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Abstract 

In this paper, we will present the notion of the biquasilinear functional which is a new concept of quasilinear 

functional analysis. Just like bilinear functional, the notions of a biquasilinear functional and a quadratic form 

will not need to have the constitution of an inner product quasilinear space. We were able to define these 

functionals  in any quasilinear space. After giving this new notion, we discuss some examples and prove some 

theorems for considerable exercises to the theory of biquasilinear functionals in Hilbert quasilinear spaces. 

  

 

Keywords: Biquasilinear functional, quasilinear functional, quasilinear space, normed quasilinear space, 

inner product quasilinear space. 

 

Quasilineer Uzaylarda Biquasilineer Fonksiyoneller ve Bazı Sonuçları  

Öz 

Bu çalışmada quasilineer fonksiyonel analizde yeni bir kavram olan biquasilineer fonksiyonel kavramını 

tanımladık. Bilineer fonksiyonel kavramında olduğu gibi biquasilineer fonksiyonel ve kuadratik form 

kavramlarında da bir iç çarpım quasilineer uzayına ihtiyaç duyulmadığını gördük.  Bu fonksiyonelleri 

herhangi bir quasilineer uzayında tanımlayabildik. Çalışmamızda bu yeni kavramı verdikten sonra Hilbert 

quasilineer uzaylarda biquasilineer fonksiyoneller teorisi üzerine dikkate değer bazı örnekler verdik. Ve yine 

bu teori üzerine bazı teoremler ve ispatlarını çalışmamızda sunduk. 

 

Anahtar Kelimeler:  Biquasilineer fonksiyonel, quasilineer fonksiyonel, quasilineer uzay, normlu quasilineer 

uzay, iç çarpım quasilineer uzayı. 

 

1. Introduction 

The concept of quasilinear space presented 

by Aseev (Aseev, 1986), is a generalization 

of linear space. In the paper, Aseev defined 

normed quasilinear space and some reletad 

results which coherent counterpart of 

consequences in linear spaces. Additionaly, 

in the same study, he generalized the linear 

operators in linear spaces by giving the 

quasilinear operators in quasilinear spaces. 

Since then, several papers have deal with 

quasilinear functional analysis or the set-

valued analysis ( see, e.g., Rojas Medar et al., 

2005; Alefeld and Mayer,  2000;Çakan and 

Yılmaz, 2015; Levent and Yılmaz, 2018b.; 

Bozkurt and Yılmaz, 2016a; Bozkurt and 
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Yılmaz, 2018b; Bozkurt and Yılmaz, 2018b; 

Laksmikantham et al., 2006). 

Recently, in Yılmaz et al., (2016), they have 

proposed a series of new concepts such as 

inner product quasilinear space, Hilbert 

quasilinear space and some results involved 

to the orthogonality. The important 

distinction between inner product spaces and 

inner product quasilinear spaces is that it is 

defined as a set-valued function. This 

difference has led to new analyzes in 

quasilinear functional analysis unlike linear 

functional analysis, for example, see (Yılmaz 

et al., 2016). In 2018, they have worked on 

bounded quasilinear interval-valued 

functions, especially, Hahn-Banach extension 

theorem for set-valued functions (Levent and 

Yılmaz, 2018a).   

In this paper, we generalize the notion of 

bilinear functional by introducing the 

biquasilinear functional. Just as in the 

concept of quasilinear operator we used 

partial order relation while defining the 

notion of biquasilinear operator. With this 

new definition, we were able to give coherent 

counterparts of consequences linear 

functional analysis. Additionally, we realized 

that just like bilinear functional, the notions 

of a biquasilinear functional and a quadratic 

form will not need to have the construction 

of an inner product quasilinear space. These 

functionals can be described in any 

quasilinear spaces. After giving this new 

notion, we discuss some examples and prove 

some theorems for considerable 

implementations to the hypothesis of 

functionals in Hilbert quasilinear spaces. 

 

2. Material and Methods 

First, we recall some definitions from Aseev, 

(1986). 

Definition 1. By a quasilinear space we 

mean a nonempty set 𝑀 with the process: 

(𝑚, 𝑛) → 𝑚 + 𝑛 from 𝑀 × 𝑀 into 𝑀 called 

addition, 

(𝛼, 𝑚) → 𝛼 ∙ 𝑚 from ℝ × 𝑀 into 𝑀 called 

multiplication by scalars, and with a partial 

order correlation " ≤ ", such that the 

consequent circumstances are satisfied for 

every 𝑚, 𝑛, 𝑧, 𝑘 ∈ 𝑀 and every real numbers 

𝛼, 𝛽 ∈ ℝ: 

q1) 𝑚 ≤ 𝑚, 

q2) 𝑚 ≤ 𝑧 if 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑧, 

q3) 𝑚 = 𝑛 if 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑚, 

q4) 𝑚 + 𝑛 = 𝑛 + 𝑚, 

q5) 𝑚 + (𝑛 + 𝑧) = (𝑚 + 𝑛) + 𝑧, 

q6) there exists an element 𝜃 ∈ 𝑀 such that 

𝑚 + 𝜃 = 𝑚, 

q7) 𝛼 ∙ (𝛽 ∙ 𝑚) = (𝛼𝛽) ∙ 𝑚, 

q8) 𝛼 ∙ (𝑚 + 𝑛) = 𝛼 ∙ 𝑚 + 𝛽 ∙ 𝑛, 

q9) 1 ∙ 𝑚 = 𝑚, 

q10) 0 ∙ 𝑚 = 𝜃, 

q11) (𝛼 + 𝛽) ∙ 𝑚 ≤ 𝛼 ∙ 𝑚 + 𝛽 ∙ 𝑚, 

q12) 𝑚 + 𝑛 ≤ 𝑧 + 𝑘 if 𝑚 ≤ 𝑧 and 𝑛 ≤ 𝑘, 

q13) 𝛼 ∙ 𝑚 ≤ 𝛼 ∙ 𝑛 if 𝑚 ≤ 𝑛. 

Example 1. Let 𝛺(ℝ) be space of whole 

nonempty closed and bounded subsets of a 

normed linear space over field ℝ and Ω𝐶(ℝ) 

be space of whole nonempty convex, 

compact subsets of a normed linear space 

over field ℝ.  Ω𝐶(ℝ) and 𝛺(ℝ) are not linear 

spaces. They are quasilinear space with 
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respect to the containment correlation " ⊆ ", 

algebraic sum processing 𝐴 + 𝐵 =

{𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  and the real-scalar 

multiplication 𝛼 ∙ 𝐴 = {𝛼𝑎: 𝑎 ∈ 𝐴} (Aseev, 

1986). 

If an element 𝑚 in a quasilinear space 𝑀 has 

an reverse, then 𝑚 is called regular. 

Otherwise, we say that 𝑚 is called singular.  

By 𝑀𝑟 denote the set of overall regular 

elements of quasilinear space 𝑀 and 𝑀𝑠 

denote the set of overall singular elements of 

quasilinear space 𝑀. Also, 𝑀𝑟 and 𝑀𝑠 ∪ {0} 

are subspace of 𝑀 (Aseev, 1986). 

Definition 2. A function 𝑚 → ‖𝑚‖ from a 

quasilinear space 𝑀 into ℝ  is called a norm 

if it satisfied the succeding properties: 

nq1) ‖𝑚‖𝑀 > 0 if 𝑚 ≠ 0, 

nq2) ‖𝑚 + 𝑛‖𝑀 ≤ ‖𝑚‖𝑀 + ‖𝑛‖𝑀, 

nq3) ‖𝛼 ∙ 𝑚‖𝑀 = 𝛼‖𝑚‖𝑀,  

nq4) if 𝑚 ≤ 𝑛, then ‖𝑚‖𝑀 ≤ ‖𝑛‖𝑀, 

nq5) if for any 𝜀 > 0 there exists an element 

𝑚𝜀 ∈ 𝑀 such that 𝑚 ≤ 𝑛 + 𝑚𝜀 and 

‖𝑚𝜀‖𝑀 ≤ 𝜀 then  𝑚 ≤ 𝑛 (Aseev, 1986). 

A quasillinear space 𝑀 with a norm is called 

a normed quasilinear space.  

A norm on quasilinear space 𝑀 describes a 

metric on 𝑋 which is defined by 

ℎ𝑀(𝑚, 𝑛) = 𝑖𝑛𝑓{𝜀 ≥ 0: 𝑚 ≤ 𝑛 + 𝑎1
𝜀 ,   𝑛 ≤

𝑚 + 𝑎2
𝜀 , ‖𝑎𝑖

𝜀‖ ≤ 𝜀}           (𝑚, 𝑛 ∈ 𝑀) 

and is called the Hausdorff metric or norm 

metric excited by the norm (Aseev, 1986). 

Let 𝑀 and 𝑁 be quasilinear space. A 

mapping 𝑄: 𝑀 → 𝑁 is called a quasilinear 

operator if it provides the following cases: 

qo1) 𝑄(𝑚 + 𝑛) ≤ 𝑄(𝑚) + 𝑄(𝑛), 

qo2) 𝑄(𝛼 ∙ 𝑚) = 𝛼 ∙ 𝑄(𝑚) 

qo3) if 𝑚 ≤ 𝑛, then 𝑄(𝑚) ≤ 𝑄(𝑛) 

for every 𝑚, 𝑛 ∈ 𝑀 and 𝛼 ∈ ℝ. 

Example 2. Let 𝑀 be a Banach space. The 

function ‖𝐴‖𝛺(𝑀) = 𝑠𝑢𝑝𝑎∈𝐴‖𝑎‖𝑀 is a norm 

on Ω(𝑀). Also,  Ω𝐶(𝑀) is a normed 

quasilinear space with the identical norm. 

The Hausdorff metric on  Ω𝐶(𝑀) and  Ω(𝑀) 

is described by ℎ𝑀(𝐴, 𝐵) = 𝑖𝑛𝑓{𝑟 ≥ 0: 𝐴 ⊆

𝐵 + 𝑆𝑟
𝜃 ,   𝐵 ⊆ 𝐴 + 𝑆𝑟

𝜃} where 𝑆𝑟
𝜃 states a 

closed ball of radius 𝑟 about 𝜃 ∈ 𝑋 (Aseev, 

1986). 

Definition 3. Let 𝑀 be a quasilinear space 

and 𝑚 ∈ 𝑀. The set of whole regular 

elements proceeding 𝑚 is named floor of 𝑚 

and denoted by 𝐹𝑚 = {𝑛 ∈ 𝑀𝑟: 𝑛 ≤ 𝑚}. The 

floor of every subset 𝐴  of 𝑀 is defined as 𝐹𝐴 

(Çakan and Yılmaz, 2015). 

Definition 4. Let 𝑀 be a quasilinear space. 

𝑀 is called solid floored if 𝑚 =

𝑠𝑢𝑝{𝑛 ∈ 𝑀𝑟: 𝑛 ≤ 𝑚} for every 𝑚 ∈ 𝑀. 

Other than this, 𝑀 is named nonsolid floored 

quasilinear space (Çakan and Yılmaz, 2015). 

Definition 5. Let 𝑀 be a quasilinear space. 

Consolidation of floor of 𝑀 is the minimum 

solid floored quasilinear space �̂� including 

𝑀 ( Yılmaz et al., 2016).  

Definition 6. Let 𝑀 be quasilinear space. A 

function 〈∙,∙〉: 𝑀 × 𝑀 → Ω𝐶(ℝ) is named an 

inner produt on 𝑀 if for every 𝑚, 𝑛, 𝑧, 𝑘 ∈ 𝑀 

and 𝛼 ∈ ℝ the next cases are provided:   

ipq1) if 𝑚, 𝑛 ∈ 𝑀𝑟 then 〈𝑚, 𝑛〉 ∈

( Ω𝐶(ℝ))𝑟 ≡ ℝ, 

ipq2) 〈𝑚 + 𝑛, 𝑧〉 ⊆ 〈𝑚, 𝑧〉 + 〈𝑛, 𝑧〉, 
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ipq3) 〈𝛼 ∙ 𝑚, 𝑛〉 = 𝛼 ∙ 〈𝑚, 𝑛〉, 

ipq4) 〈𝑚, 𝑛〉 = 〈𝑛, 𝑚〉, 

ipq5) 〈𝑚, 𝑚〉 ≥ 0 for 𝑚 ∈ 𝑀𝑟 and 〈𝑚, 𝑚〉 =

0 ⟺ 𝑚 = 𝜃, 

ipq6) ‖〈𝑚, 𝑛〉‖ Ω𝐶(ℝ) =

𝑠𝑢𝑝{‖〈𝑎, 𝑏〉‖ Ω𝐶(ℝ): 𝑎 ∈ 𝐹𝑚
�̂� , 𝑏 ∈ 𝐹𝑛

�̂�}, 

ipq7) if 𝑚 ≤ 𝑛 and 𝑧 ≤ 𝑘 then 〈𝑚, 𝑧〉 ⊆

〈𝑛, 𝑘〉, 

ipq8) if for any 𝜀 > 0 there exists an element 

𝑚𝜀 ∈ 𝑀 such that 𝑚 ≤ 𝑛 + 𝑚𝜀 and 

〈𝑚𝜀 , 𝑚𝜀〉 ⊆ 𝑆𝜀
𝜃 then 𝑚 ≤ 𝑛 ( Bozkurt and 

Yılmaz, 2016a).  

A quasilinear space with an inner product is 

named inner product quasilinear space. 

 Ω𝐶(ℝ) is an inner product quasilinear space 

with inner product described by 〈𝐴, 𝐵〉 =

{𝑎𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For every two elements 𝑎 

and 𝑏 of an inner product quasilinear space, 

we obtain ‖〈𝑎, 𝑏〉‖ Ω𝐶(ℝ) ≤ ‖𝑎‖𝑀‖𝑏‖𝑀. An 

inner product on quasilinear space 𝑀 defines 

a norm on 𝑀 given by ‖𝑚‖ =

√‖〈𝑚, 𝑚〉‖ Ω𝐶(ℝ) (Bozkurt and Yılmaz, 

2016a). 

Definition 7. A complete inner product 

quasilinear space is named a Hibert 

quasilinear space to the inner product norm 

(Bozkurt and Yılmaz, 2016a). 

3. Resarch Findings 

In this part, we will present the notion of 

biquasilinear functional which is a new 

concept of quasilinear functional analysis. 

After giving this new notion, we discuss 

some examples and prove some theorems. 

Definition 8. Let 𝑀 and 𝑁 be two quasilinear 

spaces. A function 𝐵𝑄: 𝑀 × 𝑀 → 𝑁 is is said 

to be a biquasilinear operator on 𝑀, if  𝐵𝑄 is 

satisfies the sequent circumstances: 

bq1) 𝐵𝑄(𝑚 + 𝑛, 𝑧) ≤ 𝐵𝑄(𝑚, 𝑧) + 𝐵𝑄(𝑛, 𝑧), 

bq2)𝐵𝑄(𝑚, 𝑛 + 𝑧) ≤ 𝐵𝑄(𝑚, 𝑛) + 𝐵𝑄(𝑚, 𝑧), 

bq3) B𝑄(𝛼 ∙ 𝑚, 𝑛) = 𝛼 ∙ 𝐵𝑄(𝑚, 𝑛), 

bq4) 𝐵𝑄(𝑚, 𝛽 ∙ 𝑛) = 𝛽 ∙ 𝐵𝑄(𝑚, 𝑛), 

bq5) if (𝑚, 𝑛) ≤ (𝑧, 𝑘), then 𝐵𝑄(𝑚, 𝑛) ≤

𝐵𝑄(𝑧, 𝑘) 

for any scalars 𝛼 and 𝛽 and any 𝑚, 𝑛, 𝑧, 𝑘 ∈

𝑀. 

If we take  𝑁 =  Ω𝐶(ℝ), then the mapping 

𝐵𝑄 is called a biquasilinear functional on 𝑀. 

Note that these are three of the properties 

defining a quasilinear inner product. Thus 

every inner product quasilinear is a 

biquasilinear functional. But, the reverse may 

not be true. 

Example 3. Let 𝐴1 and 𝐴2 quasilinear 

operators on a inner product quasilinear 

spaces 𝑀. Then 

ℬ𝑄1(𝑚, 𝑛) = 〈𝐴1𝑚, 𝑛〉,  

ℬ𝑄2(𝑚, 𝑛) = 〈𝑚, 𝐴2𝑛〉  

 and  

 ℬ𝑄3(𝑚, 𝑛) = 〈𝐴1𝑚, 𝐴2𝑛〉 

are biquasilinear functionals. 

We only show the first one. For all 

𝑚, 𝑛, 𝑧, 𝑘 ∈ 𝑀 and 𝛼, 𝛽 ∈ ℝ, 

ℬ𝑄1(𝑚 + 𝑛, 𝑧) ≤ 〈𝐴1(𝑚 + 𝑛), 𝑧〉 
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                         ⊆ 〈𝐴1𝑚, 𝑧〉 + 〈𝐴1𝑛, 𝑧〉 

                         = ℬ𝑄1(𝑚, 𝑧) + ℬ𝑄1(𝑛, 𝑧). 

ℬ𝑄1(𝑚, 𝑛 + 𝑧) ≤ 〈𝐴1𝑚, 𝑛 + 𝑧〉 

                          ⊆ 〈𝐴1𝑚, 𝑛〉 + 〈𝐴1𝑚, 𝑧〉 

                          = ℬ𝑄1(𝑚, 𝑛) + ℬ𝑄1(𝑚, 𝑧). 

ℬ𝑄1(𝛼 ∙ 𝑚, 𝑛) = 〈𝐴1(𝛼 ∙ 𝑚), 𝑛〉 

                        = 𝛼 ∙ ℬ𝑄1(𝑚, 𝑛). 

ℬ𝑄1(𝑚, 𝛽 ∙ 𝑛) = 〈𝐴1𝑚, 𝛽 ∙ 𝑛〉 

                        = 𝛽 ∙ ℬ𝑄1(𝑚, 𝑛). 

If (𝑚, 𝑛) ≤ (𝑧, 𝑘), then 𝑚 ≤ 𝑧  and 𝑛 ≤ 𝑘. 

Since 𝐴1 is a quasilinear operator, we have 

𝐴1𝑚 ≤ 𝐴1𝑧. Then, we obtain 〈𝐴1𝑚, 𝑛〉 ≤

〈𝐴1𝑧, 𝑘〉 from definition of inner product 

quasilinear space. Thus, we get ℬ𝑄1(𝑚, 𝑛) ≤

ℬ𝑄1(𝑧, 𝑘). 

Now, let’s give an another example of           

biquasilinear functionals. 

Example 4. Let 𝜗 and 𝜇 be quasilinear 

functionals on a quasilinear space 𝑀. Then 

ℬ𝑄(𝑚, 𝑛) = 𝜗(𝑚) ∙ 𝜇(𝑛) 

is a biquasilinear functional on 𝑀. 

ℬ𝑄(𝑚 + 𝑛, 𝑧) = 𝜗(𝑚 + 𝑛) ∙ 𝜇(𝑧) 

                        ≤ 𝜗(𝑚) ∙ 𝜇(𝑧) + 𝜗(𝑛) ∙ 𝜇(𝑧) 

                        = ℬ𝑄(𝑚, 𝑧) + ℬ𝑄(𝑛, 𝑧). 

 ℬ𝑄(𝑚, 𝑛 + 𝑧) = 𝜗(𝑚) ∙ 𝜇(𝑛 + 𝑧) 

                        ≤ 𝜗(𝑚) ∙ 𝜇(𝑛) + 𝜗(𝑚) ∙ 𝜇(𝑧) 

                       = ℬ𝑄(𝑚, 𝑛) + ℬ𝑄(𝑚, 𝑧). 

ℬ𝑄(𝛼 ∙ 𝑚, 𝑛) = 𝜗(𝛼 ∙ 𝑚) ∙ 𝜇(𝑛) 

                       = 𝛼 ∙ ℬ𝑄(𝑚, 𝑛). 

ℬ𝑄(𝑚, 𝛼 ∙ 𝑛) = 𝜗(𝑚) ∙ 𝜇(𝛼 ∙ 𝑛) 

                       = 𝛼 ∙ ℬ𝑄(𝑚, 𝑛). 

If (𝑚, 𝑛) ≤ (𝑧, 𝑘), then 𝑚 ≤ 𝑧  and 𝑛 ≤ 𝑘. 

Since 𝜗 and 𝜇 are two quasilinear 

functionals, we have 𝜗𝑚 ≤ 𝜗𝑧 and 𝜇𝑛 ≤ 𝜇𝑘. 

Then, we get (𝜗𝑚) ∙ (𝜇𝑛) ≤ (𝜗𝑧) ∙ (𝜇𝑘). 

Because, they are interval valued functions. 

This proves the  ℬ𝑄(𝑚, 𝑛) ≤ ℬ𝑄(𝑧, 𝑘). 

Let 𝜑(𝑀2,  Ω𝐶(ℝ)) be the set of all 

biquasilinear functionals defined from  𝑀 ×

𝑀  to  Ω𝐶(ℝ). Then 𝜑(𝑀2,  Ω𝐶(ℝ)) becomes 

a quasilinear space if the addition, 

multiplication by scalars and the partial order 

relation " ≼ " defined in the following 

operations: 

+: 𝜑(𝑀2,  Ω𝐶(ℝ)) × 𝜑(𝑀2,  Ω𝐶(ℝ))

→ 𝜑(𝑀2,  Ω𝐶(ℝ)) 

 (ℬ𝑄1 + ℬ𝑄2)(𝑚, 𝑚′) = ℬ𝑄1(𝑚, 𝑚′) +

ℬ𝑄2(𝑛, 𝑚′)                                          (1) 

 

∙ ∶ ℝ × 𝜑(𝑀2,  Ω𝐶(ℝ)) → 𝜑(𝑀2,  Ω𝐶(ℝ)) 

        (𝛼 ∙ ℬ𝑄)(𝑚, 𝑚′) = 𝛼 ∙ ℬ𝑄(𝑚, 𝑚′)   (2) 

 ℬ𝑄1 ≼ ℬ𝑄2 ⟺ ℬ𝑄1(𝑚, 𝑚′) ≤ ℬ𝑄2(𝑚, 𝑚′)                                                    

(3) 

for every ℬ𝑄, ℬ𝑄1, ℬ𝑄2 ∈ 𝜑(𝑀2,  Ω𝐶(ℝ)) 

and 𝛼 ∈ ℝ. 

A biquasilinear functional is quasilinear 

functional with respect to the first variable 

but the every quasilinear functional may not 

be biquasilinear. 

Example 5. Let ℬ𝑄 be a functional defined 

from  Ω𝐶(ℝ) ×  Ω𝐶(ℝ) to  Ω𝐶(ℝ). Then 
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ℬ𝑄(𝑚, 𝑛) = 𝑚 + 2𝑛 is a quasilinear 

functional but is not a biquasilinear 

functional. For all (𝑚, 𝑛), (𝑧, 𝑘) ∈  Ω𝐶(ℝ) ×

 Ω𝐶(ℝ) and 𝛼 ∈ ℝ: 

ℬ(𝛼 ∙ (𝑚, 𝑛)) = ℬ(𝛼 ∙ 𝑚, 𝛼 ∙ 𝑛) 

= 𝛼 ∙ 𝑚 + 2𝛼 ∙ 𝑛 

                        = 𝛼 ∙ ℬ(𝑚, 𝑛), 

ℬ((𝑚, 𝑛) + (𝑧, 𝑘)) = 𝑚 + 𝑧 + 2𝑛 + 2𝑘    

                                = ℬ(𝑚, 𝑛) + ℬ(𝑧, 𝑘). 

If (𝑚, 𝑛) ≤ (𝑧, 𝑘), then 𝑚 ≤ 𝑧  and 𝑛 ≤ 𝑘 

and 2𝑛 ≤ 2𝑘. From properties of quasilinear 

space, we get 𝑚 + 2𝑛 ≤ 𝑧 + 2𝑘. This gives 

the desired. But, this functional is not 

biquasilinear since ℬ(𝛼 ∙ 𝑚, 𝑛) ≠ 𝛼 ∙

ℬ(𝑚, 𝑛) and ℬ(𝑚, 𝛼 ∙ 𝑛) ≠ 𝛼 ∙ ℬ(𝑚, 𝑛). 

Definition 9. If 𝑀 is a normed quasilinear 

space then ℬ𝑄 is called bounded if 

‖ℬ𝑄(𝑚, 𝑛)‖ Ω𝐶(ℝ) ≤ 𝐿‖𝑚‖𝑀‖𝑛‖𝑀 

for some 𝐿 > 0 and every 𝑚, 𝑛 ∈ 𝑀. The 

norm of the bounded biquasilinear functional 

described by      

‖ℬ𝑄‖ = 𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄(𝑚, 𝑛)‖ Ω𝐶(ℝ)          

(4) 

Example 6. Let operators 𝐴1 and 𝐴2 in 

Example 3 be bounded on a inner product 

quasilinear spaces 𝑀. From the definition of 

bounded quasilinear operator, we get   

‖𝐴1(𝑚)‖ ≤ 𝑙‖𝑚‖𝑀 and ‖𝐴2(𝑚)‖ ≤ 𝑝‖𝑚‖𝑀 

that for every 𝑚 ∈ 𝑀. From the Schwartz 

inequality, we obtain 

‖ℬ𝑄1(𝑚, 𝑛)‖ = ‖〈𝐴1𝑚, 𝑛〉‖ ≤ 𝑙‖𝑚‖𝑀‖𝑛‖𝑀, 

‖ℬ𝑄2(𝑚, 𝑛)‖ = ‖〈𝑚, 𝐴2𝑛〉‖ ≤ 𝑝‖𝑚‖𝑀‖𝑛‖𝑀 

and 

‖ℬ𝑄3(𝑚, 𝑛)‖ = ‖〈𝐴1𝑚, 𝐴2𝑛〉‖

≤ 𝑙𝑝‖𝑚‖𝑀‖𝑛‖𝑀 

for every 𝑚, 𝑛 ∈ 𝑀. Thus, we have that 

ℬ𝑄1 𝐵𝑄2 and ℬ𝑄3 are bounded. 

Theorem 1. The space 𝜑(𝑀2,  Ω𝐶(ℝ)) is a 

normed quasilinear space with norm (4). 

Proof. If ℬ𝑄 ≠ 𝜃 for a ℬ𝑄 ∈ 

𝜑(𝑀2,  Ω𝐶(ℝ)), then we clearly know that  

‖ℬ𝑄‖ = 𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄(𝑚, 𝑛)‖ Ω𝐶(ℝ) >

0. For ℬ𝑄1 ℬ𝑄2 ∈ 𝜑(𝑀2,  Ω𝐶(ℝ)), we find 

‖ℬ𝑄1 +  ℬ𝑄2‖ = 𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖(ℬ𝑄1 +

 ℬ𝑄2)(𝑚, 𝑛)‖ Ω𝐶(ℝ)    ≤

𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄1(𝑚, 𝑛)‖ Ω𝐶(ℝ) +

𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄2(𝑚, 𝑛)‖ Ω𝐶(ℝ) 

= ‖ℬ𝑄1‖ + ‖ℬ𝑄2‖. 

For any scalar 𝛼, we get 

‖𝛼 ∙ ℬ𝑄1‖ = 𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖(𝛼

∙ ℬ𝑄1)(𝑚, 𝑛)‖ Ω𝐶(ℝ) 

= 𝛼(𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄1(𝑚, 𝑛)‖ Ω𝐶(ℝ))  =

𝛼‖ℬ𝑄1‖. 

If ℬ𝑄1 ≼ ℬ𝑄2 for every (𝑚, 𝑛) ∈ 𝑀 × 𝑀 and 

ℬ𝑄1, ℬ𝑄2 ∈ 𝜑(𝑀2,  Ω𝐶(ℝ)), then 

ℬ𝑄1(𝑚, 𝑛) ≤ ℬ𝑄2(𝑚, 𝑛). Since the norm 

function is continuous on  Ω𝐶(ℝ), we find 

‖ℬ𝑄1(𝑚, 𝑛)‖ Ω𝐶(ℝ) ≤ ‖ℬ𝑄2(𝑚, 𝑛)‖ Ω𝐶(ℝ). 

This gives us ‖ℬ𝑄1‖ ≤ ‖ℬ𝑄2‖.  

Let ℬ𝑄1 ≼ ℬ𝑄2 + ℬ𝑄𝜀 and ‖ℬ𝑄𝜀‖ ≤ 𝜀 for 

every ℬ𝑄1, ℬ𝑄2 ∈ 𝜑(𝑀2,  Ω𝐶(ℝ)). From (3) 

and (4), we obtain 

 ℬ𝑄1(𝑚, 𝑛) ≤ ℬ𝑄2(𝑚, 𝑛) + ℬ𝑄𝜀(𝑚, 𝑛)  



Biquasilinear Functionals on Quasilinear Spaces and Some Related Results 

101 

 

and ‖ℬ𝑄𝜀(𝑚, 𝑛)‖ Ω𝐶(ℝ) ≤ 𝜀 for every 

(𝑚, 𝑛) ∈ 𝑀 × 𝑀. Since  Ω𝐶(ℝ) is a normed 

quasilinear space with  ‖𝐴‖ Ω𝐶(ℝ) =

𝑠𝑢𝑝𝑎∈𝐴‖𝑎‖𝐴, we find ℬ𝑄1(𝑚, 𝑛) ≤

ℬ𝑄2(𝑚, 𝑛). Again from (3), we have ℬ𝑄1 ≼

ℬ𝑄2. 

Theorem 2. 𝜑(𝑀2,  Ω𝐶(ℝ)) normed 

quasilinear space is a Banach space with                                                           

‖ℬ𝑄‖ = 𝑠𝑢𝑝‖𝑚‖=‖𝑛‖=1‖ℬ𝑄(𝑚, 𝑛)‖ Ω𝐶(ℝ). 

Proof .  If ℬ𝑄𝑖 be any sequence in 

𝜑(𝑀2,  Ω𝐶(ℝ)). Then given every 𝜀 > 0, 

there is a  𝑁 such that for every 𝑖, 𝑗 > 𝑁 we 

get 

ℬ𝑄𝑖 ≤ ℬ𝑄𝑗 + ℬ𝑄1𝜀 ,    

ℬ𝑄𝑗 ≤ ℬ𝑄𝑖 + ℬ𝑄2𝜀 ,     ‖ℬ𝑄𝑙𝜀‖ ≤ 𝜀,      

𝑙 = 1,2. 

Hence, for any 𝑙 = 1,2, we obtain  

‖ℬ𝑄𝑙𝜀(𝑚, 𝑛)‖ Ω𝐶(ℝ) ≤ 𝜀.  Further, since 

𝜑(𝑀2,  Ω𝐶(ℝ)) quasilinear space, we get 

ℬ𝑄𝑖(𝑚, 𝑛) ≤ ℬ𝑄𝑗(𝑚, 𝑛) + ℬ𝑄1𝜀(𝑚, 𝑛),

ℬ𝑄𝑗(𝑚, 𝑛) ≤ ℬ𝑄𝑖(𝑚, 𝑛) + ℬ𝑄2𝜀 (𝑚, 𝑛).           

(5) 

This shows that ℬ𝑄𝑖(𝑚, 𝑛) is Cauchy 

sequence in  Ω𝐶(ℝ). Since  Ω𝐶(ℝ) is a 

complete, there is a  ℬ𝑄(𝑚, 𝑛) ∈  Ω𝐶(ℝ) 

such that  ℬ𝑄𝑖(𝑚, 𝑛) → ℬ𝑄(𝑚, 𝑛) for all 

(𝑚, 𝑛) ∈ 𝑀 × 𝑀.  From (5), by letting 𝑗 →

∞, we find 

ℬ𝑄𝑖(𝑚, 𝑛) ≤ ℬ𝑄(𝑚, 𝑛) + ℬ𝑄1𝜀(𝑚, 𝑛),   

ℬ𝑄(𝑚, 𝑛) ≤ ℬ𝑄𝑖(𝑚, 𝑛) + ℬ𝑄2𝜀 (𝑚, 𝑛),   

‖ℬ𝑄𝑙𝜀(𝑚, 𝑛)‖ Ω𝐶(ℝ) ≤ 𝜀, 𝑙 = 1,2  

for all 𝑖 > 𝑁. Thus, we find  ‖ℬ𝑄𝑙𝜀‖ ≤ 𝜀 for 

𝑙 = 1,2 and ℬ𝑄𝑖 ≤ ℬ𝑄 + ℬ𝑄1𝜀 ,   ℬ𝑄 ≤

ℬ𝑄𝑖 + ℬ𝑄2𝜀 .  It means that the sequence 

ℬ𝑄𝑛 convergent to ℬ𝑄. Now, let’s show that 

ℬ𝑄 ∈ 𝜑(𝑀2,  Ω𝐶(ℝ)): 

Since ℬ𝑄𝑛 is a biquasilinear functional for 

every 𝑖 ∈ 𝑁, we get 

ℬ𝑄(𝑚 + 𝑛, 𝑧) ≤ ℬ𝑄𝑖(𝑚 + 𝑛, 𝑧)

≤ ℬ𝑄𝑖(𝑚, 𝑧) + ℬ𝑄𝑖(𝑛, 𝑧)

≤ ℬ𝑄(𝑚, 𝑧) + ℬ𝑄(𝑛, 𝑧) 

and 

ℬ𝑄(𝑚, 𝑛 + 𝑧) ≤ ℬ𝑄𝑖(𝑚, 𝑛 + 𝑧)  

                        ≤ ℬ𝑄(𝑚, 𝑛) + ℬ𝑄(𝑚, 𝑧). 

Again, since ℬ𝑄𝑖 is a biquasilinear functional 

for every 𝛼 ∈ ℝ, we get 

ℬ𝑄(𝛼 ∙ 𝑚, 𝑛) ≤ ℬ𝑄𝑖(𝛼 ∙ 𝑚, 𝑛)  

                      ≤ 𝛼 ∙ ℬ𝑄(𝑚, 𝑛) 

And 

ℬ𝑄(𝑚, 𝛼 ∙ 𝑛) ≤ ℬ𝑄𝑖(𝑚, 𝛼 ∙ 𝑛)   

                       ≤ 𝛼 ∙ ℬ𝑄(𝑚, 𝑛). 

If (𝑚, 𝑛) ≤ (𝑧, 𝑘) for every (𝑚, 𝑛), (𝑧, 𝑘) ∈

𝑀 × 𝑀, then ℬ𝑄𝑖(𝑚, 𝑛) ≤ ℬ𝑄𝑖(𝑧, 𝑘). Since 

ℬ𝑄(𝑚, 𝑛) ≤ ℬ𝑄𝑛(𝑚, 𝑛) and ℬ𝑄𝑖(𝑧, 𝑘) ≤

ℬ𝑄(𝑧, 𝑘), we find ℬ𝑄(𝑚, 𝑛) ≤ ℬ𝑄(𝑧, 𝑘). 

This finalizes the proof. 

Further, in the above theorem, if ℬ𝑄𝑖 is 

bounded, then ℬ𝑄 is a bounded since 

‖ℬ𝑄(𝑚, 𝑛)‖ ≤ ‖ℬ𝑄𝑖(𝑚, 𝑛) + ℬ𝑄2𝜀 (𝑚, 𝑛)‖ 

                      ≤ (‖ℬ𝑄𝑖‖ + 𝜀)‖𝑚‖‖𝑛‖. 

Definition 10. Let ℬ𝑄 be a biquasilinear 

functional on 𝑀.  
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ℬ𝑄 is called symmetric if ℬ𝑄(𝑚, 𝑛) =

ℬ𝑄(𝑛, 𝑚) for all 𝑚, 𝑛 ∈ 𝑀. 

ℬ𝑄 is called positive if ℬ𝑄(𝑚, 𝑛) ≥ 0 for 

every 𝑚, 𝑛 ∈ 𝑀. 

Example 7. Let 𝑇1 and 𝑇2 be two functions 

defined from ℝ to Ω𝐶(ℝ) such that  

: 𝑚 → 𝑇1(𝑚) = 𝑇2(𝑚) = {
[−𝑚, 𝑚],   𝑥 ≥ 0
[𝑚, −𝑚],    𝑥 < 0

. 

We know from [12] that these functions are 

quasilinear functionals. Now let’s define a 

new functions using these quasilinear 

functional. Assume that 𝜎(𝑚, 𝑛) be function 

defined from ℝ × ℝ to  Ω𝐶(ℝ) such that 

𝜎(𝑚, 𝑛) = 𝑇1(𝑚) ∙ 𝑇2(𝑛) for every (𝑚, 𝑛) ∈

ℝ × ℝ . This new function is biquasilinear 

functional. We know that 𝑇1(𝑚) ∙ 𝑇2(𝑛) =

[−𝑚, 𝑛] ∙ [−𝑚, 𝑛]=[𝑚𝑖𝑛𝑆, 𝑚𝑎𝑥𝑆] where 𝑆 =

{−𝑚. −𝑛, −𝑚. 𝑛, 𝑚. −𝑛, 𝑚. 𝑛} from interval 

analysis.  Also the function 𝜎 symmetric and 

positive functional. 

Result 1. If we take 𝜗 = 𝜇 in Example 4, 

then biquasilinear functional ℬ𝑄 is a 

symmetric and positive. Further, a inner 

product quasilinear is a symmetric and 

positive definite biquasilinear functional.  

Theorem 3. Let 𝐴 be a bounded quasilinear 

operator on a Hilbert quasilinear space 𝐻. 

Then the biquasilinear functional described 

by ℬ𝑄(𝑚, 𝑛) = 〈𝐴1𝑚, 𝑛〉 is bounded and 

‖ℬ𝑄‖ = ‖𝐴1‖. 

Proof. We have already shown its 

boundedness in Example 6. Let’s just show 

the ‖ℬ𝑄‖ = ‖𝐴1‖. Since  ‖ℬ𝑄(𝑚, 𝑛)‖ =

‖〈𝐴1𝑚, 𝑛〉‖ ≤ ‖𝐴1‖‖𝑚‖‖𝑛‖ for all 𝑚, 𝑛 ∈

𝐻, we have ‖ℬ𝑄‖ ≤ ‖𝐴1‖. Conversely, we 

obtain 

‖𝐴1𝑚‖2 = ‖〈𝐴1𝑚, 𝐴1𝑚〉‖ 

               = ‖ℬ𝑄(𝑚, 𝐴1𝑚)‖ 

                ≤ ‖ℬ𝑄‖‖𝑚‖‖𝐴1𝑚‖ 

from 𝐻 is a Hilbert quasilinear spaces and 

ℬ𝑄 is a bounded. Thus, for 𝐴1𝑚 ≠ 0, we get  

‖𝐴1𝑚‖ ≤ ‖ℬ𝑄‖‖𝑚‖ and ‖𝐴1‖ ≤ ‖ℬ𝑄‖. 

Because, the inequation is clearly provided if 

𝐴1𝑚 = 0.  

Definition 11. A function 𝜔: 𝑀 →  Ω𝐶(ℝ)  is 

a quadratic form if there exists a 

biquasilinear form ℬ𝑄: 𝑀 × 𝑀 →  Ω𝐶(ℝ)  

such that 𝜔(𝑚) = ℬ(𝑚, 𝑚) for every 𝑚 ∈

𝑀. 

Example 8. Let ℬ𝑄 be a function identified 

from 𝐼ℝ2 × 𝐼ℝ2 to Ω𝐶(ℝ) such that  

ℬ𝑄((𝑚, 𝑛), (𝑧, 𝑘)) = 𝑚 ∙ 𝑧 + 2 ∙ 𝑚 ∙ 𝑘 + 𝑛 ∙

𝑧 + 2 ∙ 𝑛 ∙ 𝑘. 

ℬ𝑄 is a biquasilinear functional.  

𝜔((𝑚, 𝑛)) = 𝑚 ∙ 𝑚 + 3 ∙ 𝑚 ∙ 𝑛 + 2 ∙ 𝑛 ∙ 𝑛 

                   = ℬ((𝑚, 𝑛), (𝑚, 𝑛)) 

is a quadratic form. Consider, 𝑚 ∙ 𝑚 may not 

always come up to to 𝑚2 for all 𝑚 ∈  Ω𝐶(ℝ). 

Also, 𝜔((𝑚, 𝑛)) = ℬ𝑄1((𝑚, 𝑛), (𝑚, 𝑛)) for 

the symmetric biquasilinear form 

ℬ𝑄1((𝑚, 𝑛), (𝑧, 𝑘)) = 𝑚 ∙ 𝑧 + 2 ∙ 𝑚 ∙ 𝑘 + 𝑛 ∙

𝑧 + 2 ∙ 𝑛 ∙ 𝑘. 

Theorem 4. Let 𝑀 be a quasilinear space. 

For all quadratic form 𝜔, there exists a 

symmetric biquasilinear form ℬ𝑄 such that 

𝜔(𝑚) = ℬ𝑄(𝑚, 𝑚) for every 𝑚 ∈ 𝑀. 

Proof.  Since 𝜔 is quadratic, there exists a 

biquasilinear form ℬ𝑄0 exists such that  

𝜔(𝑚) = ℬ𝑄0(𝑚, 𝑚) for every 𝑚 ∈ 𝑀.  Let  



Biquasilinear Functionals on Quasilinear Spaces and Some Related Results 

103 

 

ℬ𝑄(𝑚, 𝑛) =
1

2
(ℬ𝑄0(𝑚, 𝑛) + ℬ𝑄0(𝑛, 𝑚)). 

Then ℬ𝑄 is a symmetric biquasilinear 

functional and  ℬ𝑄(𝑚, 𝑚) = ℬ𝑄0(𝑚, 𝑚) 

since  Ω𝐶(ℝ) is a quasilinear space. 

Theorem 5. Every biquasilinear forms have 

quasilinear parts. 

Proof. Regard as ℬ𝑄: 𝑀 × 𝑀 →  Ω𝐶(ℝ)  is 

biquasilinear functional. Define two 

functional on  𝑀  such that  𝜔𝑛(𝑚) =

ℬ𝑄(𝑛, 𝑚) and 𝜔𝑚(𝑛) = ℬ𝑄(𝑚, 𝑛) for every 

 𝑚, 𝑛 ∈ 𝑀 . Then, for 𝛼 ∈ ℝ and every 

 𝑚, 𝑛 ∈ 𝑀, we get 

𝜔𝑛(𝑚 + 𝑧) = ℬ𝑄(𝑛, 𝑚 + 𝑧)    

                    ≤ 𝜔𝑛(𝑚) + 𝜔𝑛(𝑧), 

𝜔𝑛(𝛼 ∙ 𝑚) = ℬ𝑄(𝛼 ∙ 𝑛, 𝑚)   

                  = 𝛼 ∙ 𝜔𝑛(𝑚), 

for every 𝑚 ≤ 𝑧, then ℬ𝑄(𝑛, 𝑚) ≤ ℬ𝑄(𝑛, 𝑧). 

This means that 𝜔𝑛(𝑚) ≤ 𝜔𝑛(𝑧). Thus, 𝜔𝑛 

is quasilinear functional. A similar proof 

holds for the functional 𝜔𝑚. 

4. Results 

In this study, the notion of biquasilinear 

functional is defined and some examples and 

theorems are given related to the this new 

concept. A partial order relation was used to 

give this definition, just like the description 

of quasilinear functional. Thanks to this new 

definition, we were able to have consistent 

results that contribute to the advance of 

quasilinear functional analysis.  The set of all 

biquasilinear functionals 𝑓(𝑀2,  Ω𝐶(ℝ)) was 

shown to be quasilinear space with defined 

addition, multiplication by scalars and the 

partial order relation " ≼ " . Finally, we have 

given the quadratic form. We have shown 

that there is a symmetric biquasilinear form 

for each every quadratic form 𝜑. 
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