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Abstract 

Crowd behavior is the collective act and gathering of a group of individuals to achieve a shared purpose. Swarm 
intelligence-based optimization algorithms are usually used to solve complex problems for crowd behavior. Crowd 
simulations are often used for the analyses that require precision in different domains such as complex structural analysis, 
image recognition, creating nature-inspired non-player character movements in video games, and more. In this study, a 
generic crowd simulation framework that can be used to simulate already-available crowd simulation algorithms and 
design new ones was developed. The test environment layout was generated with the use of a generate-and-test algorithm 
combined with the crowd simulation algorithms to make sure that the generated content is meeting the requirements of a 
crowd simulation environment. Within the framework, three different crowd simulation algorithms —firefly algorithm, 
particle swarm optimization, and artificial bee colony— are generated and also implemented as puzzle-like video games. 
The results show that all fireflies achieved to gather at the global minimum of the generated layout faster and in a more 
precise way than the artificial bee colony algorithm and particle swarm optimization algorithm. The developed framework 
enables a generic and parametric testbed to design and compare different algorithms and to generate video games. 
Keywords: Crowd Simulation, Firefly Algorithm, Artificial Bee Colony Algorithm, Particle Swarm Optimization, Generate-
and-Test Algorithm, Game Generation 

KALABALIK SİMÜLASYONU ÜZERİNE GENEL BİR ÇERÇEVE GELİŞTİRİLMESİ: 
KALABALIK DAVRANIŞINI MODELLEMEK VE VİDEO OYUNLARI TASARLAMAK 

İÇİN YENİ BİR ORTAM 

Özet 

Kalabalık davranışı, ortak bir amaca ulaşmak için bir grup bireyin kolektif eylemi ve toplanması olarak tanımlanmaktadır. 
Sürü zekası tabanlı optimizasyon algoritmaları genellikle kalabalık davranışı ile ilgili karmaşık problemleri çözmek için 
kullanılmaktadır. Kalabalık simülasyonları genellikle hassas analiz gerektiren karmaşık yapısal analiz, görüntü tanıma, 
video oyunlarında doğadan ilham alan oyuncu olmayan karakter hareketleri oluşturma gibi farklı alanlarda 
kullanılmaktadır. Bu çalışmada, halihazırda mevcut olan kalabalık simülasyon algoritmalarını simüle etmek ve yenilerini 
tasarlamak için kullanılabilecek genel bir kalabalık simülasyon çerçevesi geliştirilmiştir. Test ortamı düzeni, oluşturulan 
içeriğin bir kalabalık simülasyon ortamının gereksinimlerini karşıladığından emin olmak için kalabalık simülasyon 
algoritmaları ile birleştirilmiş bir oluştur-ve-test-et algoritması kullanılarak oluşturulmuştur. Bu çerçevede, üç farklı 
kalabalık simülasyon algoritması (ateşböceği algoritması, parçacık sürü optimizasyonu ve yapay arı kolonisi) üretilmekte 
ve bulmaca benzeri video oyunları olarak da geliştirilmektedir. Sonuçlar, tüm ateşböceklerinin üretilen düzenin global 
minimumunda toplanmayı, yapay arı kolonisi algoritması ve parçacık sürü optimizasyonu algoritmasından daha hızlı ve 
daha kesin bir şekilde başardığını göstermektedir. Geliştirilen çerçeve, genel ve parametrik bir test ortamının farklı 
algoritmalar tasarlanıp karşılaştırılması ve video oyunları geliştirilme amacıyla kullanılabilmektedir. 
Anahtar Kelimeler: Kalabalık Simülasyonu, Ateşböceği Algoritması, Yapay Arı Kolonisi, Parçacık Sürü Optimizasyonu, 
Oluştur-ve-Test-Et Algoritması, Oyun Üretimi 
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1.  Introduction 
Crowd simulations are mainly used in order to create 
realistic mass behaviors in many fields such as computer 
games and movies (i.e., visual effects or animations) [1], 
to predict and simulate crowd movement in emergency 
situations (i.e., fire escape training and earthquake 
evacuation) [2], and to simulate military strategies in 
specific scenarios [3]. There are different algorithms and 
studies that simulate crowd behavior in the literature, 
nature-inspired or bio-inspired optimization algorithms 
being state-of-the-art. These swarm behavior-based 
optimization algorithms such as artificial bee colony, 
particle swarm optimization, and ant colony 
optimization were widely used in the literature given 
their applicability to different research domains. Yang [4] 
examined the use of the firefly algorithm (FA) in the field 
of optimization and engineering. The purpose of this 
examination was to check the effectiveness of FA against 
some traditional algorithms. As a result, FA showed 
better performance over traditional algorithms in terms 
of performance and finding global and local maxima and 
minima. In a book edited by Dey [5], many applications 
of FA were held in different research areas such as digital 
image processing, electrochemical-based machine 
processes, structural damage identification, and face 
recognition. In another recent study [6], the authors 
developed an evacuation simulation based on a bat 
algorithm, which is an optimization algorithm created 
from the inspiration taken from the bats in real-life. To 
compare the results of the proposed algorithm, a particle 
swarm optimization-based evacuation simulation was 
also developed. The results showed that the bat 
algorithm outperformed the particle swarm optimization 
in terms of speed. In another study on bio-inspired 
optimization by Wang et al. [7], a monarch butterfly 
optimization was introduced. The algorithm was 
inspired by real-life monarch butterflies that travel from 
northern parts of the USA to Mexico. While introducing 
the algorithm, two lands that represent the USA and 
Mexico are used in order to simulate the movement of the 
butterflies. Genetic algorithms were used to create new 
and fitter generations. While creating those new 
generations, the authors wanted to keep the total 
population size the same, so they replaced old monarch 
butterflies with the new ones if the new one was fitter 
than the old one. In another bio-inspired optimization 
study, Darwish [8] had done analyses on nine different 
bio-inspired algorithms and discussed their field of work, 
how they work, and what strategy makes them efficient. 
Darwish also mentioned the similarities between these 
algorithms, and he suggested to hybridize them with 
each other and with other methods. 
The use of bio-inspired optimization algorithms is also 
common in video games. In a recent study done by 
Kowalski et al. [9], the authors developed a video game, 
specifically a car race genre, where they used a swarm-
based meta-heuristic called “krill herd algorithm” to 
create movement strategies for the bots in the game. Krill 

herd algorithm uses genetic operators to optimize the 
goal if the task is minimization or maximization. In 
another work by Diaz et al. [10], the authors 
implemented particle swarm optimization to optimize 
and determine non-player characters’ (NPCs) 
movements in a first-person shooter genre. Ponticorvo et 
al. [11] studied bio-inspired computational models for 
game mechanics, where the user interacts with the game 
by use of those models in the setting of educational 
games and serious games. As the studies show, the use of 
bio-inspired optimization algorithms on modeling 
artificial intelligence in video games is a promising field, 
both in terms of game generation and NPC creation. 
Although bio-inspired optimization algorithms are 
highly varied and used in the video game research, an 
end-to-end simulation and game generation framework 
is missing. The abovementioned studies and developed 
frameworks either work as simulators that implement 
already-available algorithms or as video games where 
the bio-inspired optimization algorithms are already 
embedded into the gameplay. The simulators and their 
comparative analyses mainly focus on comparing the 
already-available algorithms in different domains 
without the flexibility of modifying or enhancing those 
algorithms. The algorithm generation and game 
generation tasks are performed in separate 
environments, and a dynamic interface that feeds the 
algorithms to the games is not available. Thus, the 
literature lacks an end-to-end generic framework that 
gives the users the autonomy of generating and testing 
new optimization algorithms followed by an automated 
video game generator that produces, measures, and 
visualizes the flocking behavior while testing the 
interaction behaviors of NPCs and human players. Such a 
framework would also mold the roles and professions of 
game developers, algorithm generators, and game 
designers into one, with an easy-to-use and modular 
interface allowing experiments in the three phases of the 
development cycle —algorithm generation, simulation, 
and game generation. 
In this study, to overcome the abovementioned 
limitations, we developed a generic framework in an 
attempt to understand and exploit the common 
characteristics of bio-inspired optimization algorithms 
to provide a fast and useful tool, which creates crowd 
simulations by using pre-defined parameters without 
coding the algorithm itself, which allows the users to 
combine the available parameters while also customizing 
the code with their scripts. This generic framework on 
crowd simulation was developed to speed up the process 
of creating and implementing bio-inspired optimization 
algorithms to allow the developers and designers to 
experiment with the parameters during algorithm 
implementation, followed by developing games using the 
implementation results. To test and validate the 
framework’s performance in these aspects, three state-
of-the-art crowd simulation algorithm-based video 
games, where the objective is mainly on creating a puzzle 
and simulating the behavior of the NPC movements by 
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crowd simulation, were developed. Also, to show the 
flexibility of the framework, artificial attractors were 
implemented in the games, which were designed to 
modify both the location of the global minima and the 
movement of particles in the algorithms and the games. 
The main tasks are modifying the parameters to change 
the location of the global minimum of any optimization 
function that would be selected to create a game 
environment and successfully simulating the crowd 
behavior of the particles, which should collectively 
gather at a global minimum, a global maximum or the 
most attractive daisy for any generated layout. The 
results show that the comparative analysis of the bio-
inspired optimization algorithms generated with our 
framework showed similar results to the studies in the 
literature [12], while also easily generating video games 
using the parameters of the algorithm generation and 
simulation phases. Thus, this framework can provide an 
end-to-end algorithm generation, algorithm testing, and 
game generation environment for both game developers 
and game designers, enabling a variety of experiments on 
the flocking behaviors of NPCs and human players. 

2.  Materials and Methods 

2.1. Crowd Simulation Framework 
The crowd simulation framework is developed to create 
an environment where the developers can implement 
already existing algorithms from the literature or design 
new algorithms by selecting different parameters and 
simulating the outcomes of the selected parameters. To 
develop such a framework, some common characteristics 
between bio-inspired algorithms were extracted from 
the literature. Darwish et al. [8] studied and reviewed 
many different bio-inspired swarm optimization 
algorithms, and there are three different main 
characteristics between those algorithms, such as 
velocity-based strategies, cost-based strategies, and 
randomized strategies (Figure 1). The framework is 
developed with a modular structure that allows users to 
select and combine different strategies, and that can be 
improved by the developers according to the need of the 
game that would be generated. 
In order to use the framework first, the developer should 
specify how many different movement strategies the 
system has on each iteration. Then, the developer should 
select the necessary parameters for each movement 
strategy. These parameters are classified into three 
groups, such as update strategy, which controls when the 
particles update themselves; particle class strategy, 
which controls according to what and how the particles 
calculate their new positions; and next position strategy, 
which controls how the particles update their positions 
throughout the simulation. 

 
Figure 1. Classification of some of the bio-inspired 

swarm optimization algorithms. 
The update strategy has three Boolean operators —the 
first one is called when the update is only for a better 
cost, which allows the particle updates on its position 
only if the new position is better than the current one. 
The second one is called “Save global best,” which allows 
the particle to record the global best position and cost. 
The third parameter, Only update if not updated before, 
allows the particle update during the iteration only if the 
previous try fails to find a better position for the particle. 
If no Boolean operator is selected, the particle updates 
itself on every iteration. 
The particle strategy also has different Boolean 
operators. The first one, Check against no particle, allows 
the particles to be independent of others. The second 
parameter, Check against better particles, allows the 
particles to use other particles that have better cost 
outcomes than theirs; when a new position is being 
calculated. The third parameter, Completely random 
particle, allows the particle to select a random particle 
and calculate its new position accordingly. 
The next position calculation strategy has different 
parameters. The first one, Is Exponential, controls the 
exponentiality while calculating a new position. The 
second one, Should use distance, checks if the 
calculations include distance as a parameter, and it also 
has two different numeric parameters connected to itself, 
which are the power of distance and distance multiplier. 
Both parameters control the effect of the distance to the 
calculation. The third parameter, Should use vectors, 
allows the particle to use velocity while calculating a new 
position, and it is connected to a numeric parameter 
called the constant multiplier, which controls the effect 
of the velocity to the calculation. The damping strategy 
controls the maximum magnitude of the velocity. The 
parameter, Should check the global best parameter, 
allows the particle to use the global best position while 
calculating a new position, and should check the personal 
best that allows the particle to use its best location. 
Randomness property allows the particle to use a 
random multiplier while calculating a new position, and 
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random vector properties allow the particle to randomly 
search for a new location. 
After all the parameters are set, the simulation starts and 
continues in an order, which is first, the particles are 
generated, then the initial cost values are calculated. 
After these two steps, iterations start, and update and 
movement strategies are executed in that order until the 
maximum iteration limit has been reached (Figure 2). 
The framework is generic enough to create and test 
different crowd simulation algorithms, and, in this study, 
three different crowd simulation algorithms, firefly 
algorithm, particle swarm optimization, and artificial bee 
colony, were implemented as use cases. Also, the 
framework allows users to create puzzle video games out 
of each created algorithm. 
 

 
Figure 2. The workflow diagram of the algorithm 

implementation. 

2.2. Simulation of Fireflies 
Firefly algorithm [4] (FA) is a metaheuristic optimization 
algorithm that has three main rules, which are described 
as follows: First of all, all fireflies in the simulation are 
unisex, and they can be attracted to any other firefly. 
Secondly, fireflies are attracted to other fireflies which 
are brighter than themselves; attractiveness  is 
proportional to the Cartesian distance r, which is the 
Cartesian distance between the two fireflies and to 

଴
 

which is the base attraction coefficient and to  which is 
the light absorption coefficient: 

 = 
଴

𝑒ି௥మ
 (1) 

Lastly, brightness I is proportional to the Cartesian 
distance r of the firefly to the global minimum of the 
objective function, 𝐼଴, which is the base light intensity 
coefficient and the light absorption coefficient . 

𝐼 = 𝐼଴𝑒ି௥మ
 (2) 

The movement of the fireflies depends on the Cartesian 
distance between the two fireflies and their light 
intensities, and randomization is also used with a vector 
that is created by Gaussian distribution. The algorithm 
iterates until the threshold of the maximum number of 
generations is reached. An example of a running firefly 
algorithm that has not achieved the maximum number of 
generations yet can be seen in Figure 3. There has been a 
pace coefficient  implemented by the authors, which 
slows down the fireflies in the framework and in the 
game in order to make the firefly movement visible to the 
player. During the tests, the pacing coefficient  was set 

to one, but during the game, the pacing coefficient  was 
set to twice the total number of fireflies in order to 
enhance the game difficulty. 
 

 
Figure 3. The behavior of the fireflies after ten iterations 

—they are almost gathered at the location of the jar. 

The pace coefficient  is directly proportional to the 
number of fireflies. This is a result of the fact that the 
firefly which has the least amount of light intensity tries 
to move towards the other fireflies, besides itself, since 
the other fireflies are brighter and closer to the global 
minimum of the optimization function, and the fireflies 
are attracted to the light intensity. Therefore, it moves 
with a greater distance at each iteration if the system has 
more fireflies in it. The pace coefficient  is for 
visualization purposes only. The new location of a 
particle is calculated as follows: 

𝑥௜ = 𝑥௜ +
(

଴
𝑒ି௥೔ೕ

మ

൫𝑥௝ − 𝑥௜൯ + ௜)


 (3) 

Randomization is a crucial part of the crowd simulation 
in order for the particles to search for a minimum or 
maximum. The randomness coefficient , which has a 
value of 0.05, is used for randomization while a vector 
uniformly created by the Gaussian distribution is used in 
order to calculate the new locations of the fireflies. 

2.3. Daisy Attraction 
Daisy attraction 𝑑௜  is calculated differently than the 
firefly attraction. The reason for this situation is that 
firefly attraction comes from the light intensity while the 
daisy attraction comes from the surrounding daisy 
population, so the firefly attraction mostly depends on 
the Cartesian distance to the global minimum, whereas 
daisy attraction is calculated with the Cartesian distance 
between the daisies, 

𝑑௜ = ෍ 𝑑଴

௡

௞ୀ଴

𝑒ି(௫೔ି௫ೖ)మ
 (4) 

where 𝑑଴ is the base daisy attraction. Firefly algorithm 
with daisy attraction can be explained with a pseudo-
code as follows: 
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Firefly algorithm with the daisy attraction 

Objective function f(x), x = (𝑥ଵ, … , 𝑥ௗ) 

1. Initialize a population of fireflies 𝑥௜(𝑖 = 1,2, … , 𝑛) 

2. Initialize a population of daisies 𝑦௜(𝑖 = 1, 2, … , 𝑘) 

3. Simulate all fireflies 

while (t<iteration limit) 

for i=1: n all n fireflies 

   for j = 1: n+k all n fireflies and k daisies 

      Light intensity 𝐼௜  at 𝑥௜  is determined by f (𝑥௜) 

      if (𝐼௝>𝐼௜) 

      Move the firefly I towards j in all d dimensions 

      end if 

      if (𝑑௝ > 𝐼௜) 

      Move the firefly I towards daisy (j-n) in all d                         

      dimensions 

      end if 

      Update the light intensity 

   end for j 

end for i 

end while 

4. Determine win or lose 

2.4. Relocation of the Global Minimum 
To create gameplay that is suitable for a crowd 
simulation-based game, the term relocation of a global 
minimum was introduced. The global minimum would be 
the offset at the start of the simulation with the offset 
vector 𝑂ሬ⃗ . The offset vector is calculated as 

𝑂ሬ⃗ =

෍ 𝑑ప
ሬሬሬ⃗

௞

௜ୀ଴

𝑘
 

(5) 

where k is the total number of daisies and 𝑑ప
ሬሬሬ⃗  is the 

location vector of the daisies. 
Ackley function [13] was created to generate a hill-like 
mathematical geometry to test the learning strategies. 
The function has one global minimum at (0,0,0) and is 
symmetrical on both x and y axis. The objective function 
is selected to be the Ackley function due to the fact that 
the function is open to simple adjustments without any 
direct changes to the function itself —such as changing 
the global minimum’s location or scaling the function, 
which would change the attraction values of fireflies 
(Figure 4). The offset vector, which is added to the 
formula directly as an addition to the location of the 
firefly in the system, can be seen in the formula below: 

𝑓(𝑥) = −20𝑒
ቈି

ଵ
ହ

ටଵ
௞

∑ (௫೔ିை೔)మೖ
೔సభ ቉

 
(6) 

where k is the number of dimensions. Ackley function 
with the offset vector being zero can be seen in Figure 5. 

 
Figure 4. The graphical representation of the Ackley 

function where the black dot in the middle represents 
the global minimum of the function. 

 
Figure 5. The outline of the Ackley function with the 

offset vector being (0,0,0). 

2.5. Generate-and-Test Method 
Since the game levels are created procedurally, and the 
layout is not affecting the difficulty of the game level, the 
generate-and-test method is selected as the generation 
algorithm. Togelius et al. [14] introduce the generate-
and-test algorithm as an algorithm consisting of both a 
generation and a test structure. Following the content 
generation, it is tested with some criteria to check if the 
generated content satisfies the requirements of design —
i.e., if there are overlapping objects, or if the level is 
playable. If the generated content fails the test, it is 
recreated until it passes the test. In our game, we used 
the generate-and-test algorithm for each generated 
content, which is explained in the next section. 

2.6. Level Generation 
The firefly video game requires three components: the 
fireflies, a jar as a target for the fireflies, and daisies to act 
as artificial attractors. Fireflies are generated randomly 
without overlapping with each other, which is controlled 
by the generate-and-test algorithm, in the given area 
limits that would fit in the game environment, which is 
from -2 to +2 for all three dimensions. The light intensity 
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of each firefly is calculated with the objective function, 
which is, in our case, the Ackley function. The grid of the 
game is selected to be located between -3 to 3 both in x 
and z directions and at 0 in y-direction since the global 
minimum is located at the 0 in y-direction at Unity 3D 
game engine [15]. Daisies are generated by the use of a 
generate-and-test algorithm where the algorithm creates 
a layout by generating daisies on random grid locations 
and then tests the generated layout with the given rules. 
These given rules are, in our case, do daisies overlap with 
each other or with the fireflies and how they affect the 
global minimum of the objective function. The algorithm 
stops iterating if the test result is sufficient enough to 
generate a layout for the game itself, and if not, this 
process is repeated until the given rules are satisfied. 
Lastly, a jar is created on a tile which is not at the global 
minimum, and which does not have a daisy on it to avoid 
creating a puzzle level which is already solved. Figure 6 
shows an example of a generated game level. 
 

 

Figure 6. An example of a generated level outline with 
fireflies, daisies, and a jar in the game. 

The game consists of many different levels, which are 
created procedurally at the start of each session. There 
are two parameters that are modified at the start of each 
level —the required number of fireflies that have to be 
created and collected. Firefly count for each level is 
selected randomly between the numbers of 10 and 20. 
The number of daisies was selected to be an even number 
between the numbers of 4 and 8 in order to create a level 
balance. If the daisy number is more than 8, the difficulty 
increases since daisies become dense, and one of the 
goals of the game is keeping the daisies separated. The 
other goal is to create symmetry with the daisies, so an 
odd number of daisies create a problem where players 
cannot create direct symmetrical layouts, so the game 
level difficulty increases. 

2.7. Gameplay 
The game is developed as a puzzle game based on the 
firefly algorithm for game rules and simulations of the 
results. The player has the goal of catching the firefly into 
the jar by rearranging the daisies on the grid layout. The 

game is designed to be played on mobile platforms, so the 
gameplay consists of tap, drag, and drop actions. The 
game world consists of 9-by-9 tiles, daisies, and a jar, 
which are all located at the center of the tiles. Tiles can 
contain at most one daisy. The player interacts with the 
game as he/she reorganizes the arrangement of the 
daisies by simply dragging and dropping daisies to empty 
tiles. If the selected daisy is dropped on a tile, which has 
a daisy on it, that daisy returns to its initial position 
because only one daisy can be present on a single tile. To 
start the simulation, the player must press on the button, 
“tap to simulate”. After the tap occurs, the firefly 
algorithm starts to iterate until the fireflies gather at a 
location, which can be the jar, the global minimum, which 
is not the jar or the daisy with the highest attraction 
value. 
The game consists of puzzles that are generated at the 
start of each level, and the puzzle is created with two 
different effects of daisies, which are the relocations of 
the global minimum due to the average position of 
daisies and the daisy attraction. The player rearranges 
the daisies to solve the puzzle by drag and drop action. 
The player can navigate through the game menu with an 
initial screen having one button that leads the player to 
the game. Throughout the game, the player can check the 
total amount of fireflies and the number of the collected 
fireflies from the upper right part of the screen. If the 
player wins, a similar panel appears, which leads the 
player to the next level or to the main menu. If the player 
fails, the “game over” panel appears to lead the player 
either to restart the game or to the main menu. 

2.8. Game Rules 
The main aim of the game is to collect the fireflies in the 
jar, as shown in Figure 7. After the player arranges the 
daisies and taps on the “tap to simulate” button, the 
firefly algorithm starts to iterate with a delay of 0.5 
seconds due to the fact that at the iteration zero, the 
fireflies have to be relocated with respect to the newly 
calculated global minimum since the daisies are 
rearranged by the player before the iterations start. In 
order to relocate the fireflies with animation instead of 
teleporting them to new locations, the LeanTween [16] 
plugin from the Unity Asset Store is used. If there are 
three or more daisies on adjacent tiles, the fireflies will 
gather at the location of those daisies due to daisy 
attraction, and then the player fails. If not, fireflies gather 
at the global minimum, and if the arrangement is correct 
and the recalculated position of the global minimum is 
equal to the jar’s location, the player wins as 
demonstrated in Figure 7. Otherwise, after 175 
iterations, the player loses, as can be seen in Figure 8. 
The performance tests were run on a MacBook Pro 12.1, 
with 8 Gb RAM, with Intel Core i5 processor 2.7 Ghz, and 
for the algorithm tests, MATLAB_R2019b was used. Unity 
version 2019.2.0f1 was used for the development of the 
game, and some of the assets such as 3D models, sprites, 
textures were modeled or drawn by the authors while 
the assets were taken from [17]. 
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Figure 7. When the fireflies gather at the jar, the player 
wins. 

 

Figure 8. When the fireflies gather at the most attractive 
daisy, the player loses. 

3. Results 
With the proposed framework, we created three puzzle 
games using a firefly algorithm, particle swarm 
optimization, and an artificial bee colony for the 
simulation results of the puzzle, as can be seen in Figure 
4, Figure 9, and Figure 10. 

In order to check the reliability of our framework, we 
tested the Firefly algorithm (FA) against two different 
algorithms which are Artificial Bee Colony (ABC) and 
Particle Swarm Optimization (PSO), with different 
numbers of iterations and with different numbers of 
particles within the framework as Agarwal et al. [12] 
compared those in their work. The results are shown 
below in Table 1, Table 2, and Table 3, respectively. Table 
1 shows the effect of the change in the number of 
particles in the system, whereas Table 2 shows the effect 
of the change in the total number of iterations. Figure 11, 

Figure 12, and Figure 13 show the results of the tests for 
FA, PSO, and ABC, respectively. The number of particles 
in the system has a positive effect on locating the global 
minimum for the FA as well as the ABC but not PSO. Even 
if the number of particles in the system is increased, the 
computation time does not increase with a similar ratio. 
 

 
Figure 9. Particle swarm version of the game. 

 
Figure 10. Artificial bee colony version of the game. 

The total number of iterations has an impact on all three 
algorithms; also, as a result of the increase in the iteration 
amount, the computation time increases with a similar 
fashion to the increase in the iteration amount. The 
average cost of each particle in the system decreases at 
each of the iterations for the FA, whereas it decreases and 
increases time to time for the PSO and ABC, as can be seen 
in Figure 14 and Figure 16. Lastly, we tested these three 
algorithms with a larger population size than the 
previous test, which is 50 particles in the system, and 
more iterations, which are 100 iterations at a larger area 
which is 40-by-40, and the results show that all three 
algorithms have similar results in terms of cost of the 
best particle in the system and both the ABC and FA 

Table 1. Test results of the Ackley function with different population sizes. 

 FA PSO ABC FA PSO ABC 

Best average cost 0.30 1.60 3.12 0.19 1.56 0.26 

Final average cost 0.30 2.50 3.12 0.19 1.69 2.85 

Time spent 3.73s 3.41s 6.20s 4.33s 3.83s 7.30s 

Population 5 5 5 15 15 15 

Iteration 20 20 20 20 20 20 
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scored better than the PSO in terms of best average cost. 
However, in terms of computation time, ABC had the 
highest computation time. 

. 

Figure 11. A closer look at an iteration of the firefly 
algorithm and Ackley function’s graph. 

 

 
Figure 12. A closer look at an iteration of the particle 

swarm optimization. 

4. Discussion 
Artificial bee colony (ABC) works more with a focus on 
the path-finding. The algorithm was created based on the 
real-life behaviors of bees. At first, a random food source 
is created in random locations, and then the bees are 
created in random locations. The algorithm has three 
different bee roles, which are employed bee, onlooker 
bee, and scout bee. Karaboga [18] explains these roles as 
onlooker bee is a bee that waits to make a decision to 
choose a food source, and an employed bee is a bee that 
goes to the food source to a previously visited food 
source, and a scout bee is a bee that searches for a new 
food source in a random location.  

 
Figure 13. A closer look at an iteration of the firefly 

algorithm and Ackley function’s graph. 
 

The main reason why FA is better at finding the global 
minimum than ABC is that while ABC iterates only some 
part of the population while searching for better 
locations, others either wait or go to the already searched 
areas. However, in FA, all the fireflies try to reach the 
maximum light intensity, thus the global minimum. Due 
to the fact that ABC calculates all bees as if they were 
employed bees and the algorithm keeps the ones which 
are improved as employed bees. Then, the rest is 
calculated as if they were onlookers, and the ones that 
are not improved in the first two parts are calculated as 
scouts at each iteration; it takes almost twice the 
computation time of FA, as shown in Table 1. 
FA outranks both PSO and ABC in terms of finding the 
global minimum with a low population size, which is, in 
this case, 5 (Table 1). The main reason is that the 
particles in PSO would consider their next location based 
on their previous velocity and the best location achieved 
within the system. Due to the fact that the particles only 
consider the best location and not all the locations of the 
particles in the system, the particles have a lower chance 
of locating the global minimum with a lower number of 
populations. For ABC, the main problem with the low 
number of bees in the system is that bees have to 
communicate and collaborate within the system, but the 
number is not sufficient enough to operate as a hive, so it 
fails to locate it. The success of FA comes from the 
extensive search for brighter light, and this causes the 
particles to get closer to the global minimum in each term 
as the fireflies communicate through attractiveness. 
In Figure 14, Figure 15, and Figure 16, it can be seen that 
the particles of FA continuously get closer and closer to 
the global minimum of the system, whereas both PSO and 

Table 2. Test results of the Ackley function with the different number of iterations. 

 FA PSO ABC FA PSO ABC 

Best average cost 0.19 1.56 0.26 0.006 0.36 0.032 

Final average cost 0.19 1.69 2.85 0.006 0.49 2.30 

Time spent 4.33s 3.83s 7.30s 8.34s 8.03s 15.28s 

Population 15 15 15 15 15 15 

Iteration 20 20 20 45 45 45 
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ABC have difficulties collectively getting closer to the 
global minimum at each iteration during the simulation.  
 

 
Figure 14. The average cost graph when there are five 

particles in the system and 20 iterations. 

This problem stems from PSO’s way of searching for the 
global minimum, as mentioned before. Since the updated 
velocity calculation includes both the previous velocity of 
the particle and the particle’s personal best location, it 
disturbs the particle’s focus from the best location in the 
system. The reason is quite different for the ABC since 
scout bees are searching for random locations in the 
system to find new food sources and their cost changes 
in an irregular way. 
 

 
Figure 15. The average cost graph when there are 15 

particles in the system and 20 iterations. 
By analyzing Table 1, Table 2, Figure 14, Figure 15, and 
Figure 16, it can be said that both PSO and ABC 
algorithms fail to preserve the best average location in 
search of the global minimum, whereas FA succeeds in 
saving the best position achieved due to the same 
reasons of fireflies’ managing to get closer to the global 
minimum at each iteration. 
Table 3 shows that at a larger field, with more particles 
and iterations, ABC becomes as accurate as FA in terms 
of locating the global minimum. The main reason behind 
the improvement of ABC is that the bees share 
information with one and another, so with more 
iterations, they gather more data, and with more 
population, each bee accesses more data. Another reason 

why FA is worse than ABC at this test is that, while the 
fireflies find their own way by attraction, the distance 
between the fireflies has a direct effect on it. 
 

 
When the fireflies gather at a close position to the global 
minimum, fireflies get slower than usual. At this test, PSO 
manages to have the best particle’s cost the same as both 
FA’s best particle’s cost and ABC’s best particle’s cost due 
to the same reason. Even though the best cost of the PSO 
is better than FA, it still stays behind of FA in terms of the 
best average cost. When the test results are compared to 
the results from the work of Agarwal et al. [12], it can be 
seen that the trend of the algorithms is the same, and the 
results are similar. 
 

 
Figure 16. The average cost graph when there are 15 

particles in the system and 45 iterations. 

5. Conclusion 
In this study, we developed an end-to-end generic crowd 
simulation framework in Unity 3D, which gives the 
developers and designers the ability to recreate, modify 
and test bio-inspired crowd simulation algorithms such 
as state-of-the-art firefly algorithm, particle swarm 
optimization, and artificial bee colony while enabling 
them to use those algorithms during game generation. As 
use cases, we generated three puzzle games using those 
three state-of-the-art algorithms within the framework. 
We introduced daisy attraction to the game as a side 
mechanic to manipulate the crowd behavior of the 
particles and used that behavior to create a puzzle video 

Table 3. Test results of the Ackley function with 50 
particles and 100 iterations at a 40-by-40 field. 

 FA PSO ABC 

Best cost 0.001 0.001 0.001 

Best 
average 

cost 

0.001 0.010 0.001 

Time 
spent 

56.51s 50.29s 74.26s 
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game. Then, we tested those algorithms’ performances 
with different population sizes, iterations, and different 
field boundaries. The results show that the firefly 
algorithm (FA) outranks both the particle swarm 
optimization (PSO) and artificial bee colony (ABC) within 
the frame of the test. The tests show that FA achieves 
better outcomes in modeling the behaviors of small 
populated crowds when compared with ABC and PSO. 
However, with the larger field size, iterations, and 
population, the firefly algorithm falls behind ABC in 
terms of the best cost and best average cost, but the 
difference is so small that it does not affect the outcome 
of the simulation. When we evaluate the firefly algorithm 
in terms of computational speed, the firefly algorithm is 
not the best among these three optimization algorithms. 
However, if we are to consider the firefly algorithm’s 
unique way of searching for global minimum and 
precision, we can understand that the firefly algorithm is 
open to many other improvements than daisy attraction 
since the particles in the firefly algorithm use most of the 
information in the system during their search for the 
global minimum, which makes the firefly algorithm a 
promising crowd simulation algorithm. The framework 
has the limitations of using only Ackley function as an 
objective function and generating only puzzle-like games 
without any additional coding. As future work, we plan to 
further develop our framework in order to simulate 
agent-based crowd behavior, to give the game 
developers and designers the ability to use different 
objective functions, to generate games from different 
genres, and to further examine the potential of the 
optimization algorithms on NPCs to mimic more human-
like behavior during complex decision-making tasks. 
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