mathematical community with their
applications in analysis, trigonometry and various areas of discrete mathematics,
such as number theory, graph theory, linear algebra and combinatorics. Also, the
use of such special sequences has increased significantly in applied science [4]. Pell
sequence {Pn}n≥0 is defined by the initial values P0 = 0 and P1 = 1 and the
recurrence relation

Pn+2 = 2Pn+1 + Pn, n ≥ 0.(1.1)

First few terms of this sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378. For con-
venience we take P−1 = 1 and P−2 = −2. The Pell number were called in honour of
English mathematician John Pell [2, 3, 6]. The golden ratio has many applications
in engineering, physics, architecture, arts and others [5]. In similar way, the ratio
of two consecutive Pell numbers converges to

λ = 1 +
√

2 ≈ 2.4142135623,

that is called as ”silver ratio”. The silver number is the positive real root of the
characteristic equation of Pell numbers

x2 − 2x− 1 = 0.

The other root is

µ = 1−
√

2

so that,

λ+ µ = 2, λ− µ = 2
√

2 and λµ = −1.
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The Binet formula of Pell sequence is

Pn =
λn − µn

λ− µ
,

Its the generating function is

GP (x) =

∞∑
n=0

Pnx
n =

x

1− 2x− x2
,

and the exponential generating function is

EP (x) =
eλx − eµx

λ− µ
=

∞∑
n=0

Pn
n!
xn.

Also, the Pell series is

SP =

∞∑
n=0

Pn
tn+1

=
1

t2 − 2t− 1
.

The more properties and applications of Pell numbers can be found in [2, 3, 4, 5, 6]

2. The Gell Numbers

The gell sequence {GIn} as a generalization of Pell sequence is defined by a two
order recurrence;

GIn+2 = 2GIn+1 + GIn, n ≥ 1

with the initial conditions GI1 = a, GI2 = b. The first few members of this se-
quence is given as follow ;

n 1 2 3 4 5 6 7 ...
GIn a b a+ 2b 2a+ 5b 5a+ 12b 12a+ 29b 29a+ 70b ...

Some investigations related the generalized Pell numbers were given in [1]. Here we
obtain new results.

3. Main Results

In the present work we derive Binet-like formula, generating function and ex-
ponential generating function for the gell sequence. Also, we obtain the gell series
and some important identities for the gell sequence.

Theorem 3.1. Let GIn be n th gell number. Then,

GIn = aPn−2 + bPn−1, n ≥ 3.

Proof. We will establish this using PMI. Since,

GI3 = aP1 + bP2 = a+ 2b

and

GI4 = aP2 + bP3 = 5a+ 12b,
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the result is true when n = 3, 4. Suppose it is true for all positive integers n ≤ k.
Then,

GIk+2 = 2GIk+1 + GIk
= 2aPk−1 + 2bPk + aPk−2 + bPk−1

= a(2Pk−1 + Pk−2) + b(2Pk + Pk−1)

= aPk + bPk+1

Thus, by the strong version of PMI, the formula works for all positive integers
n ≤ 3. �

Theorem 3.2. (Binet-like formula) Let c = aµ2 − bµ and d = aλ2 − bλ. Then,

GIn =
cλn − dµn

λ− µ
, n ≥ 0.(3.1)

Proof. Using 3.1 Theorem. We have,

GIn = aPn−2 + bPn−1

(λ− µ)GIn = a
(
λn−2 − µn−2

)
+ b

(
λn−1 − µn−1

)
= λn

(
a

λ2
+
b

λ

)
− µn

(
a

µ2
+
b

µ

)
= λn

(
aµ2 − bµ

)
− µn

(
aλ2 − bλ

)
= cλn − dµn

This yields the desired formula. �

Denote that

t = cd =
(
aµ2 − bµ

) (
aλ2 − bλ

)
= a2(µλ)2 − abµ2λ− abµλ2 + b2µλ

= a2 + ab(λ+ µ)− b2

= a2 + 2ab− b2.

Theorem 3.3. (Catalan’s Identity) Let GIn denote the n th gell sequence. Then,

GIn+kGIn−k − GI2
n = t(−1)n−k+1P 2

k , n ≥ k.

Proof. Using (3.1) we write

(λ− µ)2(GIn+kGIn−k − GI2
n) = (cλn+k − dµn+k)(cλn−k − dµn−k)− (cλn − dµn)2

= c2λ2n − cdλn+kµn−k − cdµn+kλn−k + d2µ2n

− c2λ2n + cdλnµn + cdµnλn − d2µ2n

= −cdλn+kµn−k − cdλn−kµn+k + 2cdλnµn

= −cd(λµ)n
[(

λk

µk
− 1

)
−
(

1− µk

λk

)]
= −cd(λµ)n−k(λk − µk)2

= t(−1)n−k+1(λk − µk)2

�



80 ORHAN DIŞKAYA AND HAMZA MENKEN

Theorem 3.4. (Cassini Identity) Let GIn denote the n th gell sequence. Then,

GIn+1GIn−1 − GI2
n = t(−1)n, n ≥ 1

Proof. Taking k = 1 in the Catalan’s Identity, the proof is completed. �

Theorem 3.5. Let GIn denote the n th gell sequence. Then,

GIn+m = Pm+1GIn + PmGIn−1, m ≥ 0, n ≥ 1.

Proof. Using (3.1) we get

(λ− µ)2(Pm+1GIn + PmGIn−1) = (λm+1 − µm+1)(cλn − dµn)

+ (λm − µm)(cλn−1 − dµn−1)

= cλn+m+1 − dλm+1µn − cµm+1λn + dµm+n+1

+ cλn+m−1 − dλmµn−1 − cµmλn−1 + dµm+n−1

=
(
cλn+m − dµn+m

)
(λ− µ)

�

Theorem 3.6. (Gelin-Cesaro Identity) Let GIn denote the n th gell sequence.
Then,

GIn+2GIn+1GIn−1GIn−2 − GI4
n = −t2, n ≥ 2

Proof. Using (3.1) we obtain

GIn+2GIn+1GIn−1GIn−2 − GI4
n = (GIn+2GIn−2) (GIn+1GIn−1)− GI4

n

=
(
t(−1)n + GI2

n

) (
−t(−1)n + GI2

n

)
− GI4

n

= −t2(−1)2n + GI4
n − GI4

n = −t2

�

Theorem 3.7. (d’Ocagne’s Identity) Let GIn denote the n th gell sequence. Then,

GImGIn+1 − GIm+1GIn = t(−1)nPm−n, m ≥ n

Proof. Using (3.1) we have

(λ− µ)2GImGIn+1 − GIm+1GIn = (cλm − dµm)
(
cλn+1 − dµn+1

)
−
(
cλm+1 − dµm+1

)
(cλn − dµn)

= c2λm+n+1 − cdλmµn+1 − cdµmλn+1 + d2µm+n+1

− c2λm+n+1 + cdλm+1µn + cdµm+1λn − d2µm+n+1

= (cd) [λmµn(λ− µ)− λnµm(λ− µ)]

= cd(λµ)n(λ− µ)(λm−n − µm−n)

= t(−1)n(λ− µ)(λm−n − µm−n)

�

Theorem 3.8. The generating function for the nth gell numbers is

GGI(x) =
ax− bx2

1− 2x− x2
.
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Proof. Assume that the function

GGI(x) =

∞∑
n=1

GInxn = GI1x+ GI2x2 + GI3x3 + . . .+ GInxn + . . .

be generating function of the gell numbers. Multiply both of side of the equality
by the term −2x such as

−2xGGI(x) = −2GI1x2 − 2GI2x3 − 2GI3x4 − . . .− 2GInxn+1 + . . .

and that is multipied every side with −x2 such as

−x2GGI(x) = −GI1x3 − GI2x4 − GI3x5 − . . .− GInxn+2 + . . .

Then, we write

(1− 2x− x2)GGI(x) = GI1x− GP2x
2 + (GI3 − 2GI2 − GI1)x3 + . . .

+ (GIn − 2GIn−1 − GIn−2)xn + . . .

Now, by using GI1 = a, GI2 = b, GI3 = a+ 2b, GI4 = 2a+ 5b, GI5 = 5a+ 12b . . .
we obtain that,

GGI(x) =
ax− bx2

1− 2x− x2
.

Thus, the proof is completed. �

Theorem 3.9. The exponential generating function for the nth gell numbers is

EGI(x) =
ceλx − deµx

λ− µ
=

∞∑
n=0

GIn
n!

xn.

Proof. we know that,

eλx =

∞∑
n=0

λnxn

n!
and eµx =

∞∑
n=0

µnxn

n!

Let’s multiply each side of the first equation by c and the second equation by d,
divide each side of both equations into (λ − µ) and subtract the second equation
from the first equation we obtain

ceλx − deµx

λ− µ
=

∞∑
n=0

cλn − dµn

λ− µ
1

n!
xn =

∞∑
n=0

GIn
n!

xn.

�

Theorem 3.10. The Series for the nth gell numbers is

SGI =

∞∑
n=0

GIn
tn+1

= −2a

t
+

(
a

t2
+
b

t

)
t2 − 2t

t2 − 2t− 1
.
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Proof.

SGI =

∞∑
n=0

GIn
tn+1

=

∞∑
n=0

aPn−2 + bPn−1

tn+1

= a

∞∑
n=0

Pn−2

tn+1
+ b

∞∑
n=0

Pn−1

tn+1

= a

∞∑
n=−2

Pn
tn+3

+ b

∞∑
n=−1

Pn
tn+2

= −2a

t
+

(
a

t2
+
b

t

) ∞∑
n=−1

Pn
tn+1

= −2a

t
+

(
a

t2
+
b

t

)(
1 +

∞∑
n=0

Pn
tn+1

)

By using the Pell series we obtain

SGI = −2a

t
+

(
a

t2
+
b

t

)
t2 − 2t

t2 − 2t− 1

�

4. Conclusion

In the present work, we consider the Pell numbers sequence. We define the gell
numbers as the generalization of Pell numbers. We give some algebraic identities
for the gell numbers. Then, we derive the Binet formula, the generating and the
exponential generating functions for the gell numbers sequence. Also, we obtain
the gell series.
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