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Hurw൴tz Stab൴l൴ty of Matr൴x Segment and The Common  
Solut൴on Set of 2 and 3-D൴mens൴onal Lyapunov Equat൴ons 

 

Şerife YILMAZ1 

 

Abstract 

In this study, a necessary and sufficient condition is given for the stability of the convex 
combinations of 𝑛-dimensional two Hurwitz stable matrices. There is a close relationship 
between Hurwitz stability of the matrix segment and common solution to the Lyapunov 
equations corresponding to those matrices. Therefore, the results obtained in this area are 
important. In the case of existence, an algorithm that determines common solutions set is also 
given. A number of illustrative examples using this algorithm are given. 
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1. INTRODUCTION 

Let 𝐴ଵ and 𝐴ଶ be 𝑛-dimensional square real 
matrices, that is 𝐴ଵ, 𝐴ଶ ∈ ℝ௡×௡. If all eigenvalues 
of a square matrix lie in the open left half plane, it 
is called Hurwitz stable matrix. A stable matrix 
can also be characterized by Lyapunov inequality: 
if 𝐴ଵ is a Hurwitz stable matrices, there exists a 
positive definite 𝑃 such that 

𝐴ଵ
்𝑃 + 𝑃𝐴ଵ < 0    (1) 
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is hold (see [1,2]). When considering stable 
matrices 𝐴ଵ and 𝐴ଶ if the following inequalities 

𝐴ଵ
்𝑃 + 𝑃𝐴ଵ < 0,

𝐴ଶ
்𝑃 + 𝑃𝐴ଶ < 0

       (2) 

are simultaneously satisfied for a 𝑃 > 0, the 
matrix 𝑃 is called common solution to the 
matrices 𝐴ଵ and 𝐴ଶ. 

The problem of the existence of a common 𝑃 > 0 
has been extensively investigated for the last two 
decades (see [3-8], and references therein). A 
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sufficient condition for the asympotitical stability 
of the linear system given by the finite number of 
matrices, which are called switched system, is the 
existence of their common solution. With the 
exception of some special cases (for instance, 
second order matrices), the theoretical solution to 
the general 𝑛-dimensional problem has not been 
found yet [4-8]. 

Define the matrix segment 

[𝐴ଵ, 𝐴ଶ] = {𝐶(𝛼): 𝐶(𝛼) = 𝛼𝐴ଵ + (1 − 𝛼)𝐴ଶ,

𝛼 ∈ [0,1]}.
(3) 

With the stability of the segment [𝐴ଵ, 𝐴ଶ], we 
mean that all matrix 𝐴 ∈ [𝐴ଵ, 𝐴ଶ] is stable. 

In [5], a necessary and sufficient condition for the 
existence of a common solution to second order 
matrices is given. According to this result, the 
stability of the matrix segments [𝐴ଵ, 𝐴ଶ] and 
[𝐴ଵ, 𝐴ଶ

ିଵ] are equivalent to the existence of a 
common solution 𝑃 > 0. 

Notice that the existence of the solution of the 
problem is related to the stability of the convex 
combinations of the matrices. 

The paper is organized as follows: Section 2 
introduces the relation between bialternate 
product and stability of matrices. A necessary and 
sufficient condition for the segment stability will 
be derived via this product. Section 3 considers 
the common solution to the Lyapunov equation 
for two and three-dimensional matrices. Section 4 
considers finding common solutions. By using the 
minimization of the functions defined on a box, 
an algorithm will be constructed. In the case of 
existence, the bisection method determinates 
common solutions. A number of illustrative 
examples are provided.  

2. THE STABILITY CRITERIA FOR 
CONVEX COMBINATIONS OF TWO 

MATRICES 

For 2 × 2 real matrices, a necessary and sufficient 
condition for the matrix segment in (3) to be 
stable is that both 𝐴ଵ and 𝐴ଶ are stable, and that 

the matrix 𝐴ଵ𝐴ଶ
ିଵ has no negative eigenvalues 

(see [5,9,10]). 

Let 𝐴 be an 𝑛 × 𝑛 matrix. We denote the 
bialternate product of 2𝐴 and the identity matrix 
𝐼௡ by 𝐿(𝐴): 

𝐿(𝐴) = (2𝐴) ⋅ 𝐼௡. 

As usual the bialternate product is denoted by “⋅”. 

The dimension of 𝐿(𝐴) is 
௡(௡ିଵ)

ଶ
×

௡(௡ିଵ)

ଶ
 and if 

the eigenvalues of 𝐴 are 𝜆ଵ, 𝜆ଶ, … , 𝜆௡ then the 
eigenvalues of 𝐿(𝐴) are written 𝜆௜ + 𝜆௝ where 𝑖 =

1,2, … , 𝑛 − 1 and 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑖 + 𝑛 (see 
[11-13]). 

Now we give the following stability theorem for 
a matrix 𝐴, in terms of the above mentioned 
bialternate product. 

Theorem 1 [14, p. 37]: The matrix 𝐴 is stable if 
and only if the coefficients of the characteristic 
polynomials of the matrices 𝐴 and 𝐿(𝐴)  

𝑝஺(𝑠) = det(𝑠𝐼௡ − 𝐴)

= 𝑠௡ + 𝑎௡ିଵ𝑠௡ିଵ + ⋯ + 𝑎ଵ𝑠 + 𝑎଴,

𝑃௅(஺)(𝑠) = det൫𝑠𝐼௠ − 𝐿(𝐴)൯

= 𝑠௠ + 𝑏௠ିଵ𝑠௠ିଵ + ⋯ + 𝑏ଵ𝑠 + 𝑏଴.

 

are positive. That is, 𝑎௜ > 0 and 𝑏௝ > 0 for 𝑖 =

1,2, … , 𝑛 − 1, 𝑗 = 1,2, … 𝑚 − 1, where 𝑚 =
𝑛(𝑛 − 1)/2. 

Note that in the case of 𝐴 is stable, the following 
inequalities hold 

𝑝஺(0) = det(0 ⋅ 𝐼௡ − 𝐴)

= (−1)௡ det(𝐴) > 0,

𝑃௅(஺)(0) = det൫0 ⋅ 𝐼௠ − 𝐿(𝐴)൯

= (−1)௠ det൫𝐿(𝐴)൯ > 0.

 

Lemma 1: Let 𝐴ଵ, 𝐴ଶ ∈ ℝ௡×௡ be stable matrices. 
For all 𝛼 ∈ [0,1], (−1)௡ det 𝐶(𝛼) > 0 if and only 
if the matrix 𝐴ଵ𝐴ଶ

ିଵ has no negative real 
eigenvalues. 

Proof: Since 𝐴ଵ and 𝐴ଶ are stable, 
(−1)௡ det(𝐴ଵ) > 0 and  (−1)௡ det(𝐴ଶ) > 0. 
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Sufficiency: For 𝛼 ∈ (0,1), 

det 𝐶(𝛼) = det[𝛼𝐴ଵ + (1 − 𝛼)𝐴ଶ]

= det([𝛼𝐴ଵ𝐴ଶ
ିଵ + (1 − 𝛼)𝐼௡]𝐴ଶ)

= det[𝛼𝐴ଵ𝐴ଶ
ିଵ + (1 − 𝛼)𝐼௡] det(𝐴ଶ)

= 𝛼௡ det ൤𝐴ଵ𝐴ଶ
ିଵ +

1 − 𝛼

𝛼
𝐼௡൨ det(𝐴ଶ) .

 

Since 
ଵିఈ

ఈ
∈ (0, ∞) and 𝐴ଵ𝐴ଶ

ିଵ has no negative 

real eigenvalues,  

det ൤𝐴ଵ𝐴ଶ
ିଵ +

1 − 𝛼

𝛼
𝐼௡൨ ≠ 0. 

Hence, det 𝐶(𝛼) > 0 for 𝛼 ∈ (0,1). 

Necessity: If (−1)௡ det 𝐶(𝛼) > 0 for all 𝛼 ∈

(0,1) then det ቂ𝐴ଵ𝐴ଶ
ିଵ +

ଵିఈ

ఈ
𝐼௡ቃ ≠ 0 and so the 

matrix 𝐴ଵ𝐴ଶ
ିଵ has no negative eigenvalues. 

Lemma 2: Let 𝐴ଵ, 𝐴ଶ ∈ ℝ௡×௡ be stable matrices 
and 𝐶(𝛼) be as in (3). For all 𝛼 ∈ [0,1], 

(−1)௠ det 𝐿(𝐶(𝛼)) > 0 

if and only if the matrix 𝐿(𝐴ଵ)𝐿ିଵ(𝐴ଶ) has no 
negative real eigenvalues. 

Proof is analogously to Lemma 1. 

Theorem 2: Let 𝐴ଵ, 𝐴ଶ ∈ ℝ௡×௡ be stable matrices 
and 𝐶(𝛼) be as in (3). For all 𝛼 ∈ [0,1], 𝐶(𝛼) is 
stable if and only if the matrices 𝐴ଵ𝐴ଶ

ିଵ and 
𝐿(𝐴ଵ)𝐿ିଵ(𝐴ଶ) have no negative real eigenvalues. 

Proof: From Theorem 1, (−1)௡ det 𝐶(𝛼) > 0 
and (−1)௠ det 𝐿(𝐶(𝛼)) > 0 for all 𝛼 ∈ [0,1] 
since 𝐶(𝛼) is stable. Therefore, the matrices 
𝐴ଵ𝐴ଶ

ିଵ and 𝐿(𝐴ଵ)𝐿ିଵ(𝐴ଶ) have no negative 
eigenvalues from Lemma 1 and 2. 

Sufficiency: Assume that 𝐴ଵ𝐴ଶ
ିଵ and 

𝐿(𝐴ଵ)𝐿ିଵ(𝐴ଶ) have no negative eigenvalues. 
Consider the eigenvalues of the matrix 𝐶(𝛼). By 
the continuity theorem of eigenvalues [16, p. 52], 
there exists continuous functions 𝜆௜: [0,1] → 𝐶 
(𝑖 = 1,2, … , 𝑛) such that 𝜆ଵ(𝛼), 𝜆ଶ(𝛼),  . . ., 𝜆௡(𝛼) 
are the eigenvalues of 𝐶(𝛼). Here 𝑅𝑒 𝜆௜(0) < 0 
(𝑖 = 1,2, … , 𝑛), since the matrix 𝐶(0) is stable. 

Proceeding by contraposition, suppose that 𝐶(𝛼∗) 
is not Hurwitz stable for an 𝛼∗ ∈ (0,1). Therefore, 
there exists an index 𝑖଴ ∈ {1,2, … , 𝑛} such that 
𝑅𝑒 𝜆௜బ

(𝛼∗) ≥ 0. In view of the continuity of 
𝜆௜బ

(𝛼) with respect to 𝛼, there must exists an 𝛼෤ ∈

(0,1) such that 𝑅𝑒 𝜆௜బ
(𝛼෤) = 0. The matrix 𝐶(𝛼෤) 

has an eigenvalue which lies on the imaginary 
axes. If the eigenvalue is real then 

det 𝐶(𝛼෤) =  𝜆ଵ(𝛼෤). ⋯ . 𝜆௜బ
(𝛼෤). ⋯ . 𝜆௡(𝛼෤) = 0 

which contradicts the result of Lemma 1. If the 
eigenvalue is not real, 𝜆௜బ

(𝛼෤) = 𝑗𝜔෥ where 𝜔෥ > 0. 
The complex conjugate of 𝑗𝜔෥ is also an 
eigenvalue of 𝐶(𝛼෤). The matrix 𝐿(𝐶(𝛼෤)) has the 
eigenvalue 𝑗𝜔෥ + (−𝑗𝜔෥) = 0 and this imply 
det 𝐿(𝐶(𝛼෤)) = 0 which contradicts Lemma 2. 
This contradictions show that 𝐶(𝛼) is stable for 
all 𝛼 ∈ [0,1]. 

3. THE COMMON SOLUTION TO THE 
LYAPUNOV EQUATION FOR TWO AND 

THREE-DIMENSIONAL MATRICES 

In this section, we can give the important theorem 
on common quadratic solution two−dimensional 
Lyapunov equations for two stable matrices. 

Theorem 3 [5]: Let 𝐴ଵ, 𝐴ଶ ∈  ℝଶ×ଶ be stable 
matrices. A necessary and sufficient condition for 
the matrices 𝐴ଵ and 𝐴ଶ have common solution to 
its Lyapunov equation (2) is that the matrices 
𝐴ଵ𝐴ଶ and 𝐴ଵ𝐴ଶ

ିଵ have no negative real 
eigenvalue. An equivalent condition is that the 
segments [𝐴ଵ, 𝐴ଶ] and [𝐴ଵ, 𝐴ଶ

ିଵ] are stable. 

Note that, if 𝐴 is a 2 × 2 dimensional matrix then 
the matrix 𝐿(𝐴) is a number and is equal to 
trace(A). 

For the common solution set of two-dimensional 
Lyapunov equation of the matrices 𝐴ଵ and 𝐴ଶ, 
define the symmetric matrices 

𝑃(𝑥) = ቂ
𝑥ଵ 𝑥ଶ

𝑥ଶ 𝑥ଷ
ቃ, 𝑄ଶ(𝑦) = ቂ

𝑦ଵ 𝑦ଶ

𝑦ଶ 𝑦ଷ
ቃ,  

𝑅ଶ(𝑧) = ቂ
𝑧ଵ 𝑧ଶ

𝑧ଶ 𝑧ଷ
ቃ. 

Şerife Yılmaz

Hurwitz Stability of Matrix Segment and The Common Solution Set of 2 and 3-Dimensional Lyapunov Equat...

Sakarya University Journal of Science 24(2), 357-364, 2020 359



 

 

Let 𝐴ଵ and 𝐴ଶ be stable matrices. Assume that 
𝐴ଵ𝐴ଶ and 𝐴ଵ𝐴ଶ

ିଵ have no negative real 
eigenvalue. Consider the following Lyapunov 
equations: 

𝐴ଵ
்𝑃(𝑥) + 𝑃(𝑥)𝐴ଵ = −𝑄ଶ(𝑦),

𝐴ଶ
்𝑃(𝑥) + 𝑃(𝑥)𝐴ଶ = −𝑅ଶ(𝑧)

 

where 𝑥, 𝑦, 𝑧 ∈ ℝଷ. For given 𝑄ଶ(𝑦) > 0, there 
exists an 𝑥 ∈ ℝଷ such that the matrix 𝑃(𝑥) > 0 is 
a unique solution to the first equation. That is, 
from the solution of the first equation  

𝑥 = ൫𝜙ଵ(𝑦), 𝜙ଶ(𝑦), 𝜙ଷ(𝑦)൯ 

is obtained. Analogously, for 𝑅ଶ(𝑧) > 0 there 
exists an 𝑥 ∈  ℝଷ such that the matrix 𝑃(𝑥) > 0 
is a unique solution to the second equation. As a 
result, 

𝑥 = ൫𝜂ଵ(𝑧), 𝜂ଶ(𝑧), 𝜂ଷ(𝑧)൯ 

is obtained. Finally, if these two results are 
combined, the equation for the common 
solution is 

൫𝜙ଵ(𝑦), 𝜙ଶ(𝑦), 𝜙ଷ(𝑦)൯ = ൫𝜂ଵ(𝑧), 𝜂ଶ(𝑧), 𝜂ଷ(𝑧)൯. 

From this linear equations system,  

𝑦 = ൫𝛾ଵ(𝑧), 𝛾ଶ(𝑧), 𝛾ଷ(𝑧)൯. 

We investigate three-dimensional box where 
the symmetric matrix 𝑅ଶ(𝑧) is positive definite 
on it.  

The matrix 

𝑄ଶ(𝑧) = ൤
𝛾ଵ(𝑧) 𝛾ଶ(𝑧)

𝛾ଶ(𝑧) 𝛾ଷ(𝑧)
൨ 

 
must be positive definite for 𝑧 such that 𝑅ଶ(𝑧) >
0. If 𝑄ଶ(𝑧) > 0 and 𝑅ଶ(𝑧) > 0 then  
 

𝑃(𝑧) = ൤
𝜂ଵ(𝑧) 𝜂ଶ(𝑧)

𝜂ଶ(𝑧) 𝜂ଷ(𝑧)
൨ 

 
is a common solution to 𝐴ଵ and 𝐴ଶ. 
 
The matrices 𝑄ଶ(𝑧) and 𝑅ଶ(𝑧) are positive 

definite if its leading principle minors are 
positive. Define the functions 
 
𝑓ଵ(𝑧) = 𝛾ଵ(𝑧),

𝑓ଶ(𝑧) = 𝛾ଵ(𝑧)𝛾ଷ(𝑧) − 𝛾ଶ
ଶ(𝑧),

𝑓ଷ(𝑧) = 𝑧ଵ𝑧ଷ − 𝑧ଶ
ଶ,

𝑓ସ(𝑧) = 𝑧ଵ.

  (4) 

 
These functions are multivariate polynomials. 

Let’s give some basic properties of positive 
definite matrices. From 𝑃 = ൣ𝑝௜௝൧ > 0 it follows 
that 𝑢்𝑃𝑢 > 0 for all 0 ≠ 𝑢 ∈ ℝ௡. Taking 𝑢 =
(0, … ,0,1,0, … ,0)் we acquire  

𝑝௜௜ > 0  (𝑖 = 1,2, … , 𝑛).   (5) 

The positive definite matrices comprise the cone 
interior. Therefore, the entry 𝑧ଷ of 𝑅ଶ(𝑧) can be 
taken 𝑧ଷ = 1. 

Define the box 𝐵 = [0,1] × [−1,1]. If the 
matrices 𝐴ଵ and 𝐴ଶ have a common positive 
definite solution, there exists an 𝑥 ∈ 𝐵 such that 
𝑃(𝑥) is a common solution also. 

In the case of three and higher dimensional 
matrices, there is no theoretical solution. To solve 
the problem, there are gradient based numerical 
algorithms (see [6,7]). In this work, we propose 
an algorithm which is based on sign-definite 
decomposition.  

This paper differs from the mentioned works 
since it is determined a subbox which contains 
common solutions. 

Let 𝐴ଵ and 𝐴ଶ be three-dimensional matrices. 
Assume that 𝐴ଵ and 𝐴ଶ have a common positive 
definite solution. 

As in the two-dimensional case, common solution 
can be acquire. 

For the matrices, 

𝑃(𝑥) = ൥

𝑥ଵ 𝑥ଶ 𝑥ଷ

𝑥ଶ 𝑥ସ 𝑥ହ

𝑥ଷ 𝑥ହ 𝑥଺

൩, 𝑄ଷ(𝑦) = ൥

𝑦ଵ 𝑦ଶ 𝑦ଷ

𝑦ଶ 𝑦ସ 𝑦ହ

𝑦ଷ 𝑦ହ 𝑦଺

൩,  
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𝑅ଷ(𝑧) = ൥

𝑧ଵ 𝑧ଶ 𝑧ଷ

𝑧ଶ 𝑧ସ 𝑧ହ

𝑧ଷ 𝑧ହ 𝑧଺

൩, 

where 𝑥, 𝑦, 𝑧 ∈ ℝ଺, the solution of the Lyapunov 
equations  

𝐴ଵ
்𝑃(𝑥) + 𝑃(𝑥)𝐴ଵ = −𝑄ଷ(𝑦),

𝐴ଶ
்𝑃(𝑥) + 𝑃(𝑥)𝐴ଶ = −𝑅ଷ(𝑧)

  (6) 

is 

𝑥 = (𝜙ଵ(𝑦), 𝜙ଶ(𝑦), … , 𝜙଺(𝑦)) 

and 

𝑥 = ൫𝜂ଵ(𝑧), 𝜂ଶ(𝑧), … , 𝜂଺(𝑧)൯   (7) 

respectively. 

As in the two-dimensional case, the matrix 𝑄ଷ(𝑧) 
can be constructed 

𝑄ଷ(𝑧) = ቎

𝛾ଵ(𝑧) 𝛾ଶ(𝑧) 𝛾ଷ(𝑧)

𝛾ଶ(𝑧) 𝛾ସ(𝑧) 𝛾ହ(𝑧)

𝛾ଷ(𝑧) 𝛾ହ(𝑧) 𝛾଺(𝑧)
቏. 

The functions that will be used to provide positive 
definiteness of 𝑄ଷ(𝑧) and 𝑅ଷ(𝑧) are 

𝑔ଵ(𝑧) = 𝛾ଵ(𝑧),

𝑔ଶ(𝑧) = 𝛾ଵ(𝑧)𝛾ସ(𝑧) − 𝛾ଶ
ଶ(𝑧),

𝑔ଷ(𝑧) = det 𝑄ଷ(𝑧) ,

𝑔ସ(𝑧) = 𝑧ଵ𝑧ସ − 𝑧ଶ
ଶ

𝑔ହ(𝑧) = det 𝑅ଷ(𝑧)

𝑔଺(𝑧) = 𝑧ଵ

  (8) 

So, these functions are multivariate polynomials. 

4. AN APPLICATION OF SIGN-DEFINITE 
DECOMPOSITION 

The sign of a multivariate polynomial function 
ℎ(𝑎) over a box can be given by decomposition 
(see [17]). 

Define the box  

𝐷 = {𝑎 ∈ ℝ௞:  𝑎௜
ି ≤ 𝑎௜ ≤ 𝑎௜

ା, 𝑖 = 1,2, … , 𝑘} . 

Given any box can be transported to the first 
orthant in the parameter space. Therefore, one can 
assume that 𝑎௜

ି ≥ 0 without loss of generality. 
Then ℎ(𝑎) can be written as 

ℎ(𝑎) = ℎା(𝑎) − ℎି(𝑎) 

where ℎା(𝑎) ≥ 0 and ℎି(𝑎) ≥ 0 for all 𝑎 ∈ 𝐷. 
The functions ℎା(𝑎) and ℎି(𝑎) correspond to the 
positive and negative coefficients of ℎ(𝑎). 

Define the two extreme vertices of the box 𝐷 

𝑎ି = (𝑎ଵ
ି, 𝑎ଶ

ି, … , 𝑎௞
ି),

𝑎ା = (𝑎ଵ
ା, 𝑎ଶ

ା, … , 𝑎௞
ା).

 

Lemma 3 ([17]): If ℎା(𝑎ି) − ℎି(𝑎ା) > 0 then 
ℎ(𝑎) > 0, If ℎା(𝑎ା) − ℎି(𝑎ି) < 0 then ℎ(𝑎) <
0 for all 𝑎 ∈ 𝐷. 

Using the sufficient conditions from Lemma 1, 
one can test positivity of 𝑓௜ on the box 𝐵. 

In order to apply this conditions, the 𝐵 box (and 
accordingly the function 𝑓௜) must be transformed 
into the first orthant. 

Here, we provide an algorithm for the common 
solution to 2-dimensional two matrices. We 
investigate the points (𝑧ଵ, 𝑧ଶ) ∈ 𝐵 where the  
functions in (4) 𝑓௜ (𝑖 = 1,2,3,4) are positive. Here, 
we omitted the function 𝑓ସ(𝑧). 

This algorithm can also be adapted to 3-
dimensional matrices. Notice that, among the 
functions 𝑔௜ (𝑖 = 1,2, … ,6) given in (8), 𝑔଺(𝑧) can 
be omitted. In the case of existence, the following 
algorithm gives affirmative answer. 

Algorithm 1:  

Let 𝐵 be initial box. 

1. Calculate 
𝑚௜ = 𝑓௜

ା(𝑏ି) − 𝑓௜
ି(𝑏ା),

𝑀௜ = 𝑓௜
ା(𝑏ା) − 𝑓௜

ି(𝑏ି) (𝑖 = 1,2,3).
 

where 𝑏ି and 𝑏ା are extreme vertices of 
the box investigated. 

2. If min{𝑚ଵ, 𝑚ଶ, 𝑚ଷ} > 0 then 𝑓ଵ(𝑧) > 0, 
𝑓ଶ(𝑧) > 0 and 𝑓ଷ(𝑧) > 0 for all 𝑧 in the 
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box. Therefore, 𝑄ଶ(𝑧) > 0 and 𝑅ଶ(𝑧) >
0. Otherwise, go to step 3. 

3. If one of the 𝑀௜’s is nonpositive, there is 
no 𝑧 in the box so that 𝑄ଶ(𝑧) > 0 or 
𝑅ଶ(𝑧) > 0. This box should be 
eliminated. Otherwise, go to step 4. 

4. The investigating box is divided into two 
subboxes along an axis. Return to step 1. 

This processes are repeated until finding a subbox 
containing common solutions is provided or there 
is no subbox to be examined. 

5. EXAMPLES 

We will give the applications of the Algorithm 1. 

Example 1. Consider the following Hurwiz stable 
matrices 

 𝐴ଵ = ቂ
−2 4
1 −7

ቃ , 𝐴ଶ = ቂ
−2 1
−1 −1

ቃ. 

The matrices 𝐴ଵ𝐴ଶ and 𝐴ଵ𝐴ଶ
ିଵ have no negative 

real eigenvalues. From Theorem 3, they have 
common solution. The matrix 𝑄ଶ(𝑧) is obtained 
with regard to 𝑧 as 

𝑄ଶ(𝑧) = ൦

7

9
𝑧ଵ −

8

9
𝑧ଶ +

4

9

20

9
𝑧ଶ −

4

9
𝑧ଵ −

29

18
20

9
𝑧ଶ −

4

9
𝑧ଵ −

29

18

1

3
𝑧ଵ +

4

3
𝑧ଶ +

19

3

൪ 

and the common solution 𝑃 can be written as 

𝑃(𝑧) = ൦

2

9
𝑧ଵ −

1

9
𝑧ଶ +

1

18

1

18
𝑧ଵ +

2

9
𝑧ଶ −

1

9
1

18
𝑧ଵ +

2

9
𝑧ଶ −

1

9

1

18
𝑧ଵ +

2

9
𝑧ଶ +

7

18

൪ 

From the equation (4), we have the following 
functions 

𝑓ଵ(𝑧ଵ, 𝑧ଶ) =
7

9
𝑧ଵ −

8

9
𝑧ଶ +

4

9
, 

𝑓ଶ(𝑧ଵ, 𝑧ଶ) =
5

81
𝑧ଵ

ଶ +
295

81
𝑧ଵ −

496

81
𝑧ଶ

ଶ

+
220

81
𝑧ଵ𝑧ଶ +

172

81
𝑧ଶ +

71

324
, 

𝑓ଷ(𝑧ଵ, 𝑧ଶ) = 𝑧ଵ − 𝑧ଶ
ଶ. 

The sign of the functions 𝑓ଵ, 𝑓ଶ, 𝑓ଷ on the box 𝐵 =
[0,1] × [−1,1] is determined by Algorithm 1. 
After 116 steps in 0.022s, calculations give the 
following table. The calculations have been made 
by using the mathematical software Maple on a 
computer with an i5 1.4 GHz processor. 

Table 1. Results of the elimination process 

step Subboxes 𝒎 𝑴𝟏, 𝑴𝟐, 𝑴𝟑 Operatio
ns 

1 [0,1] × [−1,1] − +, +, + divide 

2 ൤0,
1

2
 ൨ × [−1,1] − +, +, + divide 

3 ൤
1

2
, 1൨ × [−1,1] − +, +, + divide 

⋮ ⋮ ⋮ ⋮ ⋮ 

16 
൤0,

1

4
൨

× ൤−1, −
1

2
൨ 

− +, −, + eliminate 

⋮ ⋮ ⋮ ⋮ ⋮ 

66 
൤
1

4
,
7

8
൨

× ൤−1, −
1

2
൨ 

− +, −, + eliminate 

⋮ ⋮ ⋮ ⋮ ⋮ 

116 ൤
7

8
 ,1൨ × ൤0,

1

4
൨ + +, +, + stop 

For all 𝑧 ∈ ቂ
଻

଼
 ,1ቃ × ቂ0,

ଵ

ସ
 ቃ, 𝑃(𝑧) > 0 is common 

solution to 𝐴ଵ and 𝐴ଶ. For instance, take 𝑧 = ቀ
ଵହ

ଵ଺
,

ଵ

଼
ቁ 

the matrix 

𝑃 = ൦

1

4
−

1

32

−
1

32

15

32

൪ 

is common solution to 𝐴ଵ and 𝐴ଶ. When the 
Algorithm 1 continues for 2000 steps, the 
common solution set (subboxes) is obtained as in 
Figure 1. 
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Figure 1. The subboxes are contained common 
solutions. 

Example 2. Consider the following Hurwitz 
stable matrices 

𝐴ଵ = ൥
−1 −3 −4
2 −3 −2
1 1 −2

൩ , 𝐴ଶ = ൥
−4 −3 1
5 1 −1

−2 0 −3
൩ . 

Eigenvalues of 𝐴ଵ𝐴ଶ
ିଵ and 𝐿(𝐴ଵ)𝐿ିଵ(𝐴ଶ),  are 

3.3244, 0.3242 ± 0.4138𝑖,
0.5103, 0.9922 ± 1.0773𝑖

 

respectively. We conclude that the segments 
[𝐴ଵ, 𝐴ଶ

ିଵ] is stable by Theorem 2 since they have 
no negative real eigenvalues.  

For initial box 

𝐵 = [0,1] × [−1,1] × [−1,1] × [0,1] × [−1,1], 

Algorithm 1 has given an affirmative result: 

𝑆 = ൤
17

64
,

35

128
൨ × ൤

−1

64
,

−1

128
൨ × ൤

−25

64
,
−3

8
൨

× ൤
3

128
,

1

32
൨ × ൤

1

64
,

1

32
൨. 

The matrix  

𝑃(𝑧) = ቎

𝜂ଵ(𝑧) 𝜂ଶ(𝑧) 𝜂ଷ(𝑧)

𝜂ଶ(𝑧) 𝜂ସ(𝑧) 𝜂ହ(𝑧)

𝜂ଷ(𝑧) 𝜂ହ(𝑧) 𝜂଺(𝑧)
቏ 

is the common solution of the Lyapunov 
equations (6) for all 𝑧 ∈ 𝑆, where 

𝜂ଵ(𝑧) =
619

3515
𝑧ଵ −

113

703
𝑧ଶ −

258

3515
𝑧ଷ

+
2659

7030
𝑧ସ −

166

3515
𝑧ହ +

86

3515
,

 

𝜂ଶ(𝑧) =
273

7030
zଵ −

80

703
zଶ −

108

3515
zଷ

+
1047

3515
zସ +

94

3515
zହ +

36

3515
,

 

𝜂ଷ(𝑧) = −
18

3515
𝑧ଵ +

26

703
𝑧ଶ +

246

3515
𝑧ଷ

−
83

7030
𝑧ସ +

567

3515
𝑧ହ −

82

3515
,

 

𝜂ସ(𝑧) =
819

7030
𝑧ଵ −

240

703
𝑧ଶ −

324

3515
𝑧ଷ

+
2767

7030
𝑧ସ +

282

3515
𝑧ହ +

108

3515
,

 

𝜂ହ(𝑧) = −
219

7030
𝑧ଵ +

41

703
𝑧ଶ −

261

3515
𝑧ଷ

−
106

3515
𝑧ସ +

813

3515
𝑧ହ +

87

3515
,

 

𝜂଺(𝑧) =
61

7030
𝑧ଵ −

5

703
𝑧ଶ +

169

3515
𝑧ଷ

+
43

7030
𝑧ସ −

82

3515
𝑧ହ +

1059

7030
.

 

Here, 𝑧଺ = 1 can be taken (see equation (5)).  
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