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INTUITIONISTIC FUZZY HEAT-LIKE EQUATIONS

A.HARIR, S. MELLIANI, AND L.S.CHADLI

Résumé. In this paper, the variational iteration method (VIM) is used for finding exact intuitionistic fuzzy

solution of the intuitionistic fuzzy heat-like equations with variable coefficients in one and two dimensions.

Several examples are given to show the new theorem of the solution. The results obtained in all cases show the

reliability and the efficiency of this methods.

1. Introduction

The theory of fuzzy sets proposed by Zadeh [12] has showed successful applications in various fields. In fuzzy

set theory, the membership of an element to a fuzzy set is a single value between zero and one. But in reality,

it may not always be certain that the degree of nonmembership of an element in a fuzzy set is just equal to 1

minus the degree of membership. That is to say, there may be some hesitation degree. So, as a generalization of

fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1].

In this work, our idea is solving heat-like equations with intuitionistic fuzzy parameters via the same strategy

as α-cuts using Variational Iteration Method VIM.

The VIM proposed by He in [7], is a method of solving linear or nonlinear problems [11] and gives rapidly

convergent successive approximations of the exact solution if that last exists.

In comparison with the paper [5, 6], we investigate problems with intuitionistic fuzzy initial value and intui-

tionistic fuzzy forcing functions, we propose a new theorem for finding the exact intuitionistic fuzzy solutions,

witch extended to the solution for the proposed models.

2. Basic concept of intuitionistic fuzzy sets

Let a setX be fixed. An intuitionistic fuzzy set Ãi inX is an object having the form Ãi =

{〈
x, µÃi

(
x
)
, νÃi

(
x
)〉}

,

where µÃi

(
x
)

: X → [0, 1] and νÃi

(
x
)

: X → [0, 1] define the degree of memberschip and degree of non-

membership respectively, of the element x ∈ X to the set Ãi, which is subset of X, for every element of x ∈ X,

0 ≤ µÃi

(
x
)

+ νÃi

(
x
)
≤ 1. Let X = R

Definition 2.1. Let IF =
{
Ãi|Ãi : R→ [0, 1]2, satisfies (1)− (5)

}
:

An intuitionistic fuzzy number Ãi is

(1) normal i.e there is any x0, x1 ∈ R such that µÃi

(
x0
)

= 1 and νÃi

(
x1
)

= 1

(2) convex for the membership function µÃi

(
x
)

i.e

µÃi

(
λx1 + (1− λ)x2

)
≥ min

(
µÃi

(
x1
)
, µÃi

(
x2
))
∀x1, x2 ∈ R, λ ∈ [0, 1]
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(3) concave for non-membership function νÃi

(
x
)

i.e

νÃi

(
λx1 + (1− λ)x2

)
≤ max

(
νÃi

(
x1
)
, νÃi

(
x2
))
∀x1, x2 ∈ R, λ ∈ [0, 1]

(4) µÃi

(
x
)

is upper semi-continuous and νÃi

(
x
)

is lower semi-continuous and

(5) supp(µÃi , νÃi) = cl{x ∈ R : νÃi(x) < 1} is bounded.

Then IF is called intuitionistic fuzzy space.

Definition 2.2. If Ãi is an intuitionistic fuzzy number α-cut is given by

Ãi[α] =
{
A+[α], A−[α]; α ∈ [0, 1]

}
where A−[α] = {x ∈ R : νÃi

(
x
)
≤ 1− α}, A+[α] = {x ∈ R : µÃi

(
x
)
≥ α}.

It is expressed as Ãi[α] =
{[
A+

1 (α), A+
2 (α)

]
,
[
A−1 (α), A−2 (α)

]
; α ∈ [0, 1]

}
(i) A+

1 (α) and A−2 (α) will be continuous, monotonic increasing function of α

(ii) A+
2 (α) and A−1 (α) will be continuous, monotonic decreasing function of α

(iii) A+
1 (1) = A+

2 (1) ; A−1 (0) = A−2 (0).

Definition 2.3. A Triangular Intuitionistic Fuzzy Number (TIFN) Ãi is an intuitionistic fuzzy in R with

following membership function
(
µÃi

(
x
))

and non-membership function
(
νÃi

(
x
))
,

µÃi

(
x
)

=



x−a1
b1−a1 , a1 ≤ x ≤ b1

c1−x
c1−b1 , b1 ≤ x ≤ c1

0, otherwise.

and νÃi

(
x
)

=



b1−x
b1−a

′
1

, a
′

1 ≤ x ≤ b1

x−b1
c
′
1−b1

, b1 ≤ x ≤ c
′

1

1, otherwise.

Where a
′
1 < a1 < b1 < c1 < c

′
1 and µÃi

(
x
)
, νÃi

(
x
)
≤ 0.5 for µÃi

(
x
)
= νÃi

(
x
)
∀x ∈ R. This TIFN is denoted by

Ãi =
(
a
′
1, a1, b1, c1, c

′
1

)
We will write : (1) Ãi > 0 if a

′

1 > 0, (2)Ãi ≥ 0 if a
′

1 ≥ 0, (3) Ãi < 0 if c
′

1 < 0 and (4) Ãi ≤ 0 if c
′

1 ≤ 0. and

A+[α] =
[
a1 + α(a2 − a1), a3 − α(a3 − a2)

]
and A−[α] =

[
a
′

1 + α(a2 − a
′

1), a
′

3 − α(a
′

3 − a2)
]

For Ãi, B̃i ∈ IF and λ ∈ R, the addition and scaler-multiplication are defined as follows(
Ãi + B̃i

)
[α] =

(
A+[α] +B+[α], A−[α] +B−[α]

)
λÃi[α] =


([
λA+

1 (α), λA+
2 (α)

]
,
[
λA−1 (α), λA−2 (α)

])
λ ≥ 0([

λA+
2 (α), λA+

1 (α)
]
,
[
λA−2 (α), λA−1 (α)

])
, λ < 0

Theorem 2.4. Let F : I → IF be differentiable. Denote F+[α] =
[
f+1 (t, α), f+2 (t, α)

]
, F−[α] =

[
f−1 (t, α), f−2 (t, α)

]
.

Then f+1 (t, α), f+2 (t, α), f−1 (t, α) and f−2 (t, α) are differentiable and

F+′[α] =
[
f+′1 (t, α), f+′2 (t, α)

]
F−′[α] =

[
f−′1 (t, α), f−′2 (t, α)

]
We adopt the general definition of a intuitionistic fuzzy number given in [2, 3, 4, 10, 9].

3. Intuitionistic fuzzy heat-like equations

We consider the heat-like equations in one and two dimensional cases which can be written in the forms



INTUITIONISTIC FUZZY HEAT-LIKE EQUATIONS 35

– One-dimensional [5] :

(3.1) Ut(t, x) + P (x)Uxx(t, x) = F (t, x, k)

– Two-dimensional [5] :

(3.2) Ut(t, x, y) + P (x)Uxx(t, x, y) +Q(y)Uyy(t, x, y) = F (t, x, y, k)

(3.3) or Ut(t, x, y) +Q(y)Uxx(t, x, y) + P (x)Uyy(t, x, y) = F (t, x, y, k)

subject to certain initial and boundary conditions.

These initial and boundary conditions, in state two-dimensional, can come in a variety of forms such as

U(0, x, y) = c1 or U(0, x, y) = g1(x, y, c2) or U(M1, x, y) = g2(x, y, c3, c4),...

In this paper the method is applied for the heat-like equation (3.2). For (3.1) and (3.3), the same discussion can

be made. In following lines, the components of (3.2) are enumerated :

– I1 = [0,M1], I2 = [M2,M3] and I3 = [M4,M5] are three intervals, which Mn1(n1 = 2, 3, 4, 5) is negative or

positive and M1 > 0.

– F (t, x, y, k), U(t, x, y), P (x) and Q(y) will be continuous functions for (t, x, y) ∈
∏3
j=1 Ij .

– P (x) and Q(y) have a finite number of roots for each (x, y) ∈ I2 × I3
– k = (k1, ..., kn) and c = (c1, ..., cm) are vectors of constants with kj ∈ Jj and cr ∈ Lr.

Assume that (3.2) has a solution

(3.4) U(t, x, y) = G(t, x, y, k, c)

for G and

((G(t, x, y, k, c))t + P (x)(G(t, x, y, k, c))xx +Q(y)(G(t, x, y, k, c))yy

are continuous with (t, x, y) ∈
∏3
j=1 Ij , k ∈ J =

∏n
j=1 Jj , and c ∈ L =

∏m
r=1 Lr.

The constants kj and cr are not known exactly so there will be uncertainty in their values. We will model this

uncertainty using intuitionistic fuzzy numbers. So, we will substitute intuitionistic fuzzy numbers K̃i
j for kj , K̃

i
j

in Jj , 1 ≤ j ≤ n, and substitute intuitionistic fuzzy numbers C̃ir for cr, C̃
i
r in Lr, 1 ≤ r ≤ m.

The intuitionistic fuzzy heat-like equation is

(3.5) Ũ it (t, x, y) + P (x)Ũ ixx(t, x, y) +Q(y)Ũ iyy(t, x, y) = F̃ i(t, x, y, K̃i)

where K̃i = K̃i
1, · · · K̃i

n for K̃i
j an intuitionistic fuzzy number in Jj , 1 ≤ j ≤ n. The function U where Ũ i maps∏3

j=1 Ij into intuitionistic fuzzy numbers.

That is, Ũ i(t, x, y) = Z̃i where Z̃i is an intuitionistic fuzzy number.

subject to certain initial and boundary conditions. The initial and boundary conditions can be of the form

Ũ i(0, x, y) = C̃i1 or Ũ
i(0, x, y) = g̃i1(x, y, C̃i2) or Ũ i(M1, x, y) = g̃i2(x, y, C̃i3, C̃

i
4)

The g̃ij is the model intuitionistic fuzzy function of gj . Let C̃i = C̃i1, · · · C̃in with C̃i triangular intuitionistic

fuzzy number in Lr, 1 ≤ r ≤ m. We wish to solve the problem given in (3.5). Let Z̃i(t, x, y) = G̃i
(
t, x, y, K̃i, C̃i

)
where Z̃i is a intuitionistic fuzzy solution. Let K̃i[α] =

∏n
j=1 K̃

i
j [α] and C̃i[α] =

∏m
r=1 C̃

i
r[α].

Of cours, we mean that the G in Eq. (3.2) is not defined in terms of a series. That is, there are no Fourier series

used to define G. Since in this paper we will interested for G with intuitionistic fuzzy parameters we do not wish

to consider Fourier series in intuitionistic fuzzy sets concept. We need the solution G to be fairly simple. So, we

also assume that Bessel functions and Legendre functions are not used in G.
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4. The Variational iteration method

To illustrate the basic idea of the VIM we consider the following PDE model

(4.1) LtU + LxU + LyU +NU = F (t, x, y, k)

where Lt, Lx and Ly are linear operators of t, x and y, respectively, and N is a nonlinear operator, also F (t, x, y, k)

is the source non-homogeneous term. According to the VIM [11], we can express the following correction function

(4.1) in t, x and y directions can be written as

(4.2) Un+1(t, x, y) = Un(t, x, y) +

∫ t

0

λ{LsUn + (Lx + Ly +N)Ũn − F (s, x, y, k)}ds

where λ is general Lagrange multiplier [8], which can be identified optimally via the variational theory [11], and

Ũn is a restricted variation which means δŨn = 0. It is required first to determine the Lagrange multipliers

λ that will be identified optimally via integration by parts. The approximations Un+1, n ≥ 0, of the solution

U(t, x, y) will immediately follow upon using any selective function U0.

The initial values U(0, x, y) is usually used for the selected zeroth approximations U0. With the Lagrange

multiplies λ determined, then several approximation ui(t, x, y), i ≥ 0 can be determined. Consequently, the

solution is given as

(4.3) U(t, x, y) = lim
n→∞

Un(t, x, y)

According to the VIM, we construct a correction functional for (3.2) in t-direction as follows

(4.4) Un+1(t, x, y) = Un(t, x, y) +

∫ t

0

λ(s){(Un)s + P (x)(Ũn)xx +Q(y)(Ũn)yy − F (s, x, y, k)}ds

where n ≥ 0 and λ is a Lagrange multiplier. We now determine the Lagrange multiplier

δUn+1(t, x, y) = δUn(t, x, y) + δ

∫ t

0

λ(s)
{

(Un)s + P (x)(Ũn)xx +Q(y)(Ũn)yy − F (s, x, y, k)
}
ds

Therefore, the stationary conditions are : λ
′
(s) = 0 and 1 + λ(s)|s=t = 0.

So, the Lagrange multiplier is λ = −1. Submitting the results into (4.4) leads to the following iteration formula

(4.5) Un+1(t, x, y) = Un(t, x, y)−
∫ t

0

{(Un)s + P (x)(Ũn)xx +Q(y)(Ũn)yy − F (s, x, y, k)}ds

Iteration formula start with initial approximation, for example U0(t, x, y) = U(0, x, y). Also the VIM used for

system of linear and nonlinear partial differential equation [8] which handled in obtain the solution.

5. Solution concept

The united extension of f for α ∈ [0, 1] is Ω[α] =
(
Ω+[α],Ω−[α]

)
Ω+[α] = {y|y = f(x), x ∈ A+[α]} and Ω−[α] = {y|y = f(x), x ∈ A−[α]}

Define C̃i, a intuitionistic fuzzy subset of the real numbers, by its membership function

µC̃i(y) = sup{α|y ∈ Ω+[α]}, νC̃i(y) = 1− sup{α|y ∈ Ω−[α]}

Theorem 5.1. If f is continuous, then C̃i[α] = Ω[α] where α ∈]0, 1]

Proof. All we need to show is that C̃i[α] = Ω[α] since,

– Let y ∈ Ω[α]. Then µC̃i(y) ≥ α and νC̃i(y) ≤ 1− α so that y ∈ C̃i[α].
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– Let y ∈ C̃i[α] so that µC̃i(y) = α0 ≥ α and νC̃i(y) = 1−α0 ≤ 1−α. Choose {αn} such that 0 ≤ αn ↑ α0 and

αn < α0. We know that y ∈ Ω[αn] from the definition of supremum used to define C̃i. Choose zn ∈ Ãi[αn]

so that f(zn) = y. Since zn ∈ Ãi[0], which is compact, there is a convergent subsequence znk
→ z∗ ∈ Ãi[α0].

Hence f(znk
)→ f(z∗) = y and y ∈ Ω[α0]. Therefore, y ∈ Ω[α] because α ≤ α0.

�

Using Theorem 5.1 we may now discuss the first solution.

5.1. The first solution. They define for all t, x, y and α,

Z̃i(t, x, y)[α] =
{[
z+1 (t, x, y, α), z+2 (t, x, y, α)

]
,
[
z−1 (t, x, y, α), z−2 (t, x, y, α)

]}
and

F̃ i(t, x, y, K̃i)[α] =
{[
F+
1 (t, x, y, α), F+

2 (t, x, y, α)
]
,
[
F−1 (t, x, y, α), F−2 (t, x, y, α)

]}
Let W = K+[α]× C+[α] and P = K−[α]× C−[α]. By definition

(5.1) z+1 (t, x, y, α) = min
{
G(t, x, y, k, c) : (k, c) ∈W

}
(5.2) z+2 (t, x, y, α) = max

{
G(t, x, k, y, c) : (k, c) ∈W

}
(5.3) z−1 (t, x, y, α) = min

{
G(t, x, y, k, c) : (k, c) ∈ P

}
(5.4) z−2 (t, x, y, α) = max

{
G(t, x, k, y, c) : (k, c) ∈ P

}
∀(t, x, y) ∈

∏3
j=1 Ij and α ∈ [0, 1], and

(5.5) F+
1 (t, x, y, α) = min

{
F (t, x, y, k) : k ∈ K+[α]

}
(5.6) F+

2 (t, x, y, α) = max
{
F (t, x, y, k) : k ∈ K+[α]

}
(5.7) F−1 (t, x, y, α) = min

{
F (t, x, y, k) : k ∈ K−[α]

}
(5.8) F−2 (t, x, y, α) = max

{
F (t, x, y, k) : k ∈ K−[α]

}
∀(t, x, y) ∈

∏3
j=1 Ij and α ∈ [0, 1]

Assume that P (x) > 0, Q(y) > 0 and the z4i (t, x, y, α) i = 1, 2 and 4 ∈ {+,−}, has continuous partial

derivatives so (z+i )t + P (x)(z+i )xx + Q(y)(z+i )yy and (z−i )t + P (x)(z−i )xx + Q(y)(z−i )yy are continuous for all

(t, x, y) ∈
∏3
j=1 Ij and all α ∈ [0, 1]. Define

(5.9) Γ(t, x, y, α) =

{[
(z+1 )t + P (x)(z+1 )xx +Q(y)(z+1 )yy, (z

+
2 )t + P (x)(z+2 )xx +Q(y)(z+2 )yy

]
,[

(z−1 )t + P (x)(z−1 )xx +Q(y)(z−1 )yy, (z
−
2 )t + P (x)(z−2 )xx +Q(y)(z−2 )yy

]}
for all (t, x, y) ∈

∏3
j=1 Ij and all α.

If, for each fixed t, x, y ∈
∏3
j=1 Ij , Γ(t, x, y, α) defines the α-cut of a intuitionistic fuzzy number, then will be

said that Z̃i(t, x, y) is differentiable and is written

(5.10) Z̃it [α] + P (x)Z̃ixx[α] +Q(y)Z̃iyy[α] = Γ(t, x, y, α)
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for all (t, x, y) ∈
∏3
j=1 Ij and all α

Sufficient conditions for Γ(t, x, y, α) to define α-cut of a intuitionistic fuzzy number are [10] :

(i) (z+1 )t(t, x, y, α) + P (x)(z+1 )xx(t, x, y, α) +Q(y)(z+1 )yy(t, x, y, α) and

(z−2 )t(t, x, y, α) + P (x)(z−2 )xx(t, x, y, α) +Q(y)(z−2 )yy(t, x, y, α)

are an increasing function of α for each (t, x, y) ∈
∏3
j=1 Ij

(ii) (z+2 )t(t, x, y, α) + P (x)(z+2 )xx(t, x, y, α) +Q(y)(z+2 )yy(t, x, y, α) and

(z−1 )t(t, x, y, α) + P (x)(z−1 )xx(t, x, y, α) +Q(y)(z−1 )yy(t, x, y, α)

are an decreasing function of α for each (t, x, y) ∈
∏3
j=1 Ij and

(iii) for (t, x, y) ∈
∏3
j=1 Ij

(z+1 )t(t, x, y, 1) + P (x)(z+1 )xx(t, x, y, 1) +Q(y)(z+1 )yy(t, x, y, 1)

≤ (z+2 )t(t, x, y, 1) + P (x)(z+2 )xx(t, x, y, 1) +Q(y)(z+2 )yy(t, x, y, 1)

(iv) for (t, x, y) ∈
∏3
j=1 Ij

(z−1 )t(t, x, y, 0) + P (x)(z−1 )xx(t, x, y, 0) +Q(y)(z−1 )yy(t, x, y, 0)

≤ (z−2 )t(t, x, y, 0) + P (x)(z−2 )xx(t, x, y, 0) +Q(y)(z−2 )yy(t, x, y, 0)

Now we assume that the z4i (t, x, y, α) for4 ∈ {+,−} has continuous partial derivatives, so (z+i )t+P (x)(z+i )xx+

Q(y)(z+i )yy and (z−i )t+P (x)(z−i )xx+Q(y)(z−i )yy are continuous on
∏3
j=1 Ij× [0, 1] i = 1, 2. Hence, if conditions

(i)− (iv) above hold, Z̃i(t, x, y) is differentiable.

For Z̃i(t, x, y) to be a first solution (1-S) of the intuitionistic fuzzy heat-like equation we need

(a) Z̃i(t, x, y) differentiable

(b) (3.5) holds for Ũ i(t, x, y) = Z̃i(t, x, y),

(c) Z̃i(t, x, y) satisfies the initial and boundary conditions. Since no exist specified any particular initial and

boundary conditions, then only is checked if (3.5) hold.

Z̃i(t, x, y) is a (1-S) (without the initial and boundary conditions) if Z̃i(t, x, y) is differentiable and (Z̃i)t +

P (x)(Z̃i)xx +Q(y)(Z̃i)yy = F̃ i(t, x, y, K̃i) or the following equations must hold

(5.11) (z+1 )t + P (x)(z+1 )xx +Q(y)(z+1 )yy = F+
1 (t, x, y, α)

(5.12) (z+2 )t + P (x)(z+2 )xx +Q(y)(z+2 )yy = F+
2 (t, x, y, α)

(5.13) (z−1 )t + P (x)(z−1 )xx +Q(y)(z−1 )yy = F−1 (t, x, y, α)

(5.14) (z−2 )t + P (x)(z−2 )xx +Q(y)(z−2 )yy = F−2 (t, x, y, α)

for all (t, x, y) ∈
∏3
j=1 Ij and α ∈ [0, 1].

Now we will present a sufficient condition for the (1-S) to exist. Since there are such a variety of possible initial

and boundary conditions, so we will omit them from the following theorem. One must separately check out the

initial and boundary conditions. So, we will omit the constants ci, 1 ≤ i ≤ m, from the problem. Therefore, (3.4)

becomes U(t, x, y) = G(t, x, y, k, ), so Z̃i(t, x, y) = G̃i(t, x, y, K̃i).

Theorem 5.2. Assume Z̃i(t, x, y) is differentiable.

(a) If

(5.15) P (x) > 0 and Q(y) > 0 (x, y) ∈ I2 × I3
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and if

(5.16)
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, ..., n

Then Z̃i(t, x, y) is (1-S)

(b) If relations (5.15) does not hold or relation (5.16) does not hold for some j, then Z̃i(t, x, y) is not a (1-S).

Proof. (a) For simplicity assume kj = k and ∂G
∂k < 0, ∂F

∂k < 0. The proof for ∂G
∂k > 0, ∂F

∂k > 0, is similar and

omitted.

Since ∂G
∂k < 0 then from (5.1) and (5.2) we have

z+1 (t, x, y, α) = G
(
t, x, y, k+2 (α)

)
, z+2 (t, x, y, α) = G

(
t, x, y, k+1 (α)

)
z−1 (t, x, y, α) = G

(
t, x, y, k−2 (α)

)
, z−2 (t, x, y, α) = G

(
t, x, y, k−1 (α)

)
from (5.5), (5.6) and ∂F

∂k < 0 we have

F+
1 (t, x, y, α) = F

(
t, x, y, k+2 (α)

)
, F+

2 (t, x, y, α) = F
(
t, x, y, k+1 (α)

)
F−1 (t, x, y, α) = F

(
t, x, y, k−2 (α)

)
, F−2 (t, x, y, α) = F

(
t, x, y, k−1 (α)

)
for all α ∈ [0, 1] where K̃i[α] =

([
k+1 (α), k+2 (α)

]
,
[
k−1 (α), k−2 (α)

])
.

Now G(t, x, y, k) solves (3.2), which means

(5.17) Gt + P (x)Gxx +Q(y)Gyy = F (t, x, y, k)

for all (t, x, y) ∈
∏3
j=1 Ij , k ∈ J.

Suppose Z(t, x, y) is differentiable and P (x) > 0 and Q(y) > 0 so

∂tz
+
1 (t, x, y, α) + P (x)∂xxz

+
1 (t, x, y, α) +Q(y)∂yyz

+
1 (t, x, y, α) = F+

1 (t, x, y, α)

∂tz
+
2 (t, x, y, α) + P (x)∂xxz

+
2 (t, x, y, α) +Q(y)∂yyz

+
2 (t, x, y, α) = F+

2 (t, x, y, α)

∂tz
−
1 (t, x, y, α) + P (x)∂xxz

−
1 (t, x, y, α) +Q(y)∂yyz

−
1 (t, x, y, α) = F−1 (t, x, y, α)

∂tz
−
2 (t, x, y, α) + P (x)∂xxz

−
2 (t, x, y, α) +Q(y)∂yyz

−
2 (t, x, y, α) = F−2 (t, x, y, α)

for all (t, x, y) ∈
∏3
j=1 Ij and α ∈ [0, 1]

Hence, (5.11), (5.12), (5.13), (5.14) hold and Z̃i(t, x, y) is a (1-S).

(b) Now consider the situation where (5.15) or (5.16) does not hold.

Let us only look at one case where ∂F
∂k < 0

(
assume ∂G

∂k > 0, P (x) > 0 and Q(y) > 0
)

. Then we have

z+1 (t, x, y, α) = G
(
t, x, y, k+1 (α)

)
z+2 (t, x, y, α) = G

(
t, x, y, k+2 (α)

)
z−1 (t, x, y, α) = G

(
t, x, y, k−1 (α)

)
z−2 (t, x, y, α) = G

(
t, x, y, k−2 (α)

)
F+
1 (t, x, y, α) = F

(
t, x, y, k+2 (α)

)
F+
2 (t, x, y, α) = F

(
t, x, y, k+1 (α)

)
F−1 (t, x, y, α) = F

(
t, x, y, k−2 (α)

)
F−2 (t, x, y, α) = F

(
t, x, y, k−1 (α)

)
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then we have

∂tz
+
1 (t, x, y, α) + P (x)∂xxz

+
1 (t, x, y, α) +Q(y)∂yyz

+
1 (t, x, y, α) = F+

1 (t, x, y, α)

∂tz
+
2 (t, x, y, α) + P (x)∂xxz

+
2 (t, x, α) +Q(y)∂yyz

+
2 (t, x, y, α) = F+

2 (t, x, y, α)

∂tz
−
1 (t, x, y, α) + P (x)∂xxz

−
1 (t, x, y, α) +Q(y)∂yyz

−
1 (t, x, y, α) = F−1 (t, x, y, α)

∂tz
−
2 (t, x, y, α) + P (x)∂xxz

−
2 (t, x, α) +Q(y)∂yyz

−
2 (t, x, y, α) = F−2 (t, x, y, α)

which are not true. because

Gt

(
t, x, y, k+1 (α)

)
+ P (x)Gxx

(
t, x, y, k+1 (α)

)
+Q(y)Gyy

(
t, x, y, k+1 (α)

)
= F

(
t, x, y, k+2 (α)

)
Gt

(
t, x, y, k+2 (α)

)
+ P (x)Gxx

(
t, x, y, k+2 (α)

)
+Q(y)Gyy

(
t, x, k+2 (α)

)
= F

(
t, x, y, k+1 (α)

)
Gt

(
t, x, y, k−1 (α)

)
+ P (x)Gxx

(
t, x, y, k−1 (α)

)
+Q(y)Gyy

(
t, x, y, k−1 (α)

)
= F

(
t, x, y, k−2 (α)

)
Gt

(
t, x, y, k−2 (α)

)
+ P (x)Gxx

(
t, x, y, k−2 (α)

)
+Q(y)Gyy

(
t, x, k−2 (α)

)
= F

(
t, x, y, k−1 (α)

)
�

Therefore, if Z̃i(t, x, y) is a (1-S) and it satisfies the initial and boundary conditions we will say that Z̃i(t, x, y)

is a (1-S) satisfying the initial and boundary conditions. If Z̃i(t, x, y) is not a (1-S), then we will consider the

second solution (2-S).

5.2. The second solution. Now let us define the second solution (2-S). Let

Ũ i(t, x, y)[α] =
{[
u+1 (t, x, y, α), u+2 (t, x, y, α)

]
,
[
u−1 (t, x, y, α), u−2 (t, x, y, α)

]}
For example suppose P (x) < 0 and Q(y) > 0, so consider the system of heat-like equations

(5.18) (u+1 )t + P (x)(u+2 )xx +Q(y)(u+1 )yy = F+
1 (t, x, y, α)

(5.19) (u+2 )t + P (x)(u+1 )xx +Q(y)(u+2 )yy = F+
2 (t, x, y, α)

(5.20) (u−1 )t + P (x)(u−2 )xx +Q(y)(u−1 )yy = F−1 (t, x, y, α)

(5.21) (u−2 )t + P (x)(u−1 )xx +Q(y)(u−2 )yy = F−2 (t, x, y, α)

or if P (x) > 0, Q(y) > 0, ∂F
∂k > 0, ∂G

∂k < 0,

(5.22) (u+1 )t + P (x)(u+1 )xx +Q(y)(u+1 )yy = F+
1 (t, x, y, α)

(5.23) (u+2 )t + P (x)(u+2 )xx +Q(y)(u+2 )yy = F+
2 (t, x, y, α))

(5.24) (u−1 )t + P (x)(u−1 )xx +Q(y)(u−1 )yy = F−1 (t, x, y, α)

(5.25) (u−2 )t + P (x)(u−2 )xx +Q(y)(u−2 )yy = F−2 (t, x, y, α))

for all (t, x, y) ∈
∏3
j=1 Ij and α ∈ [0, 1]. We append to (5.20) and (5.21) any initial and boundary conditions.

For example, if it was Ũ i(0, x, y) = C̃i then we add

(5.26) u+1 (0, x, y, α) = c+1 (α) u−1 (0, x, y, α) = c−1 (α)

(5.27) u+2 (0, x, y, α) = c+2 (α) u−2 (0, x, y, α) = c−2 (α)
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where C̃i[α] =
{[
c+1 (α), c+2 (α)

]
,
[
c−1 (α), c−2 (α)

]}
.

Let u4i (t, x, y, α) for i = 1, 2 and 4 ∈ {+,−} solve (5.20) and (5.21) plus initial and boundary conditions.

If

(5.28)
[
u+1 (t, x, y, α), u+2 (t, x, y, α)

]
and

[
u−1 (t, x, y, α), u−2 (t, x, y, α)

]
defines the α-cut of a intuitionistic fuzzy number, for all (t, x, y) ∈

∏3
j=1 Ij , then Ũ i(t, x, y) is the (2-S).

We will say that derivative condition holds for intuitionistic fuzzy heat-like equation when Eqs.(5.15) and (5.16)

are true.

Theorem 5.3. (1) If (1-S)=Z̃i(t, x, y), then (2-S)=Z̃i(t, x, y)

(2) If (2-S)=Z̃i(t, x, y) and the derivative condition holds, then (1-S)=Ũ i(t, x, y)

Proof. (1) Follows from the definition of (1-S) and (2-S).

(2) If (2-S)=Ũ i(t, x, y) then the derivative exists and since the derivative condition holds, therefore, Eqs.

following holds

(u+1 )t + P (x)(u+1 )xx +Q(y)(u+1 )yy = F+
1 (t, x, y, α)

(u+2 )t + P (x)(u+2 )xx +Q(y)(u+2 )yy = F+
2 (t, x, y, α)(5.29)

(u−1 )t + P (x)(u−1 )xx +Q(y)(u−1 )yy = F−1 (t, x, y, α)

(u−2 )t + P (x)(u−2 )xx +Q(y)(u−2 )yy = F−2 (t, x, y, α)(5.30)

Also suppose one kj = k, ∂G
∂k < 0 and ∂F

∂k < 0 (the other cases are similar and are omitted). We see

z+1 (t, x, y, α) = G
(
t, x, y, k+2 (α)

)
z+2 (t, x, y, α) = G

(
t, x, y, k+1 (α)

)
z−1 (t, x, y, α) = G

(
t, x, y, k−2 (α)

)
z−2 (t, x, y, α) = G

(
t, x, y, k−1 (α)

)
F+
1 (t, x, y, α) = F

(
t, x, y, k+2 (α)

)
, F+

2 (t, x, y, α) = F
(
t, x, y, k+1 (α)

)
F−1 (t, x, y, α) = F

(
t, x, y, k−2 (α)

)
, F−2 (t, x, y, α) = F

(
t, x, y, k−1 (α)

)
Now look at Eqs. (5.11), (5.12), (5.13), (5.14) also Eqs. (5.1), (5.2), implies that

u+1 (t, x, y, α) = G
(

(t, x, y, k+2 (α)
)

= z+1 (t, x, y, α)

u+2 (t, x, y, α) = G
(
t, x, y, k+1 (α)

)
= z+2 (t, x, y, α)

u−1 (t, x, y, α) = G
(

(t, x, y, k−2 (α)
)

= z−1 (t, x, y, α)

u−2 (t, x, y, α) = G
(
t, x, y, k−1 (α)

)
= z−2 (t, x, y, α)

Therefore (1-S)=Ũ i(t, x, y)

�

Lemma 5.4. Consider (3.1) suppose Z̃i(t, x) is differentiable.

(a) If

(5.31) P (x) > 0 x ∈ I2

and if

(5.32)
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, ..., n
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Then (1-S)=Z̃i(t, x)

(b) If relations (5.31) does not hold or relation (5.32) does not hold for some j, then Z̃i(t, x) is not a (1-S).

Proof. It is similar to theorem 5.2 �

6. Examples

We consider the following examples ([5]) and we added intuitionistic fuzzy parameters to these reference.

Example 6.1. We first consider the one-dimensional heat-like equation with variable coefficients as

(6.1) Ut +
1

2
x2Uxx = k

with the initial condition

U(0, x) = cx2

where t ∈ (0,M1], x ∈ (0,M2], k ∈ [0, J ] is constant.

According to the VIM, a correct functional for (6.1) from (4.5) can be constructed as follows

Un+1(t, x) = Un(t, x)−
∫ t

0

{(Un)s(s, x) +
1

2
x2(Ũn)xx(s, x)− F (s, x, k)}ds

Beginning with an initial approximation U0(t, x) = U(0, x) = cx2, we can obtain the following successive

approximations U1(t, x) = cx2(1− t) + kt

U2(t, x) = cx2(1− t+ t2

2! ) + kt

U3(t, x) = cx2(1− t+ t2

2! −
t3

3! ) + kt

and Un(t, x) = cx2(1− t+ t2

2! −
t3

3! + ....+ (−1)n t
n

n! ) + kt, n ≥ 1

The VIM admits the use of U(t, x) = limn→∞ Un(t, x), which gives the exact solution

U(t, x) = cx2 exp(−t) + kt

and extension for intuitionistic fuzzy sets of F (t, x, k) and

G(t, x, k, c) = cx2 exp(−t) + kt. Clearly F̃ i(t, x, K̃i) = K̃i so that

F+
1 (t, x, α) = k+1 (α), F+

2 (t, x, α) = k+2 (α)

F−1 (t, x, α) = k−1 (α), F−2 (t, x, α) = k−2 (α)

Also G̃i(t, x, K̃i, C̃i) = C̃ix2 exp(−t) + K̃it, therefore for i = 1, 2

z+i (t, x, α) = c+i (α)x2 exp(−t) + k+i (α)t

z−i (t, x, α) = c−i (α)x2 exp(−t) + k−i (α)t

K̃i[α] =
([
k+1 (α), k+2 (α)

]
,
[
k−1 (α), k−2 (α)

])
and C̃i[α] =

([
c+1 (α), c+2 (α)

]
,
[
c+1 (α), c+2 (α)

])
.

Z̃i(t, x) is differentiable because

(z+i (t, x, α))t +
1

2
x2(z+i (t, x, α))xx = k+i (α)

(z−i (t, x, α))t +
1

2
x2(z−i (t, x, α))xx = k−i (α)

for i=1,2 are α-cuts of K̃i i.e α-cuts of a intuitionistic fuzzy number. Due to

P (x) > 0,
∂G

∂k
> 0,

∂F

∂k
> 0

That is, (Z̃i)t + 1
2x

2(Z̃i)xx = K̃i, a intuitionistic fuzzy number.
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So Lemma 5.4 implies the result that Z̃i(t, x) is a (1-S). We easily see that

z+i (0, x, α) = c+i (α)x2 and z−i (0, x, α) = c−i (α)x2

for i=1,2 , so Z̃i(t, x) also satisfies the initial condition. The (1-S) that satisfies the initial condition may be

written as

Z̃i(t, x) = C̃ix2 exp(−t) + K̃it for all (t, x) ∈ (0,M1]× (0,M2]

Example 6.2. We consider the one-dimensional heat-like model

Ut(t, x) − Uxx(t, x) = −K cos(x)(6.2)

U(0, x) = C sin(x)

which x ∈ (0, π2 ), t ∈ [0,M ] and the value of parameters K and C are in intervals [0, J ] and [0, L], respectively.

According to the V IM , a correct functional for Eq. (6.2) from Eq. (4.4) which gives the exact solution

U(t, x) = G(t, x,K,C) = C exp(−t) sin(x) +K cos(x)
(
exp(−t)− 1

)
which is the exact solution. There is no (1-S) because p(x) = −1 < 0 (Lemme5.4).

We proceed to look for a (2-S). We must solve

(u+1 )t − (u+2 )xx = −k+2 (α) cos(x) (u+2 )t − (u+1 )xx = −k+1 (α) cos(x)

(u−1 )t − (u−2 )xx = −k−2 (α) cos(x) (u−2 )t − (u−1 )xx = −k−1 (α) cos(x)

subject to

u+1 (0, x, α) = c+1 (α) sin(x), u+2 (0, x, α) = c+2 (α) sin(x)

u−1 (0, x, α) = c−1 (α) sin(x), u−2 (0, x, α) = c−2 (α) sin(x)

If the intervals
([
u+1 (t, x, α), u+2 (t, x, α)

]
,
[
u−1 (t, x, α), u−2 (t, x, α)

])
define α-cuts of a intuitionistic fuzzy number

Ũ i(t, x) ; then (2-S) =Ũ i(t, x). By VIM, the solution is

u+1 (t, x, α) = c+1 (α) cosh(t) sin(x)− c+2 (α) sinh(t) sin(x)+

k+1 (α) cos(x)
(
cosh(t)− 1

)
− k+2 (α) cos(x) sinh(t)

u+2 (t, x, α) = c+2 (α) cosh(t) sin(x)− c+1 (α) sinh(t) sin(x)+

k+2 (α) cos(x)
(
cosh(t)− 1

)
− k+1 (α) cos(x) sinh(t)

u−1 (t, x, α) = c−1 (α) cosh(t) sin(x)− c−2 (α) sinh(t) sin(x)+

k−1 (α) cos(x)
(
cosh(t)− 1

)
− k−2 (α) cos(x) sinh(t)

u−2 (t, x, α) = c−2 (α) cosh(t) sin(x)− c−1 (α) sinh(t) sin(x)+

k−2 (α) cos(x)
(
cosh(t)− 1

)
− k−1 (α) cos(x) sinh(t)

Now we show ([
u+1 (t, x, α), u+2 (t, x, α)

]
,
[
u−1 (t, x, α), u−2 (t, x, α)

])
defines α-cut of a intuitionistic fuzzy number.

Thus we only need to check if
∂u+

1

∂α > 0,
∂u+

2

∂α < 0 and
∂u−1
∂α < 0,

∂u−2
∂α > 0.
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Since u4i (t, x, α) for 4 = {+,−} are continuous and

u+1 (t, x, 1) = u+2 (t, x, 1) and u−1 (t, x, 0) = u−2 (t, x, 0).

There is a region R contained in (0,M ]× (0, π2 ) for which the (2-S) exists and (0,M ]× (0, π2 )−R there may be

no (2-S).

Since K̃i and C̃i are triangular intuitionistic fuzzy numbers, hence, we pick simple intuitionistic fuzzy parameter

so that (k+1 (α))
′
, (c+1 (α))

′
, (k−2 (α))

′
and (c−2 (α))

′
are all positive numbers while (k+2 (α))

′
, (c+2 (α))

′
, (k−1 (α))

′

and (c−1 (α))
′

are negative numbers. The ”prime” denotes differentiation with respect to α. Then there is a λ > 0

so that (k+1 (α))
′

= (c+1 (α))
′

= (k−2 (α))
′

= (c−2 (α))
′

= λ and (k+2 (α))
′

= (c+2 (α))
′

= (k−1 (α))
′

= (c−1 (α))
′

= −λ.

Then, for the (2-S) exist we need

∂u+1
∂α

=
∂u−2
∂α

= λ
(

sin(x)
(
cosh(t) + sinh(t)

)
+ cos(x)

(
cosh(t)− 1 + sinh(t)

))
> 0

∂u+2
∂α

=
∂u−1
∂α

= −λ
(

sin(x)
(
cosh(t) + sinh(t)

)
+ cos(x)

(
cosh(t)− 1 + sinh(t)

))
< 0(6.3)

Since (6.3) holds for each t ∈ [0,M ] and x ∈ (0, π2 ) therefore, Ũ i(t, x) is (2-S) and

Ũ i(t, x) = C̃i cosh(t) sin(x)− C̃i sinh(t) sin(x) + K̃i cos(x)(cosh(t)− 1)− K̃i sinh(t) cos(x)

for all t ∈ [0,M ] and x ∈ (0, π2 ).
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