

Mugla Journal of Science and Technology

69

IMPLEMENTATION OF A GENERIC FRAMEWORK ON CROWD SIMULATION: A
NEW ENVIRONMENT TO MODEL CROWD BEHAVIOR AND DESIGN VIDEO

GAMES

Furkan Yücel, Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, Turkey,
furkan.yucel@metu.edu.tr

(https://orcid.org/0000-0001-7522-6248)
Elif Sürer*, Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, Turkey,

elifs@metu.edu.tr

(https://orcid.org/0000-0002-0738-6669)
Received: 21.07.2020, Accepted: 09.10.2020
*Corresponding author

Research Article
DOI: 10.22531/muglajsci.706841

Abstract

Crowd behavior is the collective act and gathering of a group of individuals to achieve a shared purpose. Swarm
intelligence-based optimization algorithms are usually used to solve complex problems for crowd behavior. Crowd
simulations are often used for the analyses that require precision in different domains such as complex structural analysis,
image recognition, creating nature-inspired non-player character movements in video games, and more. In this study, a
generic crowd simulation framework that can be used to simulate already-available crowd simulation algorithms and
design new ones was developed. The test environment layout was generated with the use of a generate-and-test algorithm
combined with the crowd simulation algorithms to make sure that the generated content is meeting the requirements of a
crowd simulation environment. Within the framework, three different crowd simulation algorithms —firefly algorithm,
particle swarm optimization, and artificial bee colony— are generated and also implemented as puzzle-like video games.
The results show that all fireflies achieved to gather at the global minimum of the generated layout faster and in a more
precise way than the artificial bee colony algorithm and particle swarm optimization algorithm. The developed framework
enables a generic and parametric testbed to design and compare different algorithms and to generate video games.
Keywords: Crowd Simulation, Firefly Algorithm, Artificial Bee Colony Algorithm, Particle Swarm Optimization, Generate-
and-Test Algorithm, Game Generation

KALABALIK SİMÜLASYONU ÜZERİNE GENEL BİR ÇERÇEVE GELİŞTİRİLMESİ:
KALABALIK DAVRANIŞINI MODELLEMEK VE VİDEO OYUNLARI TASARLAMAK

İÇİN YENİ BİR ORTAM

Özet

Kalabalık davranışı, ortak bir amaca ulaşmak için bir grup bireyin kolektif eylemi ve toplanması olarak tanımlanmaktadır.
Sürü zekası tabanlı optimizasyon algoritmaları genellikle kalabalık davranışı ile ilgili karmaşık problemleri çözmek için
kullanılmaktadır. Kalabalık simülasyonları genellikle hassas analiz gerektiren karmaşık yapısal analiz, görüntü tanıma,
video oyunlarında doğadan ilham alan oyuncu olmayan karakter hareketleri oluşturma gibi farklı alanlarda
kullanılmaktadır. Bu çalışmada, halihazırda mevcut olan kalabalık simülasyon algoritmalarını simüle etmek ve yenilerini
tasarlamak için kullanılabilecek genel bir kalabalık simülasyon çerçevesi geliştirilmiştir. Test ortamı düzeni, oluşturulan
içeriğin bir kalabalık simülasyon ortamının gereksinimlerini karşıladığından emin olmak için kalabalık simülasyon
algoritmaları ile birleştirilmiş bir oluştur-ve-test-et algoritması kullanılarak oluşturulmuştur. Bu çerçevede, üç farklı
kalabalık simülasyon algoritması (ateşböceği algoritması, parçacık sürü optimizasyonu ve yapay arı kolonisi) üretilmekte
ve bulmaca benzeri video oyunları olarak da geliştirilmektedir. Sonuçlar, tüm ateşböceklerinin üretilen düzenin global
minimumunda toplanmayı, yapay arı kolonisi algoritması ve parçacık sürü optimizasyonu algoritmasından daha hızlı ve
daha kesin bir şekilde başardığını göstermektedir. Geliştirilen çerçeve, genel ve parametrik bir test ortamının farklı
algoritmalar tasarlanıp karşılaştırılması ve video oyunları geliştirilme amacıyla kullanılabilmektedir.
Anahtar Kelimeler: Kalabalık Simülasyonu, Ateşböceği Algoritması, Yapay Arı Kolonisi, Parçacık Sürü Optimizasyonu,
Oluştur-ve-Test-Et Algoritması, Oyun Üretimi
Cite
Yücel, F. and Sürer, E. (2020). “Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model
Crowd Behavior and Design Video Games”, Mugla Journal of Science and Technology, 6(2), 69-78.

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

70

1. Introduction
Crowd simulations are mainly used in order to create
realistic mass behaviors in many fields such as computer
games and movies (i.e., visual effects or animations) [1],
to predict and simulate crowd movement in emergency
situations (i.e., fire escape training and earthquake
evacuation) [2], and to simulate military strategies in
specific scenarios [3]. There are different algorithms and
studies that simulate crowd behavior in the literature,
nature-inspired or bio-inspired optimization algorithms
being state-of-the-art. These swarm behavior-based
optimization algorithms such as artificial bee colony,
particle swarm optimization, and ant colony
optimization were widely used in the literature given
their applicability to different research domains. Yang [4]
examined the use of the firefly algorithm (FA) in the field
of optimization and engineering. The purpose of this
examination was to check the effectiveness of FA against
some traditional algorithms. As a result, FA showed
better performance over traditional algorithms in terms
of performance and finding global and local maxima and
minima. In a book edited by Dey [5], many applications
of FA were held in different research areas such as digital
image processing, electrochemical-based machine
processes, structural damage identification, and face
recognition. In another recent study [6], the authors
developed an evacuation simulation based on a bat
algorithm, which is an optimization algorithm created
from the inspiration taken from the bats in real-life. To
compare the results of the proposed algorithm, a particle
swarm optimization-based evacuation simulation was
also developed. The results showed that the bat
algorithm outperformed the particle swarm optimization
in terms of speed. In another study on bio-inspired
optimization by Wang et al. [7], a monarch butterfly
optimization was introduced. The algorithm was
inspired by real-life monarch butterflies that travel from
northern parts of the USA to Mexico. While introducing
the algorithm, two lands that represent the USA and
Mexico are used in order to simulate the movement of the
butterflies. Genetic algorithms were used to create new
and fitter generations. While creating those new
generations, the authors wanted to keep the total
population size the same, so they replaced old monarch
butterflies with the new ones if the new one was fitter
than the old one. In another bio-inspired optimization
study, Darwish [8] had done analyses on nine different
bio-inspired algorithms and discussed their field of work,
how they work, and what strategy makes them efficient.
Darwish also mentioned the similarities between these
algorithms, and he suggested to hybridize them with
each other and with other methods.
The use of bio-inspired optimization algorithms is also
common in video games. In a recent study done by
Kowalski et al. [9], the authors developed a video game,
specifically a car race genre, where they used a swarm-
based meta-heuristic called “krill herd algorithm” to
create movement strategies for the bots in the game. Krill

herd algorithm uses genetic operators to optimize the
goal if the task is minimization or maximization. In
another work by Diaz et al. [10], the authors
implemented particle swarm optimization to optimize
and determine non-player characters’ (NPCs)
movements in a first-person shooter genre. Ponticorvo et
al. [11] studied bio-inspired computational models for
game mechanics, where the user interacts with the game
by use of those models in the setting of educational
games and serious games. As the studies show, the use of
bio-inspired optimization algorithms on modeling
artificial intelligence in video games is a promising field,
both in terms of game generation and NPC creation.
Although bio-inspired optimization algorithms are
highly varied and used in the video game research, an
end-to-end simulation and game generation framework
is missing. The abovementioned studies and developed
frameworks either work as simulators that implement
already-available algorithms or as video games where
the bio-inspired optimization algorithms are already
embedded into the gameplay. The simulators and their
comparative analyses mainly focus on comparing the
already-available algorithms in different domains
without the flexibility of modifying or enhancing those
algorithms. The algorithm generation and game
generation tasks are performed in separate
environments, and a dynamic interface that feeds the
algorithms to the games is not available. Thus, the
literature lacks an end-to-end generic framework that
gives the users the autonomy of generating and testing
new optimization algorithms followed by an automated
video game generator that produces, measures, and
visualizes the flocking behavior while testing the
interaction behaviors of NPCs and human players. Such a
framework would also mold the roles and professions of
game developers, algorithm generators, and game
designers into one, with an easy-to-use and modular
interface allowing experiments in the three phases of the
development cycle —algorithm generation, simulation,
and game generation.
In this study, to overcome the abovementioned
limitations, we developed a generic framework in an
attempt to understand and exploit the common
characteristics of bio-inspired optimization algorithms
to provide a fast and useful tool, which creates crowd
simulations by using pre-defined parameters without
coding the algorithm itself, which allows the users to
combine the available parameters while also customizing
the code with their scripts. This generic framework on
crowd simulation was developed to speed up the process
of creating and implementing bio-inspired optimization
algorithms to allow the developers and designers to
experiment with the parameters during algorithm
implementation, followed by developing games using the
implementation results. To test and validate the
framework’s performance in these aspects, three state-
of-the-art crowd simulation algorithm-based video
games, where the objective is mainly on creating a puzzle
and simulating the behavior of the NPC movements by

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

71

crowd simulation, were developed. Also, to show the
flexibility of the framework, artificial attractors were
implemented in the games, which were designed to
modify both the location of the global minima and the
movement of particles in the algorithms and the games.
The main tasks are modifying the parameters to change
the location of the global minimum of any optimization
function that would be selected to create a game
environment and successfully simulating the crowd
behavior of the particles, which should collectively
gather at a global minimum, a global maximum or the
most attractive daisy for any generated layout. The
results show that the comparative analysis of the bio-
inspired optimization algorithms generated with our
framework showed similar results to the studies in the
literature [12], while also easily generating video games
using the parameters of the algorithm generation and
simulation phases. Thus, this framework can provide an
end-to-end algorithm generation, algorithm testing, and
game generation environment for both game developers
and game designers, enabling a variety of experiments on
the flocking behaviors of NPCs and human players.

2. Materials and Methods

2.1. Crowd Simulation Framework
The crowd simulation framework is developed to create
an environment where the developers can implement
already existing algorithms from the literature or design
new algorithms by selecting different parameters and
simulating the outcomes of the selected parameters. To
develop such a framework, some common characteristics
between bio-inspired algorithms were extracted from
the literature. Darwish et al. [8] studied and reviewed
many different bio-inspired swarm optimization
algorithms, and there are three different main
characteristics between those algorithms, such as
velocity-based strategies, cost-based strategies, and
randomized strategies (Figure 1). The framework is
developed with a modular structure that allows users to
select and combine different strategies, and that can be
improved by the developers according to the need of the
game that would be generated.
In order to use the framework first, the developer should
specify how many different movement strategies the
system has on each iteration. Then, the developer should
select the necessary parameters for each movement
strategy. These parameters are classified into three
groups, such as update strategy, which controls when the
particles update themselves; particle class strategy,
which controls according to what and how the particles
calculate their new positions; and next position strategy,
which controls how the particles update their positions
throughout the simulation.

Figure 1. Classification of some of the bio-inspired

swarm optimization algorithms.
The update strategy has three Boolean operators —the
first one is called when the update is only for a better
cost, which allows the particle updates on its position
only if the new position is better than the current one.
The second one is called “Save global best,” which allows
the particle to record the global best position and cost.
The third parameter, Only update if not updated before,
allows the particle update during the iteration only if the
previous try fails to find a better position for the particle.
If no Boolean operator is selected, the particle updates
itself on every iteration.
The particle strategy also has different Boolean
operators. The first one, Check against no particle, allows
the particles to be independent of others. The second
parameter, Check against better particles, allows the
particles to use other particles that have better cost
outcomes than theirs; when a new position is being
calculated. The third parameter, Completely random
particle, allows the particle to select a random particle
and calculate its new position accordingly.
The next position calculation strategy has different
parameters. The first one, Is Exponential, controls the
exponentiality while calculating a new position. The
second one, Should use distance, checks if the
calculations include distance as a parameter, and it also
has two different numeric parameters connected to itself,
which are the power of distance and distance multiplier.
Both parameters control the effect of the distance to the
calculation. The third parameter, Should use vectors,
allows the particle to use velocity while calculating a new
position, and it is connected to a numeric parameter
called the constant multiplier, which controls the effect
of the velocity to the calculation. The damping strategy
controls the maximum magnitude of the velocity. The
parameter, Should check the global best parameter,
allows the particle to use the global best position while
calculating a new position, and should check the personal
best that allows the particle to use its best location.
Randomness property allows the particle to use a
random multiplier while calculating a new position, and

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

72

random vector properties allow the particle to randomly
search for a new location.
After all the parameters are set, the simulation starts and
continues in an order, which is first, the particles are
generated, then the initial cost values are calculated.
After these two steps, iterations start, and update and
movement strategies are executed in that order until the
maximum iteration limit has been reached (Figure 2).
The framework is generic enough to create and test
different crowd simulation algorithms, and, in this study,
three different crowd simulation algorithms, firefly
algorithm, particle swarm optimization, and artificial bee
colony, were implemented as use cases. Also, the
framework allows users to create puzzle video games out
of each created algorithm.

Figure 2. The workflow diagram of the algorithm

implementation.

2.2. Simulation of Fireflies
Firefly algorithm [4] (FA) is a metaheuristic optimization
algorithm that has three main rules, which are described
as follows: First of all, all fireflies in the simulation are
unisex, and they can be attracted to any other firefly.
Secondly, fireflies are attracted to other fireflies which
are brighter than themselves; attractiveness  is
proportional to the Cartesian distance r, which is the
Cartesian distance between the two fireflies and to 

଴

which is the base attraction coefficient and to  which is
the light absorption coefficient:

 = 
଴

𝑒ି௥మ
 (1)

Lastly, brightness I is proportional to the Cartesian
distance r of the firefly to the global minimum of the
objective function, 𝐼଴, which is the base light intensity
coefficient and the light absorption coefficient .

𝐼 = 𝐼଴𝑒ି௥మ
 (2)

The movement of the fireflies depends on the Cartesian
distance between the two fireflies and their light
intensities, and randomization is also used with a vector
that is created by Gaussian distribution. The algorithm
iterates until the threshold of the maximum number of
generations is reached. An example of a running firefly
algorithm that has not achieved the maximum number of
generations yet can be seen in Figure 3. There has been a
pace coefficient  implemented by the authors, which
slows down the fireflies in the framework and in the
game in order to make the firefly movement visible to the
player. During the tests, the pacing coefficient  was set

to one, but during the game, the pacing coefficient  was
set to twice the total number of fireflies in order to
enhance the game difficulty.

Figure 3. The behavior of the fireflies after ten iterations

—they are almost gathered at the location of the jar.

The pace coefficient  is directly proportional to the
number of fireflies. This is a result of the fact that the
firefly which has the least amount of light intensity tries
to move towards the other fireflies, besides itself, since
the other fireflies are brighter and closer to the global
minimum of the optimization function, and the fireflies
are attracted to the light intensity. Therefore, it moves
with a greater distance at each iteration if the system has
more fireflies in it. The pace coefficient  is for
visualization purposes only. The new location of a
particle is calculated as follows:

𝑥௜ = 𝑥௜ +
(

଴
𝑒ି௥೔ೕ

మ

൫𝑥௝ − 𝑥௜൯ + ௜)


 (3)

Randomization is a crucial part of the crowd simulation
in order for the particles to search for a minimum or
maximum. The randomness coefficient , which has a
value of 0.05, is used for randomization while a vector
uniformly created by the Gaussian distribution is used in
order to calculate the new locations of the fireflies.

2.3. Daisy Attraction
Daisy attraction 𝑑௜ is calculated differently than the
firefly attraction. The reason for this situation is that
firefly attraction comes from the light intensity while the
daisy attraction comes from the surrounding daisy
population, so the firefly attraction mostly depends on
the Cartesian distance to the global minimum, whereas
daisy attraction is calculated with the Cartesian distance
between the daisies,

𝑑௜ = ෍ 𝑑଴

௡

௞ୀ଴

𝑒ି(௫೔ି௫ೖ)మ
 (4)

where 𝑑଴ is the base daisy attraction. Firefly algorithm
with daisy attraction can be explained with a pseudo-
code as follows:

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

73

Firefly algorithm with the daisy attraction

Objective function f(x), x = (𝑥ଵ, … , 𝑥ௗ)

1. Initialize a population of fireflies 𝑥௜(𝑖 = 1,2, … , 𝑛)

2. Initialize a population of daisies 𝑦௜(𝑖 = 1, 2, … , 𝑘)

3. Simulate all fireflies

while (t<iteration limit)

for i=1: n all n fireflies

 for j = 1: n+k all n fireflies and k daisies

 Light intensity 𝐼௜ at 𝑥௜ is determined by f (𝑥௜)

 if (𝐼௝>𝐼௜)

 Move the firefly I towards j in all d dimensions

 end if

 if (𝑑௝ > 𝐼௜)

 Move the firefly I towards daisy (j-n) in all d

 dimensions

 end if

 Update the light intensity

 end for j

end for i

end while

4. Determine win or lose

2.4. Relocation of the Global Minimum
To create gameplay that is suitable for a crowd
simulation-based game, the term relocation of a global
minimum was introduced. The global minimum would be
the offset at the start of the simulation with the offset
vector 𝑂ሬ⃗ . The offset vector is calculated as

𝑂ሬ⃗ =

෍ 𝑑ప
ሬሬሬ⃗

௞

௜ୀ଴

𝑘

(5)

where k is the total number of daisies and 𝑑ప
ሬሬሬ⃗ is the

location vector of the daisies.
Ackley function [13] was created to generate a hill-like
mathematical geometry to test the learning strategies.
The function has one global minimum at (0,0,0) and is
symmetrical on both x and y axis. The objective function
is selected to be the Ackley function due to the fact that
the function is open to simple adjustments without any
direct changes to the function itself —such as changing
the global minimum’s location or scaling the function,
which would change the attraction values of fireflies
(Figure 4). The offset vector, which is added to the
formula directly as an addition to the location of the
firefly in the system, can be seen in the formula below:

𝑓(𝑥) = −20𝑒
ቈି

ଵ
ହ

ටଵ
௞

∑ (௫೔ିை೔)మೖ
೔సభ ቉

(6)

where k is the number of dimensions. Ackley function
with the offset vector being zero can be seen in Figure 5.

Figure 4. The graphical representation of the Ackley

function where the black dot in the middle represents
the global minimum of the function.

Figure 5. The outline of the Ackley function with the

offset vector being (0,0,0).

2.5. Generate-and-Test Method
Since the game levels are created procedurally, and the
layout is not affecting the difficulty of the game level, the
generate-and-test method is selected as the generation
algorithm. Togelius et al. [14] introduce the generate-
and-test algorithm as an algorithm consisting of both a
generation and a test structure. Following the content
generation, it is tested with some criteria to check if the
generated content satisfies the requirements of design —
i.e., if there are overlapping objects, or if the level is
playable. If the generated content fails the test, it is
recreated until it passes the test. In our game, we used
the generate-and-test algorithm for each generated
content, which is explained in the next section.

2.6. Level Generation
The firefly video game requires three components: the
fireflies, a jar as a target for the fireflies, and daisies to act
as artificial attractors. Fireflies are generated randomly
without overlapping with each other, which is controlled
by the generate-and-test algorithm, in the given area
limits that would fit in the game environment, which is
from -2 to +2 for all three dimensions. The light intensity

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

74

of each firefly is calculated with the objective function,
which is, in our case, the Ackley function. The grid of the
game is selected to be located between -3 to 3 both in x
and z directions and at 0 in y-direction since the global
minimum is located at the 0 in y-direction at Unity 3D
game engine [15]. Daisies are generated by the use of a
generate-and-test algorithm where the algorithm creates
a layout by generating daisies on random grid locations
and then tests the generated layout with the given rules.
These given rules are, in our case, do daisies overlap with
each other or with the fireflies and how they affect the
global minimum of the objective function. The algorithm
stops iterating if the test result is sufficient enough to
generate a layout for the game itself, and if not, this
process is repeated until the given rules are satisfied.
Lastly, a jar is created on a tile which is not at the global
minimum, and which does not have a daisy on it to avoid
creating a puzzle level which is already solved. Figure 6
shows an example of a generated game level.

Figure 6. An example of a generated level outline with
fireflies, daisies, and a jar in the game.

The game consists of many different levels, which are
created procedurally at the start of each session. There
are two parameters that are modified at the start of each
level —the required number of fireflies that have to be
created and collected. Firefly count for each level is
selected randomly between the numbers of 10 and 20.
The number of daisies was selected to be an even number
between the numbers of 4 and 8 in order to create a level
balance. If the daisy number is more than 8, the difficulty
increases since daisies become dense, and one of the
goals of the game is keeping the daisies separated. The
other goal is to create symmetry with the daisies, so an
odd number of daisies create a problem where players
cannot create direct symmetrical layouts, so the game
level difficulty increases.

2.7. Gameplay
The game is developed as a puzzle game based on the
firefly algorithm for game rules and simulations of the
results. The player has the goal of catching the firefly into
the jar by rearranging the daisies on the grid layout. The

game is designed to be played on mobile platforms, so the
gameplay consists of tap, drag, and drop actions. The
game world consists of 9-by-9 tiles, daisies, and a jar,
which are all located at the center of the tiles. Tiles can
contain at most one daisy. The player interacts with the
game as he/she reorganizes the arrangement of the
daisies by simply dragging and dropping daisies to empty
tiles. If the selected daisy is dropped on a tile, which has
a daisy on it, that daisy returns to its initial position
because only one daisy can be present on a single tile. To
start the simulation, the player must press on the button,
“tap to simulate”. After the tap occurs, the firefly
algorithm starts to iterate until the fireflies gather at a
location, which can be the jar, the global minimum, which
is not the jar or the daisy with the highest attraction
value.
The game consists of puzzles that are generated at the
start of each level, and the puzzle is created with two
different effects of daisies, which are the relocations of
the global minimum due to the average position of
daisies and the daisy attraction. The player rearranges
the daisies to solve the puzzle by drag and drop action.
The player can navigate through the game menu with an
initial screen having one button that leads the player to
the game. Throughout the game, the player can check the
total amount of fireflies and the number of the collected
fireflies from the upper right part of the screen. If the
player wins, a similar panel appears, which leads the
player to the next level or to the main menu. If the player
fails, the “game over” panel appears to lead the player
either to restart the game or to the main menu.

2.8. Game Rules
The main aim of the game is to collect the fireflies in the
jar, as shown in Figure 7. After the player arranges the
daisies and taps on the “tap to simulate” button, the
firefly algorithm starts to iterate with a delay of 0.5
seconds due to the fact that at the iteration zero, the
fireflies have to be relocated with respect to the newly
calculated global minimum since the daisies are
rearranged by the player before the iterations start. In
order to relocate the fireflies with animation instead of
teleporting them to new locations, the LeanTween [16]
plugin from the Unity Asset Store is used. If there are
three or more daisies on adjacent tiles, the fireflies will
gather at the location of those daisies due to daisy
attraction, and then the player fails. If not, fireflies gather
at the global minimum, and if the arrangement is correct
and the recalculated position of the global minimum is
equal to the jar’s location, the player wins as
demonstrated in Figure 7. Otherwise, after 175
iterations, the player loses, as can be seen in Figure 8.
The performance tests were run on a MacBook Pro 12.1,
with 8 Gb RAM, with Intel Core i5 processor 2.7 Ghz, and
for the algorithm tests, MATLAB_R2019b was used. Unity
version 2019.2.0f1 was used for the development of the
game, and some of the assets such as 3D models, sprites,
textures were modeled or drawn by the authors while
the assets were taken from [17].

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

75

Figure 7. When the fireflies gather at the jar, the player
wins.

Figure 8. When the fireflies gather at the most attractive
daisy, the player loses.

3. Results
With the proposed framework, we created three puzzle
games using a firefly algorithm, particle swarm
optimization, and an artificial bee colony for the
simulation results of the puzzle, as can be seen in Figure
4, Figure 9, and Figure 10.

In order to check the reliability of our framework, we
tested the Firefly algorithm (FA) against two different
algorithms which are Artificial Bee Colony (ABC) and
Particle Swarm Optimization (PSO), with different
numbers of iterations and with different numbers of
particles within the framework as Agarwal et al. [12]
compared those in their work. The results are shown
below in Table 1, Table 2, and Table 3, respectively. Table
1 shows the effect of the change in the number of
particles in the system, whereas Table 2 shows the effect
of the change in the total number of iterations. Figure 11,

Figure 12, and Figure 13 show the results of the tests for
FA, PSO, and ABC, respectively. The number of particles
in the system has a positive effect on locating the global
minimum for the FA as well as the ABC but not PSO. Even
if the number of particles in the system is increased, the
computation time does not increase with a similar ratio.

Figure 9. Particle swarm version of the game.

Figure 10. Artificial bee colony version of the game.

The total number of iterations has an impact on all three
algorithms; also, as a result of the increase in the iteration
amount, the computation time increases with a similar
fashion to the increase in the iteration amount. The
average cost of each particle in the system decreases at
each of the iterations for the FA, whereas it decreases and
increases time to time for the PSO and ABC, as can be seen
in Figure 14 and Figure 16. Lastly, we tested these three
algorithms with a larger population size than the
previous test, which is 50 particles in the system, and
more iterations, which are 100 iterations at a larger area
which is 40-by-40, and the results show that all three
algorithms have similar results in terms of cost of the
best particle in the system and both the ABC and FA

Table 1. Test results of the Ackley function with different population sizes.

 FA PSO ABC FA PSO ABC

Best average cost 0.30 1.60 3.12 0.19 1.56 0.26

Final average cost 0.30 2.50 3.12 0.19 1.69 2.85

Time spent 3.73s 3.41s 6.20s 4.33s 3.83s 7.30s

Population 5 5 5 15 15 15

Iteration 20 20 20 20 20 20

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

76

scored better than the PSO in terms of best average cost.
However, in terms of computation time, ABC had the
highest computation time.

.

Figure 11. A closer look at an iteration of the firefly
algorithm and Ackley function’s graph.

Figure 12. A closer look at an iteration of the particle

swarm optimization.

4. Discussion
Artificial bee colony (ABC) works more with a focus on
the path-finding. The algorithm was created based on the
real-life behaviors of bees. At first, a random food source
is created in random locations, and then the bees are
created in random locations. The algorithm has three
different bee roles, which are employed bee, onlooker
bee, and scout bee. Karaboga [18] explains these roles as
onlooker bee is a bee that waits to make a decision to
choose a food source, and an employed bee is a bee that
goes to the food source to a previously visited food
source, and a scout bee is a bee that searches for a new
food source in a random location.

Figure 13. A closer look at an iteration of the firefly

algorithm and Ackley function’s graph.

The main reason why FA is better at finding the global
minimum than ABC is that while ABC iterates only some
part of the population while searching for better
locations, others either wait or go to the already searched
areas. However, in FA, all the fireflies try to reach the
maximum light intensity, thus the global minimum. Due
to the fact that ABC calculates all bees as if they were
employed bees and the algorithm keeps the ones which
are improved as employed bees. Then, the rest is
calculated as if they were onlookers, and the ones that
are not improved in the first two parts are calculated as
scouts at each iteration; it takes almost twice the
computation time of FA, as shown in Table 1.
FA outranks both PSO and ABC in terms of finding the
global minimum with a low population size, which is, in
this case, 5 (Table 1). The main reason is that the
particles in PSO would consider their next location based
on their previous velocity and the best location achieved
within the system. Due to the fact that the particles only
consider the best location and not all the locations of the
particles in the system, the particles have a lower chance
of locating the global minimum with a lower number of
populations. For ABC, the main problem with the low
number of bees in the system is that bees have to
communicate and collaborate within the system, but the
number is not sufficient enough to operate as a hive, so it
fails to locate it. The success of FA comes from the
extensive search for brighter light, and this causes the
particles to get closer to the global minimum in each term
as the fireflies communicate through attractiveness.
In Figure 14, Figure 15, and Figure 16, it can be seen that
the particles of FA continuously get closer and closer to
the global minimum of the system, whereas both PSO and

Table 2. Test results of the Ackley function with the different number of iterations.

 FA PSO ABC FA PSO ABC

Best average cost 0.19 1.56 0.26 0.006 0.36 0.032

Final average cost 0.19 1.69 2.85 0.006 0.49 2.30

Time spent 4.33s 3.83s 7.30s 8.34s 8.03s 15.28s

Population 15 15 15 15 15 15

Iteration 20 20 20 45 45 45

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

77

ABC have difficulties collectively getting closer to the
global minimum at each iteration during the simulation.

Figure 14. The average cost graph when there are five

particles in the system and 20 iterations.

This problem stems from PSO’s way of searching for the
global minimum, as mentioned before. Since the updated
velocity calculation includes both the previous velocity of
the particle and the particle’s personal best location, it
disturbs the particle’s focus from the best location in the
system. The reason is quite different for the ABC since
scout bees are searching for random locations in the
system to find new food sources and their cost changes
in an irregular way.

Figure 15. The average cost graph when there are 15

particles in the system and 20 iterations.
By analyzing Table 1, Table 2, Figure 14, Figure 15, and
Figure 16, it can be said that both PSO and ABC
algorithms fail to preserve the best average location in
search of the global minimum, whereas FA succeeds in
saving the best position achieved due to the same
reasons of fireflies’ managing to get closer to the global
minimum at each iteration.
Table 3 shows that at a larger field, with more particles
and iterations, ABC becomes as accurate as FA in terms
of locating the global minimum. The main reason behind
the improvement of ABC is that the bees share
information with one and another, so with more
iterations, they gather more data, and with more
population, each bee accesses more data. Another reason

why FA is worse than ABC at this test is that, while the
fireflies find their own way by attraction, the distance
between the fireflies has a direct effect on it.

When the fireflies gather at a close position to the global
minimum, fireflies get slower than usual. At this test, PSO
manages to have the best particle’s cost the same as both
FA’s best particle’s cost and ABC’s best particle’s cost due
to the same reason. Even though the best cost of the PSO
is better than FA, it still stays behind of FA in terms of the
best average cost. When the test results are compared to
the results from the work of Agarwal et al. [12], it can be
seen that the trend of the algorithms is the same, and the
results are similar.

Figure 16. The average cost graph when there are 15

particles in the system and 45 iterations.

5. Conclusion
In this study, we developed an end-to-end generic crowd
simulation framework in Unity 3D, which gives the
developers and designers the ability to recreate, modify
and test bio-inspired crowd simulation algorithms such
as state-of-the-art firefly algorithm, particle swarm
optimization, and artificial bee colony while enabling
them to use those algorithms during game generation. As
use cases, we generated three puzzle games using those
three state-of-the-art algorithms within the framework.
We introduced daisy attraction to the game as a side
mechanic to manipulate the crowd behavior of the
particles and used that behavior to create a puzzle video

Table 3. Test results of the Ackley function with 50
particles and 100 iterations at a 40-by-40 field.

 FA PSO ABC

Best cost 0.001 0.001 0.001

Best
average

cost

0.001 0.010 0.001

Time
spent

56.51s 50.29s 74.26s

Furkan Yücel and Elif Sürer
Implementation of a Generic Framework on Crowd Simulation: A New Environment to Model Crowd Behavior and Design Video Games

78

game. Then, we tested those algorithms’ performances
with different population sizes, iterations, and different
field boundaries. The results show that the firefly
algorithm (FA) outranks both the particle swarm
optimization (PSO) and artificial bee colony (ABC) within
the frame of the test. The tests show that FA achieves
better outcomes in modeling the behaviors of small
populated crowds when compared with ABC and PSO.
However, with the larger field size, iterations, and
population, the firefly algorithm falls behind ABC in
terms of the best cost and best average cost, but the
difference is so small that it does not affect the outcome
of the simulation. When we evaluate the firefly algorithm
in terms of computational speed, the firefly algorithm is
not the best among these three optimization algorithms.
However, if we are to consider the firefly algorithm’s
unique way of searching for global minimum and
precision, we can understand that the firefly algorithm is
open to many other improvements than daisy attraction
since the particles in the firefly algorithm use most of the
information in the system during their search for the
global minimum, which makes the firefly algorithm a
promising crowd simulation algorithm. The framework
has the limitations of using only Ackley function as an
objective function and generating only puzzle-like games
without any additional coding. As future work, we plan to
further develop our framework in order to simulate
agent-based crowd behavior, to give the game
developers and designers the ability to use different
objective functions, to generate games from different
genres, and to further examine the potential of the
optimization algorithms on NPCs to mimic more human-
like behavior during complex decision-making tasks.

6. References
[1] Lin, Y., Chen, Y., “Crowd control with swarm

intelligence”, 2007 IEEE Congress on Evolutionary
Computation, 2007, 3321-3328.

[2] Junaedi, H., Hariadi, M. and Purnama, I. K. E., “Multi
agent with multi behavior based on particle swarm
optimization (PSO) for crowd movement in fire
evacuation”, 2013 Fourth International Conference on
Intelligent Control and Information Processing
(ICICIP), 2013, 366-372.

[3] Mckenzie, F. D. et al., “Integrating crowd-behavior
modelling into military simulation using game
technology”, Simulation & Gaming, 39 (1), 10-38,
2008.

[4] Yang, X. S., “Firefly algorithm, stochastic test
functions and design optimization”, Journal of Bio
Inspired Computation, 2 (2), 78-84, 2010.

[5] Dey, N. (Ed.), “Applications of Firefly Algorithm and
its Variants: Case Studies and New Developments”,
Springer Nature, 2020.

[6] Yu, T. et al., “Modelling and Simulation of Evacuation
Based on Bat Algorithm”, IOP Conference Series:
Earth and Environmental Science, 267 (3), 2019,
032017.

[7] Wang, G. G. et al., “Monarch butterfly optimization”,
Neural computing and applications, 31 (7), 1995-
2014, 2019.

[8] Darwish, A., “Bio-inspired computing: Algorithms
review, deep analysis, and the scope of applications”,
Future Computing and Informatics Journal, 3(2), 231-
246, 2018.

[9] Kowalski, P. A., et al., “On the use of nature inspired
metaheuristic in computer game", 2017 Federated
Conference on Computer Science and Information
Systems, 2017, 29-37.

[10] Díaz, G., Ilgesias, A., “Evolutionary Behavioral Design
of Non-Player Characters in a FPS Video Game
Through Particle Swarm Optimization”, 13th
International Conference on Software, Knowledge,
Information Management and Applications, 2019, 1-
8.

[11] Ponticorvo, M. et al., “Approaches to Embed Bio-
inspired Computational Algorithms in Educational
and Serious Games”, CAID@ IJCAI, 2017.

[12] Agarwal, S. et al., “Evaluation performance study of
Firefly algorithm, particle swarm optimization and
artificial bee colony algorithm for non-linear
mathematical optimization functions”, 2013 Fourth
International Conference on Computing,
Communications and Networking Technologies
(ICCCNT), 2013, 1-8.

[13] Ackley, D., “A connectionist machine for genetic
hillclimbing”, Springer Science & Bussiness Media, 28,
2012.

[14] Togelius, J. et al., “Search-based procedural content
generation: A taxonomy and survey”, IEEE
Transactions on Computation Intelligence and AI in
Games, 3 (3), 172-186, 2011.

[15] Unity Technologies., Unity 3d., http://unity3d.com/,
Retrieved on July 21, 2020.

[16] Dented Pixel, LeanTween Assets,
https://assetstore.unity.com/packages/tools/anim
ation/leantween-3595, Retrieved on July 21, 2020.

[17] CraftPix, Assets, https://craftpix.net, Retrieved on
July 21, 2020.

[18] Karaboga, D., Ozturk, C., “A novel clustering
approach: Artificial Bee Colony (ABC) algorithm”,
Applied Soft Computing., 11 (1), 652-657, 2011.

