
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 287

İki Boyutlu Video Oyunlarında Sinir Stili Aktarımı

Kullanarak Otomatik Oyun Mekaniği ve Estetiği Üretimi
Araştırma Makalesi/Research Article

 Deniz ŞEN, Hasan Tahsin KÜÇÜKKAYKI, Elif SÜRER

Çokluortam Bilişimi, Modelleme ve Simülasyon Enstitü Anabilim Dalı, Enformatik Enstitüsü, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye

deniz.sen_01@metu.edu.tr, tahsin.kucukkayki@metu.edu.tr, elifs@metu.edu.tr

(Geliş/Received:25.07.2020; Kabul/Accepted:02.07.2021)

DOI: 10.17671/gazibtd.706884

Özet— Video oyunu araştırması, karmaşık yöntemlerin ve algoritmaların geliştirildiği, sürekli değişmekte olan, dinamik

bir alandır. Prosedürel içerik üretimi, kullanıcı tarafından oluşturulan parçaları video oyunu içeriğini otomatikleştirmek

ve geliştirmek için algoritmalarla birleştirmeyi amaçlamakta ve bu yöntemlerin temelini oluşturmaktadır. Bununla

birlikte, sonuçlar oyun mekaniğine ve oyunun oynanış biçimine değil, çoğunlukla oyun estetiğine yansımaktadır. Bu

çalışmada, “tuval olarak oyun sahnesi” konsepti ile kullanıma hazır çarpıştırıcılar ve oyun estetiğini geliştiren, sanatsal

açıdan farklı stiller kullanarak iki boyutlu oyun seviyesindeki bir görüntüyü basit bir prototip oyun geliştirme ortamına

dönüştürebilen yöntem ve süreç sunulmaktadır. Bu amaçla, giriş oyun seviyesi görüntüsünün kenar ve renk bazlı

özellikleri Canny kenar belirleme, basit doğrusal yinelemeli kümeleme ve Felzenszwalb segmentasyonu kullanılarak

çıkarılmaktadır. Daha sonra, Unity oyun motoru, mekansal kontrol ile oyun seviyesinin stilinin aktarıldığı kenar ve renk

özelliklerine göre çarpıştırıcılar oluşturmak için kullanılmaktadır. Farklı sinir stil transfer algoritmalarının sonuçları,

Super Mario, Lode Runner ve Kid Icarus gibi oyunlar üzerinde karşılaştırılmakta ve tartışılmaktadır. Sonuçlar, bu

çalışmanın oyun mekaniği ve oyun estetiğine odaklanarak iki boyutlu video oyunu geliştirmeyi kolaylaştırma

potansiyeline sahip bir araç olduğunu göstermektedir.

Anahtar Kelimeler— sinir stili aktarımı, görüntü işleme, oyun mekaniği, video oyunu.

Automated Game Mechanics and Aesthetics Generation

Using Neural Style Transfer in 2D Video Games

Abstract— Video game research is an ever-changing and dynamic area where sophisticated methods and algorithms are

being developed. Procedural content generation (PCG), which aims to merge user-generated assets with algorithms to

automate and improve video game content, has been the core of this sophistication. However, the outcomes are primarily

reflected in game aesthetics, not in the game mechanics and gameplay. In this study, we introduce the “game scene as a

canvas” concept where simple prototype game development pipelines, that can convert a 2D game-level image into a

game development environment with ready-to-use colliders and artistically different styles that enhance the game

aesthetics, are introduced. To do so, edge-based and color-based features of the input game level image are extracted

using the Canny edge detector, Simple Linear Iterative Clustering, and Felzenszwalb segmentation. The Unity game

engine is then used to generate colliders based on the provided edge and color features where the game level is style

transferred with spatial control. Results of different neural style transfer algorithms are presented on benchmark games

such as Super Mario and Kid Icarus. Results show that this study can become a promising tool to simplify 2D video game

development, focusing on game mechanics and aesthetics.

Keywords— neural style transfer, image processing, game mechanics, video games.

1. INTRODUCTION

Recent developments in video game research are providing

new experiences and challenges to game players. With the

advancements of visualization, optimization, and

automation algorithms, and with the help of the increase in

computational power, the functionalities and the aesthetics

of video games are getting more sophisticated and more

https://orcid.org/0000-0002-5175-3438
https://orcid.org/0000-0002-7882-841X
https://orcid.org/0000-0002-0738-6669

288 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

advanced [1-2]. The main objective of the games is to

enable their players to enter the “flow” state where the

skills of the player and the challenges provided by the game

mostly match, causing a state where the player loses track

of time [3]. To do so, the games should change, adapt, and

create diverse, challenging, and entertaining experiences.

Playing the same games over and over could become a

repetitive experience in time if the game does not provide

new levels, challenges, appearances, or user-centric

adaptation.

Procedural content generation (PCG) is the systematic

automation of producing content merging user-generated

sprites, audio, and visuals using algorithmic approaches in

order to create enhanced, diverse and automatic content in

a fast and transitive way [4]. Neural style transfer is one of

the PCG approaches that create diverse artistic styles [5-

11] and get remarkable results, mainly in the image

processing domain. Neural style transfer has become a

highly researched topic in recent years due to deep learning

practices [5,11]. So far, the neural style transfer

experiments have been done to enhance the images’

aesthetic values, and there have been other approaches

rather than only deep learning algorithms.

Earlier works on non-parametric texture synthesis, such as

[9], tried to address filling and scaling the images with

different texture properties. The same approach was also

used in [10], in which two images were merged to obtain a

new styled image by overlapping and combining related

and small patches of the images. Despite these attempts,

deep learning has become the state-of-the-art approach in

image generation, as most of the time, the deep models can

learn the linear and non-linear relationships between their

inputs and outputs automatically, which mainly eliminates

the image pre-processing step. For instance, in [5], a

convolutional neural network (CNN) was trained to extract

content and style representations out of corresponding

images, and these assets were used to create a new image,

and the outcomes were successful. However, using CNNs

may cause unnecessary and unrealistic distortions for

accurate photo style transfer. One solution to this problem

is to associate semantic labeling of the input and style

images with maximizing the subregion mapping, as

proposed in [6]. In [7], a different approach in which the

foreground segmentation was combined with the neural

style transfer was used. The main idea was to style only the

user-specified object, which was done by first styling the

whole image and then separately segmenting out the object

to overlap the segmented and styled image further.

Although deep neural network approaches seemed to

perform relatively well, they are mostly trained with

artistic style images, which may cause them to overfit to

these kinds of styling operations inherently. When it comes

to using the neural style transfer approach in video games,

these models may struggle to perform as intended. Thus, a

more generic neural style transfer model can be more

useful for the video game domain. The model proposed in

[8] can style any arbitrary content image with any style

image by using an auto-encoder network architecture,

followed by correlating the content and style images to

produce a new image. This model also has the ability to

style hand-crafted parts of the image individually with

different style images.

While PCG and neural style transfer can be used to create

diverse content on image processing, audio signal

processing, and text generation domains, generating game

content by using machine learning models [12], which is

called Procedural Content Generation via Machine

Learning (PCGML), addresses mainly the video game

research and introduces new types of experiences to

gamers. PCGML uses the content within the game to

change the effects of them, such as levels, characters, and

maps, to name a few. PCGML [12] introduces

groundbreaking developments such as generating game

artifacts, auto-completion of missing game content, repair

unplayable areas, recognize, analyze, and evaluate the

game content. Snodgrass and Santiago Ontanon [13] used

Markov Chains to map the game levels between different

games while extracting a mapping on game tiles. They

evaluated their outcomes with Super Mario Bros., Kid

Kool, and Kid Icarus games. Guzdial and Riedl [14]

applied the probabilistic models learned from the video

gameplay and merged those models to create new game

levels. They evaluated the outcome of their model with

human participants. Gow and Corneli [15] also blended

two games using Conceptual Blending on Video Game

Description Language (VGDL) [16].

Although these attempts have begun to be used in video

game research, to the best of the authors’ knowledge,

neural style transfer has not been merged and adapted with

game mechanics transfer yet. Summerville et al. [12]

summarized this phenomenon as: “These approaches

transfer and blend level styles, but do not attempt to

address the game mechanics explicitly; both approaches

ensure playable levels, but do not attempt transfer or

blending between different mechanics.” Thus, transferring

the style of well-known background images of the game

levels and adding extra functionalities to the game objects

could enhance the complexity and content of a game.

In this study, we present forward and backward game

development pipelines using neural style transfer and game

mechanics transfer and showcase the outcomes of our

proposed method on five benchmark video games. The

following sections describe the steps of our methodology

in detail, followed by the visual and quantitative results of

our game mechanics and game aesthetics transfer.

2. MATERIALS AND METHODS

Our game mechanics and game aesthetics transfer

architecture can be divided into three main sections: feature

mask generation, neural style transfer, and game

mechanics generation. This study applies these steps to two

different game development pipelines —forward and

backward pipelines, as can be seen in Figure 1 and Figure

2— and provides a thorough analysis of five benchmark

video games in terms of visual and quantitative outcomes.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 289

2.1. Neural Style Transfer Pipelines

2.1.1 Forward Pipelines

In the forward pipeline, the game mechanics generation is

done using the properties of the original level image. This

generation includes three stages that are executed in the

following order: mask generation, neural style transfer

with region control, and game mechanics generation. The

mask generation step is a series of operations that produces

a binary bitmap —i.e., a mask— and the procedures are

explained in Section 2.2. The style transfer uses this mask,

the original level image, and two style images to produce a

styled background image for the newly created game. The

game mechanics generation part uses several features of

the Unity game engine, which can produce colliders using

the binary mask generated earlier and the styled

background image. The details of this procedure are

explained in the game mechanics generation section. The

pipeline terminates by producing a new Unity project/game

that contains a 2D game environment with new colliders

and a styled background layer.

2.1.2 Backward Pipelines

The backward pipeline is different from the forward

pipeline such that it first styles the input game level image,

followed by the mask generation step. Thus, in this

pipeline, the neural style transfer is not region controlled,

so at the instance of styling the background, there is not

any mask to indicate the regions to be styled using a

different style image. The mask generation step uses the

same algorithms that are used in the forward pipeline, but

the input is styled as the background image. Furthermore,

the mask and the styled image are put in the same

operations in the Unity game engine and are used to create

a new game environment with new colliders.

2.2. Mask Generation

2.2.1 Edge Based Mask Generation

The mask generation [17] operation consists of using

different image processing techniques, which extract a

binary mask from an input game level image and process

its edge features. The process starts with converting the

input RGB image into grayscale, which is in a single

channel form. Then, the image goes through a

morphological dilation operation with a disk kernel. This

operation highlights the boundaries of the color changes,

and it helps the edge detection step. In the absence of this

operation, it becomes difficult to detect the edges of the

image.

The Canny edge detection algorithm is a commonly used

edge detection algorithm, and the mask generation pipeline

also uses this algorithm to find the edges of the features

[18]. Since the dilation operation creates sharp changes of

grayscale colors, it equivalently adds sharper changes

across the image, and Canny edge detection searches for

higher changes between the pixel values. This algorithm

creates a binary image with the detected edges indicated by

the value one. This binary image is then used for contour

detection to find the groups of 1-valued pixels. The contour

detection algorithm used is described in [18], and it also

finds the bundles that can be completed even though a

bundle does not exactly describe a shape. To complete

these contours, each line of these contours is thickened to

form near-perfect shapes. Then, block-based connected

component labeling with 8-neighbors is applied. The

contour size is calculated based on the average number of

pixels of a contour. The contours that have a smaller

number of pixels than the average are eliminated. The

output of this step is the generated mask, which will be

used in the following steps of the pipeline.

2.2.2 Color-Based Mask Generation

The pipelines also generate mask images out of the color

images based on the floating-point RGB values. Colors

provide defined spatial properties of the image, which

makes it a reliable index to determine the locations to pick

the color values. Superpixels are groups of pixels that can

be considered as one large chunk of space. This operation

can be classified as a clustering operation that can be used

in unsupervised segmentation practices. The two effective

and easy-to-use segmentation algorithms —Simple Linear

Iterative Clustering (SLIC) and Felzenszwalb— are used

to detect the groups of pixels that have the same

characteristics.

2.3. Segmentation

2.3.1 SLIC Segmentation

In this study, in order to segment the parts of the color-

based pipelines, the SLIC algorithm [19,20] was chosen.

SLIC uses the principle of the k-means clustering

algorithm, which groups the data according to their

similarity in content and their positions on the respective

space. This algorithm requires a parameter to be chosen,

mostly heuristically, that indicates the number of clusters

to be formed on the image. However, the output may not

always give the exact number of the parameterized cluster

number in practice. As mentioned earlier, these clusters are

mostly called superpixels as the ensemble of the groups of

pixels creates a meaningful image.

In this study, a threshold is applied to the output of SLIC

first. However, assigning a metric as a threshold and

choosing a respective threshold value are rather difficult

tasks as the numerical data of the contents of the

superpixels are unreliable and unpredictable. On the other

hand, in this study, after several iterations on the

segmented images using SLIC, the regions with a higher

number of color value changes are seen to contain

important spatial features in the 2D video games. A metric

that can be used to detect the amount of change inside the

290 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

clusters is the variance of the RGB values of the member

pixels. Therefore, the separated variances of the three-color

channels were averaged and saved.

Then, a threshold is applied to the mean variances of each

superpixel. Then, the mean-variance values are then sorted,

followed by a threshold operation. This process is

parameterized with the elimination rate, indicating the

index inside the unique values of the mean variances. The

value corresponding to this index determines the

superpixel that will be labeled as one, which indicates the

presence of a collider on the pixels of this superpixel. This

selection is made by comparing the mean-variance value of

the superpixel —if the value is smaller than the threshold

value, the pixels are labeled as zero and otherwise labeled

as one. The binary mask is then generated based on the

labels of the pixels.

2.3.2 Felzenszwalb Segmentation

The second segmentation algorithm used is Felzenszwalb

[21], which is a graph-based approach that uses the color

properties of the image. The procedure of generating a

mask out of the segmentation of the input image is

precisely the same as the SLIC segmentation; however,

several parameters such as the minimum number of pixels

that a segment can possess or the size of the Gaussian

kernel are different. The rest of the pipeline is the same as

the previous segmentation procedure.

2.4. Neural Style Transfer

The neural style transfer step is either done before or after

the mask generation step. In such cases, the usage of the

neural style transfer model changes drastically. The neural

style transfer in this architecture is done via the

implementation of [8], which is an auto-encoder that can

transfer the style properties of one image to another to

finally obtain a visually pleasant image (Figure 3, Table 1).

The idea of this study is thoroughly based on the transfer

of an aesthetically pleasing style transfer into the 2D video

game domain. Therefore, in this case, the input content

image, which is the commonly used term for the image to

be styled, is a 2D game level image. Besides, the game

objects can have distinctive appearances from which the

player can understand that object’s functionality. The base

style transfer implementation also can have spatial control

over the stylization process; in other words, the model can

style indicated locations of the content image with a new

style image, different from the original one. The spatial

 Figure 2. Backward color pipeline

Figure 1. Forward edge pipeline

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 291

control is done via the indication of the locations to be

styled differently with a bitmap with the same size as the

content image that has value one on the pixels that are

preferred to be styled differently.

Figure 3. At each iteration, a different (less deep) pair of

encoder and decoder is used and the procedure is done for

five iterations (Adapted from Li et al. [8])

Table 1. The training procedure’s hyperparameters and

the total reconstruction loss function and common

qualities between different layers of encoder and

decoder networks
Parameter Value

Optimizer Adam

Learning rate 1e-4
Learning rate decay 5e-5

Beta1 0.9

Beta2 0.999
Maximum iteration 16000

Convolution kernel size 3x3

Convolution kernel number Either 64, 128, 256 or 512,
depending on the encoding and

decoding layer

Padding Reflection, 1 pixel in each side
Pooling in encoders Maximum

Pooling window in encoders 2x2

Pooling stride in encoders 2x2

Activation function ReLU

Upsampling in decoders Nearest with a scaling factor of

2

Pixel reconstruction loss weight 1

Feature loss weight 1

As mentioned earlier, the styling step can be done on

different timestamps, depending on the main pipeline. In

the forward pipeline, the mask generation is done based on

the content image before the style transfer step. Note that

the output of the step before the neural style transfer step is

a bitmap, which contains the information of the desired

spatial control behavior. Neural style transfer with spatial

control requires four inputs; the content image, the main

style image, the mask style image, and the mask —which

is a bitmap image. The resultant image contains different

kinds of styles depending on the input mask. However, in

the backward pipeline, the mask generation is done after

the neural style transfer. In this pipeline, the neural style

transfer works without spatial control as the mask is

generated based on the styled image itself. Ultimately, the

goal is to compare the results of the output of the pipelines

when the mask is generated based on the original content

image or the styled content image.

1 Internet: Texture, Stone Walls - Image Source:

https://www.sketchuptextureclub.com/textures/architectur

e/stones-walls/claddings-stone/exterior/wall-cladding-

stone-texture-seamless-19009, 24.07.2020.

The images in Figure 4 (stone texture1 and Marsden

Hartley’s Abstraction2) were used as the style images since

they have the aesthetic features and the addition of a third

dimension in the transfer.

2.5. Collider Generation

The last part of either of the pipelines is the collider

generation, where the mask generated from the prior steps

is put under several simple steps that result in obtaining a

game sprite having colliders in appropriate locations so that

the game objects become interactable. For this step, the

study counts on several features that the Unity game engine

[22] provides. The Unity game engine has the feature to

generate several triangular colliders out of binary masks

and requires a certain amount of tolerance [23] in terms of

the difference between the collider places indicated in the

mask and the generated colliders. For this experiment, the

tolerance was kept as low as possible to obtain a collider

map that matches the styled background components.

At this point, even though the colliders are ready to be

played on, the game requires a background whose visual

features overlap with the generated collider map [24]. It is

a rather simple step as the Unity game engine only requires

the styled background image to be imported and used as a

sprite and to be located behind the colliders. However, it is

relatively difficult to place the sprites on the specific

positions of the game space. A simple solution to this

problem is to put both the collider map and the background

style image on the origin of the game scene, but both the

background image and the collider map must match exactly

in terms of the pixel placements; otherwise, the game might

become unplayable. For instance, without any adjustment,

the player may be placed on a certain location that does not

have any visual features, such as a box that can be stepped

on; however, because of the lack of scaling on the collider

map, there can be a collider that should not be present. For

this issue, the metric of the scaling is taken as the pixel per

unit parameter that is defined while the background image

2 Internet: Marsden Hartley’s Abstraction - Image Source:

https://commons.wikimedia.org/wiki/File:Marsden_Hartl

ey_-_Abstraction_-_Google_Art_Project.jpg, 24.07.2020.

Figure 4. From left to right: (a) Mask style image, and (b)

main style image

https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://commons.wikimedia.org/wiki/File:Marsden_Hartley_-_Abstraction_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Marsden_Hartley_-_Abstraction_-_Google_Art_Project.jpg

292 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

and the bitmap are imported into the Unity game project.

When the heights and widths of both assets are inherently

equal to each other, and if both assets are imported with

one game unit that corresponds to the same number of

pixels per unit parameter, their overlap will ultimately

result in complete overlaps; thus, the desired outcome will

be achieved.

3. RESULTS AND DISCUSSION

In this section, visual and quantitative outputs from the

previous steps will be given and interpreted individually.

The benchmark games Super Mario Bros, Super Mario

Kart, Rainbow Islands, Lode Runner, and Kid Icarus [25]

were used to demonstrate the results. The games do not

contain any 3D assets and complex visual features. In the

examples, an abstract tone has been intentionally given to

the well-known benchmark games to highlight the neural

style transfer’s potential in enhancing the game aesthetics.

A more realistic output could have been possible by

changing the hyperparameters and the number of

iterations.

3.1. Edge Pipeline Results

In theory, edge-based features were expected to provide

usable results. The human eye can, in fact, differentiate the

game objects and possible colliders only by looking at the

image constituted by only the edges. Figure 5c is an

example of such an image; the human eye can imagine the

possible appearance and shape of the colliders only by

looking at that field.

The steps of the forward edge pipeline produce the fields

that are shown in Figure 5. The dilation has some

remarkable effects on the performance of the Canny edge

detector, as the output of this step is able to give reliable

clues about the way the colliders will be put in the later

steps. The noise elimination process, which is the

connected component thresholding step, did, in fact,

eliminate the small chunks of the objects, which can create

a smoother and better gaming experience on the map. In

the last step, the Unity game engine generated a sprite that

contains the colliders that the image processing steps have

created. The collider generation is done via approximating

the polygons that can be put on the binary image, and for

this particular pipeline, the polygons have meaningful

scales and positions. As mentioned earlier, the tolerance of

not covering the features indicated in the mask was set to

be low; therefore, the approximations tend to become more

complex yet more accurate. On the other side, the

backward edge pipeline, whose outputs are given in Figure

6, seems to have more noisy outputs in the intermediate

steps. In the case of Figure 6b, and possibly in any case of

styling with a different style image pair, the level image

gains some 3D effects, such as subtle color gradient

changes and alpha effects. The later steps then tend to

struggle remarkably in detecting the image features. The

colliders have also become more complex as the features

tend not to have trivial shapes.

3.2. Color Pipeline Results

The overall performance of the color pipeline varies due to

the pipelines preferred. In the forward pipeline with the

SLIC algorithm having 1000 segments as in Figure 7, the

separations seem to be well distributed. The segments are

meaningful in terms of their contents and their

neighborhood. When it comes to the elimination of the

redundant segments, which mostly correspond to the

background of the level image, the variance-based

thresholding results in eliminating several unimportant

parts that do not signify meaningful and potential game

mechanics. Most of the segments have rectangular areas

that decrease the complexity and make the game sprites not

overlap completely with the game mechanics. On the other

hand, the fact that the segments have low shape

complexities creates an easier environment for the Unity

game engine to fit the polygons. The polygons on the

output are very close to the input mask. However, in some

places, the collider generator connects and covers multiple

segments to create a single polygon, which produces

inaccurate outcomes. The backward pipeline using SLIC,

which can be seen in Figure 8, has some major

inaccuracies.

The style added before the segmentation process adds some

complexity, better yet, a slight dimensionality, which

affects the segmentation process. Besides, the variance-

based thresholding seems to fail as the gradient on the

image added by the styling step makes the variances

distribute too evenly throughout the segments. After this

point, the collider generation is seen to work poorly

because it is too difficult to fit the polygons inside the

selected regions.

In Figure 9, Felzenszwalb segmentation seems to separate

the segments better than the SLIC algorithm since not

every segment requires to have similar color properties.

For instance, the sky in the game level is taken as a single

segment, which simplifies the thresholding process.

However, it is seen that some of the large objects are

dropped out during the thresholding process, such as the

green pipes. The collider generation step is also more

effective in terms of the precision of the edges of the

colliders. The backward pipeline in Figure 10 performs in

a different way —the segments are not as well-defined as

the forward pipeline. However, looking at the overall mask

generated from the variance-based thresholding, the result

is well-organized and well put together, apart from some

cases where the clouds are too close to the platforms. The

output of the collider generation shows that the estimated

polygons seem to fit well to create an overall playable map

(Figure 10 and Figure 11). Figure 12, Figure 13, and Figure

14 demonstrate the end-to-end pipeline outcomes of the

games Rainbow Islands, Lode Runner, and Kid Icarus,

respectively.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 293

Figure 5. Results of the forward edge pipeline, from top to bottom, intermediate results: (a) Mario game content image,

(b) Grayscale dilation, (c) Canny edge detector, (d) Contours, (e) Thickened contours, (f) Connected components, (g)

Create feature mask, and (h) Collider generation

Figure 6. Results of the backward edge pipeline, from top to bottom, intermediate results: (a) Mario game content

image, (b) Style transferred image, (c) Grayscale dilation, (d) Canny edge detector, (e) Contours, (f) Thickened

contours, (g) Connected components, (h) Create feature mask, and (i) Collider generation

294 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

Figure 7. Results of the forward SLIC pipeline, five iterations, from top to bottom, intermediate results: (a) Mario game

content image, (b) SLIC segmentation, (c) Mask generation, (d) Style transferred image, and (e) Collider generation

Figure 8. Results of the backward SLIC pipeline, five iterations, from top to bottom, intermediate results: (a) Mario

game content image, (b) Style transfer, (c) SLIC segmentation, (d) Mask generation, and (e) Collider generation

Figure 9. Results of the forward Felzenszwalb pipeline, five iterations, from top to bottom, intermediate results: (a)

Mario game content image, (b) Felzenszwalb segmentation, (c) Mask generation, (d) Style transferred image, and (e)

Collider generation

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 295

Figure 11. From left to right, one iteration: (a) Original Mario Kart game level image, (b) Output of the mask

generation with the forward edge pipeline, and (c) Colliders generated by the Unity game engine

Figure 10. Results of the backward Felzenszwalb pipeline, five iterations, from top to bottom, intermediate results: (a)

Mario game content image, (b) Style transferred image, (c) Felzenszwalb segmentation, (d) Mask generation, and (e)

Collider generation

Figure 12. From left to right, four iterations: (a) Original of Rainbow Islands, (b) Output of the mask generation with

the forward Felzenszwalb pipeline, and (c) Styled game level image

296 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

Figure 13. From top to bottom, left to right, three iterations: (a) Original level image of Lode Runner, (b) Binary mask

generated with forward the SLIC pipeline, and (c) Styled game level image

Figure 14. From left to right, two iterations: (a) Original game level of Kid Icarus, (b) Binary mask generated with

forward Felzenszwalb pipeline, and (c) Styled game level image

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 297

3.3. Quantitative Results

The outputs of the pipelines differ drastically based on the

game they were run with. On the visual outputs, the

colliders are the most informative pieces of data in terms

of the overall performances of the pipelines and their game

mechanics generation processes. On the other hand, the

colliders are generated based on the outputs of the

pipelines, which are the binary masks and the components

inside them. Each pipeline was run to obtain the collider

coverage, the connected component number, the path sizes,

and the RAM usages of the final game.

The collider coverage can be defined as the percentage of

the pixels that are generated to be a collider over the

complete game level image. In Table 1, it is possible to see

the collider coverage values of each iteration of pipelines

on five games. The collider coverage values deviate across

the pipelines within a range between 7.34 and 15.55, which

is a relatively small difference in the context of video

games considering their versatility in visual features. This

situation can also imply that one can have some accurate

predictions about the incoming collider coverage by

looking at the visual features of the raw level image before

the game mechanics generation is applied. Conversely, the

average collider coverage percentages vary drastically,

such that they are spread between 19.6 and 66.4 —i.e., a

difference of 46.4. This implies the fact that the collider

coverage is highly dependent on the visual features and is

not a normalized metric across the pipelines. Backward

SLIC pipeline produced extreme situations as the

coverages vary between 57 and 78%, which are very high

percentages, and in such maps, a player can struggle to find

the places to move around. Another intermediate metric is

the number of connected components in the generated

mask. Although the final number of colliders can give more

information about the overall performance of the pipelines,

we are using the number of the connected components

because the Unity game engine treats the colliders inside a

collider map as a single collider, which does not signify

any information. However, the collider generation is

essentially fitting some polygons inside the given mask to

highlight the parts to be filled (Figure 11). Thus, combining

the collider coverage along with the number of connected

components can give a good estimation of the overall

performance. For instance, Figure 11b signifies the output

of the game mechanics generation process with the forward

edge pipeline applied on a level image of Mario Kart.

The collider coverage of this image with the forward edge

pipeline is 32%, and the number of components is one,

according to Table 1. This single map is converted into a

collider map, which can be seen in Figure 10c. Therefore,

a single large component is converted into a high number

of colliders in the Unity environment. Connected

component values are directly related to the image features

that are relatively far from each other such that they are not

clustered together or connected during the dilation process.

According to the standard deviation values of the

connected component numbers for different pipelines in

Table 2, there can be some extreme situations, such as a

component occupying 78% of the image or a component

occupying 0.25%. Again, the backward SLIC pipeline has

some high results where the colliders occupy a great

portion of the whole image, and the number of components

varies between 1 and 11. Thus, each component occupies

bigger portions of the map rather than the components of

the other outputs of the pipelines.

In Table 3, the results of the path size and the RAM usage

of the five games according to different pipelines are

presented. Game pipeline-based evaluation is meaningful

since the path sizes are found according to each pipeline’s

binary masks. The path size signifies the number of

significant colliders generated by the Unity game engine.

Each significant collider has smaller regions located inside

them; therefore, a smaller path size can signify a less

complex collider graph. For instance, if the mask generated

from any pipeline possesses a connected component that

has a high density, it is likely that a single large polygon

can be fit into that component, thus reducing the number of

polygons to be generated in order to cover each component.

Therefore, it is possible that there is an inverse correlation

between the amount of space each component occupies and

the path size. The backward SLIC pipeline produced high-

density components, as can be seen in Table 2, and the path

size of this pipeline is the smallest of all the outputs, as can

be seen in Table 3.

On RAM usage of the generated games, the expectation

would be in the way that a denser collider map, which is

directly related to the collider coverage, would use more

memory. However, such a correlation is not present in the

results shown in Table 2 and Table 3. On the other hand,

memory usage seems to be related to the area of the map,

which is valid in theory, as in the simplest terms, the more

the size of the area means more data to keep in RAM.

Therefore, the memory usage is more correlated with the

dimensions of the game level image, regardless of the

pipeline, given that the segments are overlapped

completely in terms of their shapes.

The collider generation step is also more effective in terms

of the precision of the edges of the colliders. The backward

pipeline in Figure 10 performs in a different way; the

segments are not as well-defined as the forward pipeline.

However, looking at the overall mask generated from the

variance-based thresholding, the result is well-organized

and well put together, apart from some cases, for instance,

the places where the clouds are too close to the platforms.

The output of the collider generation is also unusual

because the estimated polygons seem to fit well in order to

create an overall playable map. It is not easy to come to a

conclusion on the superiority of either of the pipelines, as

there are cases where they perform better or worse.

However, because styling an image creates new

dimensions and breaks the 2D properties of the games,

backward pipelines tend to create unstable colliders.

Although it can be argued that having unexpected colliders

on the map can have some ways of entertainment, it is

likely to be frustrating for the players as well.

298 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

Particularly, in the backward edge pipeline, most of the

edges are, in fact, detected, but their thickened versions and

their passes from the thresholding based on the pixel

numbers create unpleasing results; however, the places that

are kept fit on the collider space in a nice way. In the

backward color pipelines, the qualities of the outputs vary.

For instance, in the Felzenszwalb backward pipeline

(Figure 6e), the colliders on the left side of the level image

are as expected, but the ones on the right side are not

playable. Overall, it can be concluded that the generation

of the collider bitmap before the stylization process is a

more reliable way of processing the level image.

The outcomes of the segmentation types also differ given

that both color- and edge-based segmentation have flawed

parts, which is understandable considering the fact that the

game levels have varying parts with shapes and colors in

it. Edge-based segmentation seems to be accurate in terms

of the positions and shapes of the objects. However, the

colliders seem to be larger than they should be because of

the thickening process, which is a necessary procedure for

connected components. Color-based segmentation does

not have such a problem as the extracted segments are used

as they are. However, because the elimination is done via

the variances, the output of this thresholding process may

not always give the desired output since it can eliminate the

segments that could be meaningful when overlapped with

the colliders.

4. CONCLUSION

Video game research has become a highly active research

field where the steps on the simplification and automation

Table 3. Path sizes and RAM usages of the generated games

Generated

Games and

Their

Performance

Outcomes

Game Mechanics Generation Pipelines

Level
Image

Width

(pixels)

Level
Image

Height

(pixels)

Forward Edge
Backward

Edge
Forward

SLIC
Backward

SLIC
Forward

Felzenszwalb
Backward

Felzenszwalb

Path

Size

RAM

(MB)

Path

Size

RAM

(MB)

Path

Size

RAM

(MB)

Path

Size

RAM

(MB)

Path

Size

RAM

(MB)

Path

Size

RAM

(MB)

Super Mario 3232 208 24 495 31 502 34 507 12 509 151 518 66 512

Super Mario

Kart
1024 1024 97 541 134 495 58 558 52 559 40 561 90 518

Rainbow

Islands
297 1404 17 562 212 572 27 573 29 579 113 566 128 586

Lode Runner 275 214 21 587 48 585 16 594 22 594 5 598 13 604

Kid Icarus 256 2780 52 603 156 603 33 613 28 611 105 613 100 617

Std. Dev. 1144.9 948.5 30.1 37.8 67.8 44.4 13.8 36.2 13.2 35.2 52.8 33 38.7 43.9

Mean 1016.8 1126 42.2 557.6 116.2 551.4 33.6 569 28.6 570.4 82.8 571.2 79.4 567.4

Table 2. Collider coverages and connected component counts

Generated

Games

and Their

Mechanics

Game Mechanics Generation Pipelines

Forward Edge Backward Edge Forward SLIC Backward SLIC
Forward

Felzenszwalb

Backward

Felzenszwalb

Collider
Coverage

(%)

Number of
Connected

Components

Collider
Cov.

(%)

Conn.
Comp.

Count

Collider
Cov.

(%)

Conn.
Comp.

Count

Collider
Cov.

(%)

Conn.
Comp.

Count

Collider
Cov.

(%)

Conn.
Comp.

Count

Collider
Cov.

(%)

Conn.
Comp.

Count

Super Mario 14 10 14 3 34 30 59 6 17 33 22 30

Super Mario

Kart
32 1 23 3 79 2 78 1 19 49 56 61

Rainbow

Islands
6 3 35 11 62 14 77 8 37 76 40 59

Lode Runner 27 1 34 1 43 12 57 3 30 4 50 2

Kid Icarus 19 53 22 20 54 19 61 11 24 95 32 60

Std. Dev. 9.2 20 8 7.1 15.6 9.2 9.2 3.5 7.3 31.9 12.2 23.3

Mean 19.6 13.6 25.6 7.6 54.4 15.4 66.4 5.8 25.4 51.4 40 42.4

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021 299

of the game development processes —i.e., procedural

content generation— had a huge impact. This study has

been a first attempt on merging the neural style transfer and

game mechanics generation in a single game development

pipeline. Even with some of the most basic edge detection

and segmentation algorithms and the use of already

available collider tools, it is shown that video game

automatization could be possible, and our study provides a

fast, effective and enhanced game mechanics generation

approach. Thus, this study underlines the potential usage,

feasibility, and effectiveness of the neural style transfer

with a focus on game mechanics generation.

This study has been a prototype in the field of neural style

and game mechanics transfer, and there are methods and

techniques yet to be tried or discovered to elaborate this

proposed game generation pipeline forward. In this case,

for the game mechanics generation part, only some of the

most basic yet effective image processing methods were

used; however, deep learning methods are also suitable for

such practices, for instance, generative models [26]. They

can also be more adaptable to the unseen types of scenes as

in versatile domains such as video games, and non-linear

relationships are likely to represent their generic properties

rather than a series of image processing techniques.

Although the authors have tested the updated games

intensively, future work will focus on the playability and

usability of the games by a diverse group of participants.

These tests will include the well-known benchmark games

that were introduced in this study as well as the authors’

unique games that will be enhanced with the current

study’s algorithmic approach.

Another case that can be improved using generative models

is the complex game mechanics generation. In this study,

the addition of basic colliders has been the most suitable

solution in terms of game mechanics generation. However,

2D games can have different types of game mechanics,

such as rotation, tilt, and move. In future studies, new

models can also be trained in order to produce more

complex game mechanics.

REFERENCES

[1] H. Ragib, S. Chakraborti, M. Z. Hossain, T. Ahamed, M. A. Hamid,

M. F. Mridha, “Character and Mesh Optimization of Modern 3D

Video Games”, Advances in Data and Information Sciences,

655–666, Springer, Singapore, 2020.

[2] S. Bart, P. Dobrowolski, M. Skorko, J. Michalak, A. Brzezicka,

“Issues and advances in research methods on video games and

cognitive abilities”, Frontiers In Psychology, 6(1451), 1–7, 2015.

[3] M. Csikszentmihalyi, M. Csikzentmihaly, Flow: The psychology

of optimal experience, New York: Harper & Row, 1990.

[4] N. Shaker, J. Togelius, M. J. Nelson, Procedural Content

Generation in Games: A Textbook and an Overview of Current

Research, NewYork, NY, USA: Springer-Verlag, 2016.

[5] L. A. Gatys, A. S. Ecker, M. Bethge, “Image style transfer using

convolutional neural networks”, IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA, 2016.

[6] F. Luan, S. Paris, E. Shechtman, K Bala, “Deep photo style

transfer”, IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, 2017.

[7] J. J. Virtusio, A. Talavera, D. S. Tan, K. Hua, A. Azcarraga,

“Interactive style transfer: Towards styling user-specified object”,

IEEE Visual Communications and Image Processing (VCIP),

Taichung, Taiwan, 2018.

[8] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, M. Yang, “Universal style

transfer via feature transforms”, The Thirty-first Annual

Conference on Neural Information Processing Systems (NIPS),

Long Beach, CA, USA, 2017.

[9] K. Ziga, J. Bagchi, J. P. Allebach, F. Zhu, “Non-parametric texture

synthesis using texture classification”, Electronic Imaging, 17,

136–141, 2017.

[10] A. A. Efros, W. T. Freeman, “Image quilting for texture synthesis

and transfer”, 28th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH’01), Los Angeles, CA,

USA, 2001.

[11] J. Johnson, A. Alahi, L. Fei-Fei, “Perceptual losses for real-time

style transfer and super-resolution”, European Conference on

Computer Vision (ECCV 2016), Amsterdam, The Netherlands,

2016.

[12] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K.

Hoover, A. Isaksen, A. Nealen, J. Togelius, “Procedural content

generation via machine learning (PCGML)”, IEEE Transactions

on Games, 10(3), 257–270, 2018.

[13] S. Snodgrass, S. Ontanón, “Learning to generate video game maps

using markov models”, IEEE Transactions on Computational

Intelligence and AI in Games, 9 (4), 410–422, 2016.

[14] M. Guzdial and M. Riedl, “Learning to blend computer game

levels”, 7th International Conference on Computational

Creativity (ICCC 2016), Paris, France, 2016.

[15] J. Gow, J. Corneli, “Towards generating novel games using

conceptual blending”, Eleventh Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE-15),

Santa Cruz, CA, USA, 2015.

[16] A. J. Summerville, S. Snodgrass, M. Mateas, S. Ontanón, “The

vglc: The video game level corpus”, arXiv preprint

arXiv:1606.07487, 2016.

[17] A. Polesel, G. Ramponi, V. J. Mathews, “Image enhancement via

adaptive unsharp masking”, IEEE Transactions on Image

Processing, 9(3), 505–510, 2000.

[18] P. Bao, L. Zhang, X. Wu, “Canny edge detection enhancement by

scale multiplication”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(9), 1485–1490, 2005.

[19] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk,

“SLIC superpixels compared to state-of-the-art superpixel

methods”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(11), 2274–2282, 2012.

300 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 3, TEMMUZ 2021

[20] E. B. Alexandre, A. Shankar Chowdhury, A. X. Falcao, P. A. V.

Miranda, “IFT-SLIC: A general framework for superpixel

generation based on simple linear iterative clustering and image

foresting transform”, 28th SIBGRAPI Conference on Graphics,

Patterns and Images, Salvador, Bahia, Brazil, 2015.

[21] P. Felzenszwalb, D. Huttenlocher, “Efficient Graph-Based Image

Segmentation”, International Journal of Computer Vision, 59 (2),

167–181, 2004.

[22] Internet: Unity Technologies–Unity 3d., http://unity3d.com/,

24.07.2020.

[23] W. Goldstone, Unity 3. x game development Essentials, Packt

Publishing Ltd, 2011.

[24] C. Ericson, Real-time collision detection, CRC Press, 2004.

[25] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,

T. Hashiyama, N. Sorenson, P. Pasquier, P., P. Mawhorter, G.

Takahashi, G. Smith, “The 2010 Mario AI championship: Level

generation track”, IEEE Transactions on Computational

Intelligence and AI in Games, 3(4), 332–347, 2011.

[26] D. J. Rezende, S. Mohamed, D. Wierstra, “Stochastic

backpropagation and approximate inference in deep generative

models”, arXiv preprint arXiv:1401.4082, 2014.

