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Abstract: In this work, the synthesis of novel 1,3,4-oxadiazole derivatives was reported. A good
molecular properties profile was predicted for the target compounds. In drug-likeness prediction,
compound  4b and  8b possess  the  highest  score  of  0.31  and  0.33,  respectively.  Since  the
compounds have good bioactivity scores as a kinase inhibitor, possible interactions of compounds
with VEGFR-2 kinase and probable binding conformations were evaluated by molecular docking.
All compounds formed hydrogen bonding interactions with Asp1046 amino acid of key residues.  
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INTRODUCTION

The 1,3,4-oxadiazole ring is often used in drug
design research due to its effect on the ADME
properties  of  the  compounds.  It  has  a  better
metabolic and solubility profile. Oxadiazole ring
can interact with ligand  via its hydrogen bond
acceptor properties. It has been used instead of
ester  and  amide  functional  groups  for
bioisosteric replacements. Moreover, to provide
an appropriate orientation of the molecule, an
oxadiazole ring can be used as a flat aromatic
linker (1-2). To date, several compounds based
on oxadiazole moiety have been reported with
different  pharmacological  activities  such  as
antibacterial,  antifungal,  antiviral,
antitubercular  (3),  anticancer  (4)  as  well  as
other  biological  activities.  1,3,4-Oxadiazole-
based  compounds  such  as  Zibotentan
(ZD4054) and  Ataluren (Figure 1) are in the
late-stage clinical trial  for prostate cancer and
cystic  fibrosis,  respectively  (5-6).  Moreover,

several oxadiazole derivatives were reported to
have  potential  anticancer  activity  through  a
different mechanism (7-9). Compound I (Figure
1)  exhibited  significant  inhibition  on  tubulin
polymerization  and  caused  mitotic  arrest  in
A431 human epidermoid cells (10). Compound
II  (Figure 1) displayed the inhibitory effect on
the proliferation of  SMMC-7721 cell  line (11).
1,3,4-Oxadiazole  based compound III  (Figure
1) combined with alanine amino acid was found
as a selective inhibitor of histone deacetylase-8
(HDAC-8) and showed inhibition on proliferation
of breast cancer cell lines (12). Another 1,3,4-
oxadiazole  based  compound  IV (Figure  1)
inhibited  NF-κB  signaling  pathway.  It  also
induced antiproliferative effect and apoptosis in
hepatocellular  carcinoma  (13).  Compound  V
(Figure 1)  exhibited potent  anticancer  activity
towards  MCF-7  cells  and  significant  EGFR
tyrosine inhibition (14). Compound  VI (Figure
1)  showed  strong  inhibitory  activity  against
focal  adhesion  kinase  (FAK)  and  unusual
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antiproliferative  activity  related  to  the  5-
Fluorouracil (15). Oxadiazole derivative bearing
((pyridin-4-yl)ethyl)pyridine  moiety  (VII)  was
reported as a selective and competitive inhibitor
of  VEGFR-2  with  IC50 value  of  31  nM  (16).
Oxadiazole  derivative  combined  with
pyrrolotriazine scaffold (VIII) exhibited potent
enzymatic (IC50 = 11 nM) and VEGF-stimulated
HUVEC  cellular  inhibitory  activity  against
VEGFR-2  (IC50 =  11  nM)  (17).  Another
oxadiazole  based  compound IX demonstrated
nanomolar  inhibitory potency toward VEGFR-2
in both enzymatic and cellular phosphorylation
assays. It also showed strong activity in tubulin
cellular  G2M  block  assay  in  the  nanomolar
range (18). 

Based on the above-mentioned findings, in this
work,  novel  1,3,4-oxadiazole  derivatives
bearing benzo[b]thiophen (4a-c) and thiophene
(8a-c)  scaffolds  were  designed  and
synthesized.  All  the  synthesized  compounds
have  been  subjected  to  the  prediction  of
molecular  properties,  bioactivity,  and  drug-
likeness  scores. Bioactivity  score  prediction
results  suggest  that  synthesized  compounds
can be active  (4a-c;  >0)  or  moderate  active
(8a-c;  -0.5-0)  against  kinases.  It  is  reported
that oxadiazole derivatives have strong inhibitor
activity on kinases such as EGFR (19-21), FAK
(15, 22)  and VEGFR-2 (16-18,23,24) proteins.
So,  to  make  target  prediction  for  designed
compounds,  molecular  docking  studies  of
compounds in EGFR, FAK, and VEGFR-2 kinases
were  performed  using  Autodock  Vina,  and
results were discussed. 

MATERIALS AND METHODS

Synthesis of methyl esters (1 and 5) 
Carboxylic acids (1 eq) and a catalytic amount
of  concd.  H2SO4 (0.1  mL)  were  refluxed  in
MeOH (5 mL) overnight. Then, the solvent was
evaporated and satd. NaHCO3 (aq) was added.
The white precipitate was filtered, then washed
with water, and dry to obtain the methyl esters
1 and 5 (25). 

Synthesis  of carbohydrazide  derivatives
(2-6) 
Methyl esters (1 and 5, 1 eq) were dissolved in
methanol (15 mL), hydrazine hydrate (10 eq)
was  added and heated  at  reflux  for  3  hours,

cooled  and  the  precipitate  filtered  to  afford
hydrazide derivatives 2 and 6 (26).

Synthesis of 2-(benzo[b]thiophen-2-yl)-5-
(chloromethyl)-1,3,4-oxadiazole (3) and 2-
(chloromethyl)-5-(thiophen-2-yl)-1,3,4-
oxadiazole (7)
A mixture of chloroacetic acid (1.2 eq) and an
appropriate acid hydrazide (1 eq, 2 or 6) in 7-8
mL of POCl3 was refluxed for 5-6 h. Then, to the
mixture, ice was added, and 2 M NaOH solution
was added until pH=6-7. The white precipitate
was filtered and washed with water. Purification
was  performed  by  column  chromatography
using n-hexane:EtOAc (7:1) mixture  to afford
pure compounds 3 and 7 in moderate yields. 

2-(Benzo[b]thiophen-2-yl)-5-
(chloromethyl)-1,3,4-oxadiazole (3)
CAS  number:1250681-18-5.  Mp:  175  °C.
Proton NMR (DMSO-d6)  δ:  5.15 (s,  2H,  CH2),
7.46-7.54  (m,  2H),  8.03  (d,  1H,  J=6.8  Hz),
8.11 (d, 1H, J=8.4 Hz), 8.25 (s, 1H). Carbon
NMR (DMSO-d6,  100  MHz)  δ:  33.08,  122.89,
123.43,  125.42,  125.46,  127.09,  127.81,
138.72, 140.07, 161.31, 162.85. Mass (ESI) m/
z: 251.78 [M+H]. 

2-(Chloromethyl)-5-(thiophen-2-yl)-1,3,4-
oxadiazole (7)
Mp: 91 °C. Proton NMR (DMSO-d6)  δ: 5.09 (s,
2H, CH2), 7.29 (dd, 1H, J= 6.8 Hz, 4 Hz), 7.85
(dd, 1H, J=4 Hz, 1.2 Hz), 7.97 (dd, 1H, J=4 Hz,
1.2 Hz). Carbon NMR (DMSO-d6, 100 MHz)  δ:
33.13,  123.65,  128.90,  130.85,  132.20,
161.27, 162.26. (27).

Synthesis of 2-(benzo[b]thiophen-2-yl)-5-
((4-substituted-piperazin-1-yl)  methyl)-
1,3,4-oxadiazole  (4a-c)  and  2-((4-
substituted-piperazin-1-yl)methyl)-5-
(thiophen-2-yl)-1,3,4-oxadiazole
derivatives (8a-c) 
The intermediates  3  or 7 (1  eq),  appropriate
piperazine (2 eq), potassium carbonate (2 eq)
and potassium iodide (1 eq) were refluxed in
acetone (30 mL) for 5-6 h. Then, acetone was
evaporated to dryness, and water was added.
Ethyl  acetate  extraction  was  done,  and
purification was performed by silica gel column
chromatography  with  dichloromethane:
methanol or n-hexane: ethyl acetate to give the
compounds 4a-c and 8a-c in 40–60% yields. 
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Figure 1. 1,3,4-Oxadiazole compounds having anticancer activity.

2-(Benzo[b]thiophen-2-yl)-5-((4-
methylpiperazin-1-yl)methyl)-1,3,4-
oxadiazole (4a)
Yield: 45%. Mp: 128 °C. Proton NMR (DMSO-
d6)  δ: 2.19 (s, 3H, CH3),  2.30 (bs, 4H, H-a),
2.51 (bs,  4H,  H-b),  3.86  (s,  2H,  CH2),  7.44-
7.52 (m, 2H, H-5,6), 8.01 (dd, 1H, J=6.8 Hz,
1.6 Hz, H-4), 8.08 (d, 1H, J=7.6 Hz, H-7), 8.19
(s, 1H, H-3). Carbon NMR (DMSO-d6, 100 MHz)
δ: 45.57 (CH3), 50.97 (CH2), 51.97 (piperazine-
b),  54.40  (piperazine-a),  122.83,  124.04,
125.26,  125.37,  126.86,  127.18,  138.78,
139.89,  160.76,  163.78.  Mass  (ESI)  m/z:
315.55 [M+H]. 

2-(Benzo[b]thiophen-2-yl)-5-((4-(3-
methoxyphenyl)piperazin-1-yl)methyl)-
1,3,4-oxadiazole (4b)
Yield: 76%. Mp: 165  °C. Proton NMR (DMSO-
d6) δ: 2.68 (t, 4H, H-b), 3.15 (t, 4H, H-a), 3.69
(s, 3H, OCH3), 3.97 (s, 2H, CH2), 6.36 (dd, 1H,
J=8.4 Hz, 2.4 Hz, H-4’), 6.44 (t, 1H, H-2’), 6.51
(dd, 1H, J=8.4 Hz, 2 Hz, H-6’), 7.09 (t, 1H, H-
5’),  7.47-7.54  (m,  2H,  H-5,6),  8.03  (dd,  1H,
J=6.8 Hz, 2 Hz, H-4), 8.11 (d, 1H, J=7.6 Hz, H-
7), 8.22 (s, 1H, H-3). Carbon NMR (DMSO-d6,
100  MHz)  δ:  48.09  (piperazine-a),  51.02
(OCH3),  52.05  (piperazine-b),  54.83  (CH2),
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101.61,  104.21,  108.12,  122.90,  124.11,
125.33,  125.44,  126.94,  127.28,  129.57,
138.83,  139.97,  152.24,  160.15,  160.88,
163.73. Mass (ESI) m/z: 408.10 [M+H+1].

2-(Benzo[b]thiophen-2-yl)-5-((4-(2-
fluorophenyl)piperazin-1-yl)methyl)-
1,3,4-oxadiazole (4c)
Yield: 40%. Mp: 175  °C. Proton NMR (DMSO-
d6) δ: 2.72 (t, 4H, H-b), 3.04 (t, 4H, H-a), 3.99
(s,  2H,  CH2),  6.92-7.13  (m,  4H,  aromatic
protons), 7.47-7.55 (m, 2H, H-5,6), 8.03 (dd,
1H, J=6.8 Hz, 1.6 Hz, H-4), 8.11 (d, 1H, J=8
Hz,  H-7),  8.23  (s,  1H,  H-3).  Carbon  NMR
(DMSO-d6,  100 MHz)  δ:  49.96  (piperazine-a),
51.02  (CH2),  52.11  (piperazine-b),  115.88,
119.26,  122.36,  122.90,  124.12,  124.78,
125.39,  126.94,  127.29,  138.84,  139.68,
139.97, 153.70, 156.13, 160.88, 163.73. Mass
(ESI) m/z: 396.0 [M+H+1]. 

2-((4-Methylpiperazin-1-yl)methyl)-5-
(thiophen-2-yl)-1,3,4-oxadiazole (8a)
Yield: 81%. Mp: 75 °C. Proton NMR (DMSO-d6)
δ: 2.13 (s, 3H, CH3), 2.32 (bs, 4H, H-a), 2.49
(t, 4H, H-b), 3.83 (s, 2H, CH2), 7.28 (dd, 1H,
J=4.8 Hz, 3.2 Hz), 7.82 (dd, 1H, J=4 Hz, 1.2
Hz),  7.94  (dd,  1H,  J=4  Hz,  1.2  Hz).  Carbon
NMR  (DMSO-d6,  100  MHz)  δ:  45.80  (CH3),
50.25  (CH2),  52.02  (piperazine-b),  54.20
(piperazine-a), 124.0, 128.25, 130.25, 131.85,
160.50,  163.10.  Mass  (ESI)  m/z:  265.46
[M+H]. 

2-((4-(3-Methoxyphenyl)piperazin-1-
yl)methyl)-5-(thiophen-2-yl)-1,3,4-
oxadiazole (8b)
Yield: 30%. Mp: 100  °C. Proton NMR (DMSO-
d6) δ: 2.65 (t, 4H, H-b), 3.14 (t, 4H, H-a), 3.69
(s, 3H, CH3), 3.92 (s, 2H, CH2), 6.35 (dd, 1H,
J=8 Hz, 2 Hz, H-4’),  6.43 (t,  1H, H-2’),  6.50
(dd, 1H, J=8 Hz, 2 Hz, H-6’), 7.08 (t, 1H, H-5’),
7.29 (dd, 1H, J=4.4 Hz, 4 Hz), 7.83 (dd, 1H,
J=3.6 Hz, 1.2 Hz), 7.94 (dd, 1H, J=4.8 Hz, 1.2
Hz). Carbon NMR (DMSO-d6, 100 MHz) δ: 48.08
(piperazine-a),  50.96  (OCH3),  52.05
(piperazine-b),  54.83  (CH2),  101.61,  104.22,
108.13,  124.25,  128.75,  129.57,  130.32,
131.56, 152.25, 160.15, 160.76, 163.01. Mass
(ESI) m/z: 357.63 [M+H]. 

2-((4-(2-Fluorophenyl)piperazin-1-
yl)methyl)-5-(thiophen-2-yl)-1,3,4-
oxadiazole(8c)
Yield: 45%. Mp: 127  °C. Proton NMR (DMSO-
d6) δ: 2.67 (t, 4H, H-b), 3.00 (t, 4H, H-a), 3.91

(s, 2H, CH2), 6.91-7.11 (m, 4H), 7.27 (dd, 1H,
J=4.8 Hz, 4 Hz), 7.81 (dd, 1H, J=4 Hz, 1.2 Hz),
7.93  (dd,  1H,  J=4  Hz,  1.2  Hz).  Carbon  NMR
(DMSO-d6,  100 MHz)  δ:  49.86 (piperazine-a),
50.88  (CH2),  52.04  (piperazine-b),  115.80,
119.18,  122.28,  124.18,  124.70,  128.66,
130.24,  131.47,  139.61,  153.63,  156.05,
160.67,  162.92.  Mass  (ESI)  m/z:  345.57
[M+H]. 

Molecular properties prediction
Molecular  properties  of  the  synthesized
compounds  and  bioactivity  scores  were
predicted by the Mol inspiration online tool (28).
Druglikeness  scores  were  calculated  by  the
molsoft program (29).

Molecular Docking
The  X-ray  crystallographic  structures  of  the
target proteins EGFR (PDB ID: 1xkk), FAK (PDB
ID: 2etm), and VEGFR-2 (PDB ID: 3VHE) were
retrieved  from  the  Protein  Database  (PDB,
http://www.rcsb.org).  The  chemical  structures
of the compounds were constructed, then they
were energetically minimized. Native ligand and
waters were extracted from the protein, and the
polar hydrogen was added to the proteins. The
grid  boxes  of  EGFR  and  FAK,  VEGFR-2  were
created with spacing 48x40x48 and 30x30x30,
respectively. The docking study was performed
using  AutoDock  vina  1.1.2  (30).  The  binding
energy of the compounds and interactions with
protein were evaluated.

RESULT AND DISCUSSION

Chemistry
Synthesis of the target compounds (4a-c,  8a-
c) derivatives is depicted in Scheme 1. Firstly,
the methyl esters (1 and  5) were prepared by
esterification  of  appropriate  carboxylic  acid in
the  presence  of  H2SO4 in  methanol  (31).
Hydrazide derivatives (2 and  6) were obtained
by  the  reaction  of  esters  (1 and  5)  with
hydrazine hydrate in methanol (32). Hydrazides
were  refluxed  with  chloroacetic  acid  in
phosphorous  oxychloride  to  afford  2-
(benzo[b]thiophen-2-yl)-5-(chloromethyl)-
1,3,4-oxadiazole  (3)  and  2-(chloromethyl)-5-
(thiophen-2-yl)-1,3,4-oxadiazole  (7).  Final
products  (4a-c,  8a-c)  were  prepared  by  the
alkylation reactions of compound 3 and  7 with
appropriate  piperazine  derivatives  in  the
presence of K2CO3 and KI (33).
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Scheme 1. A synthesis method of compounds 4a-c and 8a-c. Reaction conditions: (a) methanol,
concd. H2SO4 (0.1 mL) (b) hydrazine hydrate, methanol, reflux (c) chloroacetic acid, phosphoryl

chloride, reflux (d) K2CO3, KI, appropriate piperazine derivatives, acetone, reflux.

1H  NMR,  13C  NMR,  and  MS  analysis  were
performed to  characterize  the  compounds.  1H
NMR  spectra  of  the  compounds  containing
phenylpiperazine  derivatives  (4b-c,  8b-c)
showed a triplet at δ 2.65-2.72 and 3.0-3.15
ppm  indicating  the  presence  of  piperazine
protons–b  and  –a,  respectively.  In  the
compounds bearing  N-methylpiperazine moiety
(4a and  8a), piperazine protons-a showed the
peak in the upfield region (2.30-2.32 ppm) due
to  the  shielding  effect  of  the  methyl  group.
Chemical  shift  between  δ 3.83  to  3.99  ppm
showed by all compounds represent the protons
of CH2. Compound 4a-c exhibited multiplet at δ
7.44-7.55 and singlet peak at δ 8.19-8.23 ppm
due  to  H-5,6  and  H-3  protons of
benzo[b]thiophene ring, respectively. Chemical
shift  between  δ 8.01-8.03  ppm  showed  by

compounds  4a-c  represents  the  H-4  proton.
The  peak  belonging  H-7  proton  of
benzo[b]thiophene  ring  was  observed  in  the
downfield  region  (8.08-8.11  ppm) due  to
nearby  sulfur  atom  of  thiophene  ring.
Compound 8a-c showed three double doublets
peak  between  δ 7.27-7.94  ppm  due  to  the
presence of the thiophene ring. 13C NMR spectra
of  the  target  compounds  (4b-b,  8b-c)
displayed peaks at δ 48.08-54.40, and δ 51.97-
52.11  ppm  representing  piperazine  carbon–a
and –b. The peaks between δ 50.88-54.83 ppm
indicate  the  presence  of  CH2  carbons.
Compound 4a and  8a with  N-methylpiperazine
moiety  showed  peaks  at  δ 45.75  and  45.80
ppm  due  to  CH3 carbon,  respectively.
Compound  4b  and  8b displayed  peaks  at  δ
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51.02 and 50.96 ppm, indicating the presence
of OCH3, respectively. 

Molecular properties prediction and drug-
likeness
Some molecular properties, which are shown in
Table  1,  were  calculated  using  Molinspiration
online calculation software (28). The predicted
values are given in Table 1. All the compounds
meet  the  LogP  criteria.  Calculation  of  %ABS
was done with equation %ABS = 109 − (0.345
x  TPSA)  (34).  All  synthesized  compounds

possess  the  good  %ABS  value  of  90.15  and
93.33% and acceptable  nOHNH (≤5) and  nON
(≤10)  number.  Also,  NROTB  (≤10)  of  the
compounds  were  found  as  3-5,  providing
moderate flexibility to the compounds (35). MW
of  the  compounds was  found  less  than  500.
Druglikeness  model  score  was  predicted  by
MolSoft  software  (29)  and  shown in  Table  1.
Drug-like candidate compounds should have a
value of  more than zero.  Compounds  4b and
8b possess the highest drug-likeness score of
0.31 and 0.33, respectively.

Table 1. Predicted molecular properties and drug-likeness scores of the target compound (4a-c,
8a-c).

Cpd MWa Volume %ABSb TPSAc NROTBd nONe nOHNHf LogPg nviolations
Drug

likeness
score

Rule >500 - - - - ≤10 ≤5 ≤5 ≥1 -
4a 314.41 278.71 93.33 45.40 3 5 0 2.15 0 0.14
4b 406.51 359.10 90.15 54.63 5 6 0 3.88 0 0.31
4c 394.48 338.49 93.33 45.40 4 5 0 3.96 0 0.15
8a 264.35 234.72 93.33 45.40 3 5 0 0.84 0 0.07
8b 356.45 315.11 90.15 54.63 5 6 0 2.57 0 0.33
8c 344.42 294.49 93.33 45.40 4 5 0 2.65 0 0.14

a MW: Molecular weight; b %ABS: Percentage absorption;  cTPSA: Topological polar surface area; 
d NROTB: Number of rotatable bonds; e nON: Number of hydrogen acceptors; f nOHNH: Number of 
hydrogen donors; g LogP: Log octanol/water partition coefficient.

Bioactivity score prediction and molecular
docking
Bioactivity scores, which are given in Table 2,
were  predicted  by Molinspiration  online
calculation  software  (28).  If  the  bioactivity
score of the compound is  >0 or -0.5-0 or <0, it
can  be  active  or  moderate  or  inactive,
respectively  (36).  Synthesized  compounds
showed the acceptable  kinase inhibitor  scores
(>0  or  -0.5-0)  with  compound  4a-c;  8a-c

suggested that these compounds might possess
kinase  inhibitor  activity.  So,  EGFR,  FAK,  and
VEGFR-2 kinases, which are reported as targets
for many oxadiazole derivatives (21-24), were
selected  as  putative  targets  for  synthesized
compounds.  Molecular  docking  studies  were
performed using Autodock vina to present the
binding  interactions  between  synthesized
compounds and the active site of  EGFR, FAK,
and VEGFR-2 kinases.

Table 2. Bioactivity scores prediction of the target compounds (4a-c, 8a-c).

Cpd GPCRL ICM KI NRL PI EI

4a -0.02 -0.37 0.14 -0.44 -0.11 -0.03
4b -0.07 -0.41 0.05 -0.37 -0.16 -0.14
4c -0.05 -0.35 0.08 -0.40 -0.10 -0.11
8a -0.42 -0.53 -0.35 -1.04 -0.54 -0.27
8b -0.24 -0.53 -0.19 -0.65 -0.33 -0.30
8c -0.22 -0.46 -0.15 -0.70 -0.27 -0.27

GPCRL: G protein-coupled receptor ligand; ICM: ion channel modulator;
KI: kinase Inhibitor; NRL: nuclear receptor ligand; PI: protease inhibitor;

EI: enzyme inhibitor.

The  docking  method  was  optimized  by  re-
docking  of  co-crystallized  ligands into  the
binding site of target  proteins.  The re-docked
ligands  of  EGFR,  FAK,  and  VEGFR-2  kinases
were  superimposed  on  native  ligands  with
RMSD  values  of  1.42,  0.7,  and  0.5  Å,
respectively.  According  to  docking  results,  all

compounds  occupied  into  the  binding  site  of
VEGFR-2  and  formed  the  hydrogen  bond
between  oxadiazole  ring  and  Asp1046  amino
acid. The docking results, binding free energy,
hydrogen  bond  distance,  and  angles  were
shown  in  Table  3.  The  binding  model  of
compound  4b,  which  has  the  lowest  binding
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free energy (∆Gb=-11.2 kcal/mol) in the active
site  of  VEGFR-2  was  depicted  in  Figure  2.
Otherwise, compounds did not show interaction
with  the  key  residue  of  EGFR  (Met793  and

Thr854) and FAK kinase (Cys502) active sites.
Docking results  of  compounds with  EGFR and
FAK  kinases  were  given  in  supplementary
material (Figure S1, Table S1-S2). 

Figure 2. Superposition of co-crystallized (blue) and docked (red) conformations of the reference
ligand (left). Predicted binding mode of compound 4b in the active site of VEGFR-2 (PDB code:
3VHE) (right). Hydrogen bonds were shown as yellow dashed lines. Figure was generated using

PyMOL.

Table 3. The docking results of the compounds.

Compound
∆Gba

(kcal/mol)
Hydrogen bonds 

Atom of
compound

Amino acid
Distance (Å)

D-H…..A
Angle (°)

4a -9.1 Oxadiazole-O Asp1046-NH 1.9 163.7
4b -11.2 Oxadiazole-N4 Asp1046-NH 2.2 136.3
4c -11.0 Oxadiazole-O Asp1046-NH 2.2 148.4
8a -6.9 Oxadiazole-N3 Asp1046-NH 2.2 128.4
8b -8.7 Oxadiazole-N4 Asp1046-NH 2.2 140.3
8c -9.4 Oxadiazole-O Asp1046-NH 2.2 151.0

Native
ligand

Urea-N
PP-N4
Urea-O

Glu885-O
Cyc919-NH 
Asp1046-NH

Docked
ligand

-12.6
RMSDb:0.5

Urea-O
PP-N4

Asp1046-NH
Cyc919-NH 

2.0
1.9

161.9
162.4

aBinding free energy, broot-mean-square deviation

CONCLUSION

In this study, 2-(benzo[b]thiophen-2-yl)-5-((4-
substituted-piperazin-1-yl)methyl)-1,3,4-
oxadiazole  (4a-c)  and  2-((4-substituted-
piperazin-1-yl)methyl)-5-(thiophen-2-yl)-1,3,4-
oxadiazole derivatives (8a-c) were synthesized
and molecular properties and bioactivity score
were  predicted.  All  compounds  obeyed  the
Lipinski’s rules and showed good drug-likeness
scores. The best bioactivity prediction scores of
compounds  were  found  as  a  kinase  inhibitor.
Moreover, hydrogen bonding interactions of the
compounds  with  VEGFR-2  kinase  active  site
were  found  by  molecular  docking  study,
suggesting possible in vitro inhibitor activities of
these compounds towards VEGFR-2 kinase. 
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NMR and mass spectral analysis of the target compounds

2-(Benzo[b]thiophen-2-yl)-5-((4-methylpiperazin-1-yl)methyl)-1,3,4-oxadiazole (4a)
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2-(Benzo[b]thiophen-2-yl)-5-((4-(3-methoxyphenyl)piperazin-1-yl)methyl)-1,3,4-oxadiazole (4b)
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2-(Benzo[b]thiophen-2-yl)-5-((4-(2-fluorophenyl)piperazin-1-yl) methyl)-1,3,4-oxadiazole (4c)
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2-((4-Methylpiperazin-1-yl)methyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole (8a)
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2-((4-(3-Methoxyphenyl)piperazin-1-yl)methyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole (8b)
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2-((4-(2-Fluorophenyl)piperazin-1-yl)methyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole(8c)
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Docking results of compounds in active sites of EGFR and FAK kinases. 
 

Figure  S1. Superposition  of  native  (blue)  and  docked  ligand  (magenta)  of  EGFR  (1xkk,
RMSD:1.42) (left).  Superposition of  native (blue) and docked ligand (magenta)  of  FAK (2etm,
RMSD: 0.7) (right). 
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Table S1. The docking results of compounds with EGFR kinase 

Compound
∆Gba

(kcal/mol)
Hydrogen bonds between atoms of compounds

and amino acids  
Atom of compound Amino acid

4a -9.0 - -
4b -9.4 O of oxadiazole NH of Lys745
4c -9.4 - -
8a -7.2 - -
8b -7.9 - -
8c -9.0 - -

Native ligand N-1 of quinazoline ring
N-3 of quinazoline ring

NH of Met793
Thr854

Docked ligand -11.2
RMSDb: 1.42

N-1 of quinazoline ring NH of Met793

aBinding free energy, broot-mean-square deviation. –No interaction. 

Table S2. The docking results of compounds with FAK kinase 

Compound
∆Gba

(kcal/mol)
Hydrogen bonds between atoms of

compounds and amino acids  
Atom of compound Amino acid

4a -6.9 - -
4b -8.0 N3 of Oxadiazole NH of Arg550

4c -8.2 N3 of Oxadiazole
N4 of Oxadiazole

NH of Arg550
OH of Ser568

8a -6.1 N3 of Oxadiazole NH of Gln432
8b -7.6 N3 of Oxadiazole NH of Gln432
8c -7.6 N3 of Oxadiazole NH of Gln432

Native ligand
N-3 of pyrimidine ring

Exocyclic N

NH of Cys502
CO of Cys502

Docked ligand -8.7 RMSD:0.7
N-3 of pyrimidine ring

Exocyclic N

NH of Cys502
CO of Cys502

aBinding free energy, broot-mean-square deviation. –No interaction. 
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