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Abstract

This paper is devoted to the existence of solutions for certain classes of nonlinear differential equations
involving the ψ–Caputo fractional derivative in Banach spaces. Our approach is based on a new fixed point
theorem with respect to convex-power condensing operator combined with the technique of measures of
noncompactness. Finally, two examples are given to illustrate the obtained results.
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1. Introduction

Fractional differential equations gained considerable importance due to their various applications in differ-
ent fields of science such as physics, chemistry, economics, polymer rheology, aerodynamics, electrodynamics
of complicated medium, blood flow phenomena, biophysics, etc. (see [20, 21, 27, 28, 29, 30, 35]). For some
fundamental results in the theory of fractional calculus and fractional differential equations, we refer the
reader to the monographs [1, 2, 3, 21, 29]. Presently, in the literature several approaches/definitions of
fractional integrals and derivatives are available, such as Riemann–Liouville definition, Caputo definition,
Caputo–Hadamard, Hilfer. However, there is another kind of fractional derivatives that appears in the liter-
ature was introduced by Almeida which he called ψ–Caputo fractional operator [9]. Moreover, we can also
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highlight the papers [5, 10, 11, 31], in which many researchers turned to the existence and uniqueness of
solutions for ψ–Caputo differential equations subject to various boundary conditions while some interesting
details about initial and boundary value problems involving different kinds of fractional derivatives can be
found in [4, 6, 7, 17, 22, 26]. In addition, in most of the existed articles, Schauder’s, Krasnoselskii’s, Darbo’s,
or Mönch’s fixed point theorems have been employed to obtain the solutions of nonlinear fractional differen-
tial equations under some restrictive conditions (see [4, 8, 14] and references therein). On the other hand,
in 2005 Sun and Zhang [34] generalized the definition of condensing operator to convex-power condensing
operator. And based on the definition of this new kind of operator, they established a new fixed point the-
orem with respect to the convex-power condensing operator which generalizes the famous Sadovskii’s fixed
point theorem. After that, the fixed point theorem for the convex-power condensing operator due to Sun
and Zhang was used by many researchers to study the existence of solutions for certain classes of nonlinear
differential equations see, for instance, [16, 18, 23, 24, 25, 33, 36].

To the best of our knowledge, there are no papers dealing with the existence of solutions to a Cauchy
problem with ψ–Caputo fractional derivative in Banach spaces. This gap is covered by the present paper.
More specifically in this paper, we study the existence of solutions for certain classes of nonlinear differential
equations involving the ψ–Caputo fractional-order in Banach spaces of the form:

cDα;ψ
a+

u(t) = f(t, u(t)), t ∈ J := [a, b], with u(a) = ua, (1)

where cDα;ψ
a+

is the ψ-Caputo fractional derivative of order α, 0 < α ≤ 1 to be defined later, f : J×E −→ E
is a given function satisfying some assumptions that will be specified later, E is a Banach space with norm
‖ · ‖, and ua ∈ E.

Our results are not only new in the given configuration but also correspond to some new situations
associated with the specific values of the parameters involved in the given problem. For example, If we take
ψ(t) = t, then the IVP (1) corresponds to the Cauchy problem containing the Caputo derivative, given by

cDα
a+u(t) = f(t, u(t)), t ∈ J, with u(a) = ua.

Also noting that (1) is reduced to the Cauchy problem involving the Caputo–Hadamard derivative when
ψ(t) = ln t:

CHDα
a+u(t) = f(t, u(t)), t ∈ J, with u(a) = ua.

Because of the essential differential between infinite-dimensional space and finite-dimensional space, the
existence of solutions of fractional differential equations is no longer valid in abstract Banach space. The
measure of noncompactness comes handy in such situations. The arguments are based on a new fixed point
theorem with respect to the convex-power condensing operator combined with the technique of measures of
noncompactness to establish the existence of solution for the IVP (1). As we generalized the space from the
scalar space to the abstract space, our work includes the results of [4, 8, 17, 26].

The rest of this paper is organized as follows. In Section 2, we collect and derive some basic definitions,
lemmas, and properties. In Section 3, we present the existence of solutions to the IVP problem (1). In
Section 4, examples are given to illustrate our main results and the last section concludes this paper.

2. Preliminaries

We start this section by introducing some necessary definitions and basic results required for further
developments.

Let ψ : J → R be an increasing function with ψ′(t) 6= 0, for all t ∈ J , and let C(J,E) be the Banach
space of all continuous functions u from J into E with the supremum (uniform) norm

‖u‖∞ = sup{‖u(t)‖, t ∈ J}.
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By L1(J) we denote the space of Bochner-integrable functions u : J → E, with the norm

‖u‖1 =

∫ b

a
‖u(t)‖dt.

Next, we define the the Kuratowski measure of noncompactness and give some of its important properties.

Definition 2.1 ([13]). The Kuratowski measure of noncompactness κ(·) defined on bounded set S of Banach
space E is

κ(S) := inf{ε > 0 : S = ∪nk=1Sk and diam(Sk) ≤ ε for k = 1, 2, · · · , n}.

The following properties about the Kuratowski measure of noncompactness are well known.

Lemma 2.1 ([13]). Let E be a Banach space and A, B ⊂ E be bounded. The following properties are
satisfied:

(1) κ(A) ≤ κ(B) if A ⊂ B;

(2) κ(A) = κ(A) = κ(conv A), where conv A means the convex hull of A;

(3) κ(A) = 0 if and only if A is compact, where A means the closure hull of A;

(4) κ(λA) = |λ|κ(A), where λ ∈ R;

(5) κ(A ∪B) = max{κ(A), κ(B)};

(6) κ(A+B) ≤ κ(A) + κ(B), where A+B = {w | w = a+ b, a ∈ A, b ∈ B};

(7) κ(A+ x) = κ(A), for any x ∈ E.

The following lemmas are needed in our argument.

Lemma 2.2 ([12]). Let E be a Banach space, and let B ⊂ C(J,E) be bounded and equicontinuous. Then
κ(B(·)) is continuous on J and κC(B) = max

t∈J
κ(B(t)).

Lemma 2.3 ([15]). Let E be a Banach space and let B ⊂ E be bounded. Then for each ε, there is a sequence
{un}∞n=1 ⊂ B, such that

κ(B) ≤ 2κ({un}∞n=1) + ε.

We call B ⊂ L1(J,E) uniformly integrable if there exists η ∈ L1(J,R+) such that

‖u(s)‖ ≤ η(s), for all u ∈ B and a.e. s ∈ J.

Lemma 2.4 ([19]). If {un}∞n=1 ⊂ L1(J,E) is uniformly integrable, then t 7→ κ({un(t)}∞n=1) is measurable,
and

κ

({∫ t

a
un(s)ds

}∞
n=1

)
≤ 2

∫ t

a
κ({un(s)}∞n=1)ds.

The following fixed point theorem with respect to convex-power condensing operator which was introduced
by Sun and Zhang [34] plays a key role in the proof of our main results, see also [24, 25] for more applications
of this theorem.

Definition 2.2. Let X be a real Banach space. If A : X → X is a continuous and bounded operator, there
exist u0 ∈ X and a positive integer n0 such that for any bounded and nonprecompact subset S ⊂ X,

κ(A(n0,u0)(S)) < κ(S), (2)

where
A(1,u0)(S) ≡ A(S), A(n,u0)(S) = A(co{A(n−1,u0)(S)}), n = 2, 3, · · ·

Then we call A a convex-power condensing operator about u0 and n0.
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Lemma 2.5. (Fixed point theorem with respect to convex-power condensing operator, [34]) Let X be a real
Banach space, and let B ⊂ X be a bounded, closed and convex set in X. If there exist u0 ∈ B and a positive
integer n0 such that A : B → B be a convex-power condensing operator about u0 and n0, then the operator
A has at least one fixed point in B.

Remark 2.1. If n0 = 1 in (2), then fixed point theorem with respect to convex-power condensing operator (see
Lemma 2.5) will degrade into the famous Sadovskii’s fixed point theorem. Noticed that Lemma 2.5 requires
the operator A is neither condensing nor completely continuous. Therefore, fixed point theorem with respect
to convex-power condensing operator is the generalization of the well-known Sadovskii’s fixed point theorem.

Definition 2.3 ([37]). A function f : J × E −→ E is said to satisfy the Carathéodory conditions, if the
following hold

• f(t, u) is measurable with respect to t for u ∈ E,

• f(t, u) is continuous with respect to u ∈ E a.e. t ∈ J .

Now, we give some results and properties from the theory of fractional calculus. We begin by defining
ψ-Riemann–Liouville fractional integrals and derivatives. In what follows,

Definition 2.4 ([9, 21]). For α > 0, the left-sided ψ–Riemann–Liouville fractional integral of order α for an
integrable function u : J → R with respect to another function ψ : J → R that is an increasing differentiable
function such that ψ′(t) 6= 0, for all t ∈ J is defined as follows

Iα;ψ
a+

u(t) =
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1u(s)ds, (3)

where Γ is the gamma function. Note that Eq. (3) is reduced to the Riemann–Liouville and Hadamard
fractional integrals when ψ(t) = t and ψ(t) = ln t, respectively.

Definition 2.5 ([9]). Let n ∈ N and let ψ, u ∈ Cn(J) be two functions such that ψ is increasing and
ψ′(t) 6= 0, for all t ∈ J . The left-sided ψ–Riemann–Liouville fractional derivative of a function u of order α
is defined by

Dα;ψ
a+

u(t) =

(
1

ψ′(t)

d

dt

)n
In−α;ψ
a+

u(t) =
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1u(s)ds,

where n = [α] + 1.

Definition 2.6 ([9]). Let n ∈ N and let ψ, u ∈ Cn(J) be two functions such that ψ is increasing and
ψ′(t) 6= 0, for all t ∈ J . The left-sided ψ-Caputo fractional derivative of u of order α is defined by

cDα;ψ
a+

u(t) = In−α;ψ
a+

(
1

ψ′(t)

d

dt

)n
u(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.
To simplify notation, we will use the abbreviated symbol u[n]

ψ (t) =
(

1
ψ′(t)

d
dt

)n
u(t).

From the definition, it is clear that,

cDα;ψ
a+

u(t) =


1

Γ(n−α)

∫ t
a ψ
′(s)(ψ(t)− ψ(s))n−α−1u

[n]
ψ (s)ds, if α /∈ N,

u
[n]
ψ (t), if α ∈ N.

(4)
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This generalization (4) yields the Caputo fractional derivative operator when ψ(t) = t. Moreover, for
ψ(t) = ln t, it gives the Caputo–Hadamard fractional derivative.

We note that if u ∈ Cn(J) the ψ–Caputo fractional derivative of order α of u is determined as

cDα;ψ
a+

u(t) = Dα;ψ
a+

u(t)−
n−1∑
k=0

u
[k]
ψ u(a)

k!
(ψ(t)− ψ(a))k

 .
(See, for instance, [9, Theorem 3]).

Lemma 2.6 ([10]). Let α, β > 0, and u ∈ L1(J). Then Iα;ψ
a+

Iβ;ψ
a+

u(t) = Iα+β;ψ
a+

u(t), a.e. t ∈ J. In particular,
If u ∈ C(J). Then Iα;ψ

a+
Iβ;ψ
a+

u(t) = Iα+β;ψ
a+

u(t), t ∈ J.

Next, we recall the property describing the composition rules for fractional ψ-integrals and ψ-derivatives.

Lemma 2.7 ([10]). Let α > 0, The following holds:
If u ∈ C[a, b] then cDα;ψ

a+
Iα;ψ
a+

u(t) = u(t), t ∈ [a, b].

If u ∈ Cn(J), n− 1 < α < n. ThenIα;ψ
a+

cDα;ψ
a+

u(t) = u(t)−
∑n−1

k=0

u
[k]
ψ (a)

k! [ψ(t)− ψ(a)]k , for all t ∈ [a, b].

In particular, if 0 < α < 1, we have Iα;ψ
a+

cDα;ψ
a+

u(t) = u(t)− u(a).

Lemma 2.8 ([10, 21]). Let t > a, α ≥ 0, and β > 0. Then

• Iα;ψ
a+

(ψ(t)− ψ(a))β−1 = Γ(β)
Γ(β+α)(ψ(t)− ψ(a))β+α−1,

• cDα;ψ
a+

(ψ(t)− ψ(a))β−1 = Γ(β)
Γ(β−α)(ψ(t)− ψ(a))β−α−1,

• cDα;ψ
a+

(ψ(t)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Remark 2.2. Note that for an abstract function u : J −→ E, the integrals which appear in the previous
definitions are taken in Bochner’s sense (see, for instance, [32]).

3. Main Results

Let us recall the definition and lemma of a solution for problem (1). First of all, we define what we mean
by a solution for the IVP (1).

Definition 3.1. A function u ∈ C(J,E) is said to be a solution of Eq. (1) if u satisfies the equation
cDα;ψ

a+
u(t) = f(t, u(t)), a.e. on J , and the condition u(a) = ua.

For the existence of solutions for the problem (1) we need the following lemma:

Lemma 3.1. For a given h ∈ L1(J,R), the unique solution of the linear fractional initial value problem
cDα;ψ

a+
u(t) = h(t), 0 < α ≤ 1 , t ∈ J, with u(a) = ua, (5)

is given by

u(t) = ua + Iα;ψ
a+

h(t) = ua +
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds. (6)

Proof. Taking the ψ-Riemann–Liouville fractional integral of order α to the first equation of (5), we get

u(t) = Iα;ψ
a+

h(t) + k0, k0 ∈ R. (7)

Substituting t = a in (7) and using the boundary condition of (5), it yields

k0 = ua.

Substituting the values of k0 into (7), we get the integral equation (6). The converse follows by direct
computation which completes the proof.
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As a result of Lemma 3.1, the IVP (1) can be converted to an integral equation which takes the following
form

u(t) = ua +
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds. (8)

Now, we shall present our main result concerning the existence of solutions of problem (1). Let us introduce
the following hypotheses

(H1) The function f : J × E −→ E satisfies Carathéodory conditions.

(H2) There exist pf ∈ L∞(J,R+) and a continuous nondecreasing function φ : R+ −→ R+ such that

‖f(t, u)‖ ≤ pf (t)φ(‖u‖), for a.e. t ∈ J, and all u ∈ E.

(H3) There exists a positive constant L, such that for any bounded and countable set D ⊂ E and a.e. t ∈ J ,

κ(f(t,D)) ≤ Lκ(D).

Now, we shall prove the following theorem concerning the existence of solutions of problem (1).

Theorem 3.1. Assume that the hypotheses (H1)–(H3) are satisfied and there exists a constant R > 0 such
that

R ≥
‖pf‖L∞ (ψ(b)− ψ(a))α

Γ(α+ 1)
φ(R) + ‖ua‖, (9)

then the problem (1) has at least one solution defined on J .

Proof. Consider the operator N : C(J,E) −→ C(J,E) defined by:

Nu(t) = ua +
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds. (10)

It is obvious that N is well defined due to (H1) and (H2). Then, the fractional integral equation (8) can be
written as the following operator equation

u = Nu. (11)

Thus, the existence of a solution for Eq. (1) is equivalent to the existence of a fixed point for operator N
which satisfies operator equation (11).

Define the set
BR = {w ∈ C(J,E) : ‖w‖∞ ≤ R} .

Notice that BR is closed, convex and bounded subset of the Banach space C(J,E). We shall show that the
operator N satisfies all the assumptions of Lemma 2.5. We split the proof into four steps.
Step 1: The operator N maps the set BR into itself. By the assumption (H2), we have

‖Nu(t)‖ ≤ ‖ua‖+
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1‖f(s, u(s))‖ds

≤ ‖ua‖+
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1pf (s)φ(‖u(s)‖)ds

≤ ‖ua‖+
‖pf‖L∞φ(‖u‖)

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1ds

≤ ‖ua‖+
‖pf‖L∞φ(‖u‖) (ψ(b)− ψ(a))α

Γ(α+ 1)
≤ R.
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Thus

‖Nu‖ ≤ R.

This proves that N transforms the ball BR into itself.
Step 2: The operator N is continuous. Suppose that {un} is a sequence such that un → u in BR as n→∞.
It is easy to see that f(s, un(s)) → f(s, u(s)), as n → +∞, due to the Carathéodory continuity of f . On
the other hand taking (H2) into consideration we get the following inequality:

ψ′(s)(ψ(t)− ψ(s))α−1‖f(s, un(s))− f(s, u(s))‖ ≤ 2φ(R)ψ′(s)(ψ(t)− ψ(s))α−1.

We notice that since the function s 7→ 2ψ′(s)(ψ(t) − ψ(s))α−1φ(R) is Lebesgue integrable over [a, t]. This
fact together together with the Lebesgue dominated convergence theorem imply that

1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1‖f(s, un(s))− f(s, u(s))‖ds→ 0 as n→ +∞.

It follows that ‖Nun −Nu‖ → 0 as n→ +∞, which implies the continuity of the operator N .
Step 3: N (BR) is equicontinuous. For any a < t1 < t2 < b and u ∈ BR, we get

‖N (u)(t2)−N (u)(t1)‖

≤ 1

Γ(α)

∫ t1

a
ψ′(s)

[
(ψ(t1)− ψ(s))α−1 − (ψ(t2)− ψ(s))α−1

]
‖f(s, u(s))‖ds

+
1

Γ(α)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1‖f(s, u(s))‖ds

≤
‖pf‖L∞φ(R)

Γ(α+ 1)
[(ψ(t1)− ψ(a))α + 2(ψ(t2)− ψ(t1))α − (ψ(t2)− ψ(a))α]

≤
2‖pf‖L∞φ(R)

Γ(α+ 1)
(ψ(t2)− ψ(t1))α,

where we have used the fact that (ψ(t1)− ψ(a))α − (ψ(t2)− ψ(a))α ≤ 0. Therefore,

‖N (u)(t2)−N (u)(t1)‖ ≤
2‖pf‖L∞φ(R)

Γ(α+ 1)
(ψ(t2)− ψ(t1))α.

As t2 → t1, the right-hand side of the above inequality tends to zero independently of u ∈ BR. Hence, we
conclude that N (BR) ⊆ C(J,E) is bounded and equicontinuous.
Step 4: Next, we prove that N : Q → Q is a convex-power condensing operator, where Q = coN (BR)
and co means the closure of convex hull. Then one can easily verify that the operator N maps Q into itself
and Q ⊂ C(J,E) is equicontinuous. Let u0 ∈ Q. In the following, we will prove that there exists a positive
integer n0 such that for any bounded and nonprecompact subset B ⊂ Q

κC

(
N (n0,u0)(B)

)
< κC(B). (12)

For any B ⊂ Q and u0 ∈ Q, by the definition of operator N (n,u0) and the equicontinuity of Q, we get that
N (n,u0)(B) ⊂ BR is also equicontinuous. Therefore, we know from Lemma 2.2 that

κC

(
N (n,u0)(B)

)
= max

t∈J
κ
(
N (n,u0)(B)(t)

)
, n = 1, 2, · · · (13)

Let ε > 0. By Lemma 2.3, there exist sequences {uk}∞k=1 ⊂ B such that

κ
(
N (1,u0)(B)(t)

)
= κ (N (B)(t)) ≤

2κ

{
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1f(s, {uk(s)}∞k=1)ds

}
+ ε.
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Next, by Lemma 2.4 and the properties of κ and (H3) we have

κ
(
N (1,u0)(B)(t)

)
≤

4

{
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1κ(f(s, {uk(s)}∞k=1))ds

}
+ ε

≤ 4L

{
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1κ({uk(s)}∞k=1)ds

}
+ ε

≤ 4Lκ(B)

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1ds + ε

≤ 4L (ψ(t)− ψ(a))α

Γ(α+ 1)
κ(B) + ε.

As the last inequality is true, for every ε > 0, we infer

κ
(
N (1,u0)(B)(t)

)
≤ 4L (ψ(t)− ψ(a))α

Γ(α+ 1)
κ(B). (14)

Using Lemma 2.3 one more time, we see that for any ε > 0, there is a sequence {vk}∞k=1 ⊂ co
{
N (1,u0)(B), u0

}
,

such that

κ(N (2,u0)(B)(t)) = κ
(
N (co{N (1,u0)(B), u0})(t)

)
≤ 2κ

{
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1f(s, {vk(s)}∞k=1)ds

}
+ ε

≤ 4L

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1κ({vk(s)}∞k=1)ds + ε

≤ 4L

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1κ

(
co{N (1,u0)(B), u0})(s)

)
ds + ε

≤ 4L

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1κ

(
{N (1,u0)(B))(s)

)
ds + ε

≤ (4L)2

Γ(α+ 1)
κ(B)

1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 (ψ(s)− ψ(a))α ds + ε.

Also note that ∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1 (ψ(s)− ψ(a))α

Γ(α)
ds =

(ψ(t)− ψ(a))2α

Γ(α)

∫ 1

0
(1− y)α−1yαdy

=
(ψ(t)− ψ(a))2α

Γ(α)
B(α, α+ 1)

=
(ψ(t)− ψ(a))2α

Γ(2α+ 1)
Γ(α+ 1),

where we have used the variable substitution y = ψ(s)−ψ(a)
ψ(t)−ψ(a) . Using the above arguments, we get

κ(N (2,u0)(B)(t)) ≤ (4L)2 (ψ(t)− ψ(a))2α

Γ(2α+ 1)
κ(B) + ε.
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As the last inequality is true, for every ε > 0, we infer

κ
(
N (2,u0)(B)(t)

)
≤ (4L)2 (ψ(t)− ψ(a))2α

Γ(2α+ 1)
κ(B).

It can be shown by mathematical induction that

κ
(
N (n,u0)(B)(t)

)
≤ (4L)n (ψ(t)− ψ(a))nα

Γ(nα+ 1)
κ(B). (15)

Hence, by (13) and (15), we get that

κC

(
N (n,u0)(B)

)
= max

t∈I
κ
(
N (n,u0)(B)(t)

)
≤ (4L)n (ψ(b)− ψ(a))nα

Γ(nα+ 1)
κ(B). (16)

By using the well-known Stirling formula, we know there exists a constant 0 < θ < 1, such that

Γ(1 + nα) =
√

2πnα
(nα
e

)nα
e

θ
12nα , α > 0.

It follows that

lim
n→+∞

(4L)n · (ψ(b)− ψ(a))nα

Γ(1 + nα)
= lim

n→+∞

(4L)n · (ψ(b)− ψ(a))nα

√
2πnα(nαe )nαe

θ
12nα

= 0.

Therefore, there must exist a positive integer n0, which is large enough, such that

(4L)n0 · (ψ(b)− ψ(a))n0α

Γ(1 + n0α)
< 1. (17)

Hence, from (16) and (17) we know that (12) is satisfied, which means that N : Q → Q is a convex-power
condensing operator. It follows from Lemma 2.5 that the operator N defined by (10) has at least one fixed
point u ∈ Q, which is just the solution of initial value problem (1). This completes the proof Theorem
3.1.

Remark 3.1. From (13) and (14) of Theorem 3.1 we know that if we assume

4L (ψ(b)− ψ(a))α

Γ(α+ 1)
< 1, (18)

directly, we can apply the famous Sadovskii’s fixed point theorem to obtain the results of Theorem 3.1. How-
ever, from the above arguments, one can find that we do not need this redundant condition (18) by virtue of
fixed point theorem with respect to convex-power condensing operator.

4. Examples

In this section we give two examples to illustrate the usefulness of our main result. Let

E = c0 = {u = (u1, u2, . . . , un, . . . ) : un → 0 (n→∞)} ,

be the Banach space of real sequences converging to zero, endowed its usual norm

‖u‖∞ = sup
n≥1
|un|.
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Example 4.1. Consider the following initial value problem of a fractional differential posed in c0 :{
CHD

1
2

1+
u(t) = f(t, u(t)), t ∈ J := [1, e] ,

u(1) = (0, 0, . . . , 0, . . . ) .
(19)

Note that, this problem is a particular case of IVP (1), where

α =
1

2
, a = 1, b = e, ψ(t) = ln(t),

and f : J × c0 −→ c0 given by

f(t, u) =

{
1

(t− 1)2 + 2

(
1

n2
+ arctan(|un|)

)}
n≥1

,

for t ∈ J, u = {un}n≥1 ∈ c0.
It is clear that condition (H1) holds, and as

‖f(t, u)‖ ≤ 1

(t− 1)2 + 2
(1 + ‖u‖)

= pf (t)φ(‖u‖).

Therefore, assumption (H2) of Theorem 3.1 is satisfied with

pf (t) =
1

(t− 1)2 + 2
, t ∈ J,

and
φ(x) = 1 + x, x ∈ [0,∞).

On the other hand, for any bounded set D ⊂ c0, we have

κ(f(t,D)) ≤ 1

2
κ(D), a.e. t ∈ J.

Hence (H3) is satisfied. Now, we will prove that the inequality (9) is satisfied. Since φ(x) = 1 + x, then we
have to find R > 0 such that

(1 +R)
1

2Γ
(

3
2

) ≤ R,
thus

R ≥ 1√
π − 1

= 1.2946.

Then R can be chosen as R = 1.5 ≥ 1.2946. Consequently, all hypotheses of Theorem 3.1 are satisfied and
we conclude that the IVP (19) has at least one solution u ∈ C(J, c0).

Let now

E = `1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
,

be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.
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Example 4.2. Consider the following initial value problem of a fractional differential posed in `1cD
1
2

0+
u(t) = f(t, u(t)), t ∈ J := [0, 1] ,

u(0) =
(

1√
π
, 0, . . . , 0, . . .

)
.

(20)

Note that this problem is a particular case of BVP (1), where α = 1
2 , a = 0, b = 1, ψ(t) = t, and f : J×`1 −→

`1 given by f(t, u) =
{

1
t2+2

(
t

2n + un
‖u‖+1

)}
n≥1

, for t ∈ J, u = {un}n≥1 ∈ `1.It is clear that condition (H1)

hold, and as

‖f(t, u)‖ ≤ 1

t2 + 2
(1 + ‖u‖) = pf (t)φ(‖u‖).

Therefore, assumption (H2) of Theorem 3.1 is satisfied with

pf (t) =
1

t2 + 2
, t ∈ J, and φ(x) = 1 + x, x ∈ [0,∞).

On the other hand, for any bounded set D ⊂ c0, we have

κ(f(t,D)) ≤ 1

2
κ(D), a.e. t ∈ J.

Hence (H3) is satisfied. Now, we will prove that the inequality (9) is satisfied. Since φ(x) = 1 + x, then we
have to find R > 0 such that

1√
π

+ (1 +R)
1

2Γ
(

3
2

) ≤ R,
thus

R ≥ 2√
π − 1

= 2.5892.

Then R can be chosen as R = 3 ≥ 2.5892. Consequently, all the hypothesis of Theorem 3.1 are satisfied and
we conclude that the IVP (20) has at least one solution u ∈ C(J, `1).

5. Conclusion

We discussed the existence of solutions for a Cauchy problem with ψ–Caputo fractional derivative that is
reduced to the well known fractional derivatives like Caputo, Caputo–Hadamard for some particular cases of
ψ(t). The proofs are based essentially on a new fixed point theorem with respect to convex-power condensing
operator combined with the technique of measure of noncompactness. Also, we provided two examples to
illustrate our results.
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