New Theory

ISSN: 2149-1402

30 (2020) 57-63 Journal of New Theory http://www.newtheory.org Open Access

Some Results on Divisior Cordial Graphs

Mohammed Abdel Azim Seoud¹, Shakir Mahmoud Salman²

Article History

 Received:
 02.09.2019

 Accepted:
 16.03.2020

 Published:
 23.03.2020

 Original Article

Abstract — In this paper, we introduce some results on divisor cordial graphs where we find some upper bound for the labeling of any simple graph and r-regular graph and describe the divisor cordial labeling for some families of graphs such the jellyfish graph, shell graph and the bow and butterfly graphs.

Keywords - labeling, divisor cordial, shell graph

Introduction

In this paper by a simple graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [1]. Graph labeling, mean that the vertices and edges are assigned real values or subsets of a set, subject to certain conditions. For a dynamic survey on various graph labeling problems we refer to Gallian [2]. The concept of cordial labeling was introduced by Cahit [3], in [4], Varatharajan et al. introduce the concept of divisor cordial labeling of graph. The divisor cordial labeling of various types of graphs are presented in [4–12]. The brief summaries of definitions which are necessary for the present investigation are provided below. For standard terminology and notations related to number theory we refer to Burton [13].

Definition 1.1. [4] Let G = (V(G), E(G)) be a simple graph and $f : V(G) \longrightarrow \{1, 2, ..., |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if f(u)|f(v) or f(v)|f(u) and the label 0 otherwise. The function f is called a divisor cordial labeling if $|e_f(0) - e_f(1)| \le 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition 1.2. [1] The neighborhood of a vertex u is the set $N_u(G)$ consisting of all vertices v which are adjacent with u. The closed neighborhood is $N_u[G] = N_u(G) \bigcup \{u\}$.

Definition 1.3. [1] The number $\delta(G) = \min \{d(v) \mid v \in V\}$ is the minimum degree of the vertices in the graph G, the number $\Delta(G) = \max \{d(v) \mid v \in V\}$ is the maximum degree of the vertices in the graph G, the number $d(G) = \frac{1}{|V|} \sum_{v \in V} d(v)$ is the average degree of the vertices in the graph G.

Definition 1.4. [14] The Jelly fish graph J(m, n) is obtained from a $4 - cycle v_1, v_2, v_3, v_4$ by joining v_1 and v_3 with an edge and appending m pendent edges to v_2 and n pendent edges to v_4 .

¹m.a.seoud@hotmail.com; ²s.m.salman@outlook.com (Corresponding Author)

¹Ain Shams University, Faculty of Science, Department of mathematics, Abbasia, Cairo, Egypt

²Diyala University, Department of Mathematics, Basic Education College, Diyala, Iraq

Definition 1.5. [15] A shell graph is defined as a cycle C_n with (n-3) chords sharing a common end point called the apex, shell graphs are denoted as C(n, n-3).

Definition 1.6. [16] A bow graph is defined to be a double shell in which each shell has any order.

Definition 1.7. [15] Define a Butterfly graph as a bow graph with exactly two pendent edges at the apex.

The Results

Proposition 2.1. For any simple graph G(p,q), the maximum value of $e_f(1)$ is

$$\min\left\{ \triangle(G) + \sum_{i=2}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1), q \right\}, \text{ where } p \ge 4.$$

PROOF. Let G(p,q) be a simple connected graph and let the vertex v_k be of maximum degree $\Delta(G)$, if we labeled this vertex by 1 then we will achieve $\Delta(G)$ edges labeled 1, and from division algorithm the maximum numbers of the multiples of labels of vertices are:

for 2 is $\lfloor \frac{p}{2} \rfloor - 1$, for 3 is $\lfloor \frac{p}{3} \rfloor - 1$, for 4 is $\lfloor \frac{p}{4} \rfloor - 1$,

for $\lfloor \frac{p}{2} \rfloor$ is $\lfloor \frac{p}{\lfloor \frac{p}{2} \rfloor} \rfloor - 1$ which must equal 1

hence the maximum value for $e_f(1)$ equals $\triangle(G) + \sum_{i=2}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$ in any graph G(p,q). \Box

Corollary 2.2. For each r - regular graph the maximum value of $e_f(1)$ is $kr + \sum_{i=k+1}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$; where $k = \lfloor \frac{p}{r+1} \rfloor$ and $p \ge 4$.

PROOF. Let G(p,q) be an r - regular graph then $\triangle(G) = r$, and for each vertex v in graph G the maximum number of edges that label 1 in $N_v(G)$ is r, hence for all i in which $\lfloor \frac{p}{i} \rfloor - 1 \ge r$ we reduced it to r.

But from Proposition 2.1 the maximum value of $e_f(1)$ is $\triangle(G) + \sum_{i=2}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$, then the maximum value in an r - regular graph is:

$$= r + \sum_{i=2}^{k} (r) + \sum_{i=k+1}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$$
$$= r + (k-1)r + \sum_{i=k+1}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$$
$$= kr + \sum_{i=k+1}^{\lfloor \frac{p}{2} \rfloor} (\lfloor \frac{p}{i} \rfloor - 1)$$

Proposition 2.3. For any divisor cordial graph $G(p,q), q \leq 2(\triangle(G) + \sum_{i=3}^{\lfloor \frac{p}{2} \rfloor} \lfloor \frac{p}{i} \rfloor) + 3$, where $p \geq 6$.

PROOF. Let G(p,q) be a divisor cordial graph, then $|e_f(0) - e_f(1)| \le 1$, means $e_f(0) = e_f(1) - 1$ or $e_f(0) = e_f(1)$ or $e_f(0) = e_f(1) + 1$,

by Proposition 2.1,

$$\begin{split} q &\leq 2e_f(1) + 1\\ q &\leq 2(\bigtriangleup G + \sum_{i=2}^{\left\lfloor \frac{p}{2} \right\rfloor} (\left\lfloor \frac{p}{i} \right\rfloor - 1)) + 1\\ q &\leq 2(\bigtriangleup G + \sum_{i=3}^{\left\lfloor \frac{p}{2} \right\rfloor} (\left\lfloor \frac{p}{i} \right\rfloor)) + 3 \end{split}$$

Divisor Cordial Labeling for Some Families of Graphs

In this section we introduce the divisor cordial labeling for some types of graphs.

The Jelly Fish Graph

Proposition 3.1. For $m, n \ge 1$, Jelly fish graph J(m, n) is a divisor cordial graph.

PROOF. Let G(V, E) = J(m, n). Then G has (m + n + 4) vertices and (m + n + 5) edges. Without losing of generality, let $m \le n$. Let $V(G) = V_1 \cup V_2$ where $V_1 = \{x, u, y, v\}$, $V_2 = \{u_i, v_j; 1 \le i \le m, 1 \le j \le n\}$ and $E = E_1 \cup E_2$, where $E_1 = \{xu, uy, yv, vx, xy\}$, $E_2 = \{uu_i, vv_j; 1 \le i \le m, 1 \le j \le n\}$. Define $f: V \to \{1, 2, ..., (m + n + 4)\}$ as follows: f(u) = 1, f(v) = 2, f(x) = m + n + 4, f(y) = m + n + 3 and

 $f(u_i) = 2(i+1); i = 1, 2, ..., m$,

$$f(v_i) = \begin{cases} 2i+1 , i = 1, 2, ..., m \\ i+m+2 , i = m+1, m+2, ..., n \end{cases}$$

From the function f there are m + 2 edges labeled 1 sice f(u) = 1, and since f(v) = 2, then there are exactly $\lfloor \frac{1}{2}(n-m) \rfloor$ of pendent edges from v labeled 1 and only one from vx or vy. means $e_f(1) = m + 3 + \lfloor \frac{1}{2}(n-m) \rfloor$ and

$$e_f(0) = m + n + 5 - (m + 3 + \lfloor \frac{1}{2}(n - m) \rfloor)$$

= $n + 2 - \lfloor \frac{1}{2}(n - m) \rfloor$,

Case 1: m, n are odd

The |E| is odd and $\lfloor n - m \rfloor$ are even, hence, $|e_f(0) - e_f(1)| = 1$

Case 2: m, n are even The |E| is odd and $\lfloor n - m \rfloor$ is even, hence, $|e_f(0) - e_f(1)| = 1$

Case 3: m is odd and n is even The |E| is even and $\lfloor n - m \rfloor$ is odd, hence, $|e_f(0) - e_f(1)| = 0$

Case 4: m is even and n is odd

The |E| is even and |n-m| is odd, hence, $|e_f(0) - e_f(1)| = 0$

Then from Case 1, Case 2, Case 3 and Case 4 the jelly fish graph is divisor cordial.

Example 3.2. The jelly fish graph j(6, 11) and its divisor cordial labeling are shown in Fig.1

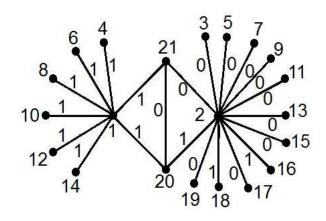


Fig. 1. A Jelly fish graph j(6, 11) and its divisor cordial labeling

The shell and The Bow Graph

Proposition 3.3. Every shell graph is divisor cordial.

PROOF. Let G = (V, E) be a C(n, n-3) graph with |V| = n, then |E| = 2n-3 means |E| is an odd number, and let v_0 be the apex and $v_1, v_2, ..., v_{n-1}$ other its vertices. Define the labeling $f: V \longrightarrow \{1, 2, ..., n\}$ as:

 $f(v_0) = 2, f(v_1) = 1$ and other vertices by the following:

where $(2m-1)\cdot 2^{k_m} \leq n$ and $m \geq 1, k_m \geq 0$. We observe that $(2m-1)\cdot 2^a$ divides $(2m-1)\cdot 2^b$; (a < b) and $(2m-1)\cdot 2^{k_i}$ does not divide 2m+1.

In this labeling, there are $\lceil \frac{n-1}{2} \rceil$ edges label 1 passing through v_0 , but other edges not passing through the apex make a path, hence there are also $\lfloor \frac{n-2}{2} \rfloor$ edges are labeled 1. Hence, $e_f(1) = \lceil \frac{n-1}{2} \rceil + \lfloor \frac{n-2}{2} \rfloor$

Case 1: *n* is odd, then $e_f(1) = \frac{n-1}{2} + \lfloor \frac{n-2}{2} \rfloor$ and $e_f(0) = \frac{n-1}{2} + \lceil \frac{n-2}{2} \rceil$ Case 2: *n* is even, then $e_f(1) = \lceil \frac{n-1}{2} \rceil + \frac{n-2}{2}$ and $e_f(0) = \lfloor \frac{n-1}{2} \rfloor + \frac{n-2}{2}$

In the two cases Case 1 and Case 2, the difference between $e_f(1)$ and $e_f(0)$ is 1 which means the shell graph is divisor cordial.

Notice another divisor labeling for shell graphs can found with fan graphs [4]

Example 3.4. The shell graph C(13, 10) and its divisor cordial labeling are shown in Fig. 2

Proposition 3.5. All bow graphs are divisor cordial.

PROOF. Let G be a bow graph with two shells of order m and n excluding the apex. Then the number of vertices in G is p = m + n + 1 and the edges q = 2(m + n - 1). The apex of the bow graph is denoted by v_0 , denote the vertices in the right wing of the bow graph from bottom to top by $v_1, v_2, ..., v_m$, and the vertices in the left wing of the bow graph are denoted from top to bottom by $v_{m+1}, v_{m+2}, ..., v_{m+n}$. Without losing of generality, suppose $m \leq n$.

Define the labeling $f: V \longrightarrow \{1, 2, ..., m + n + 1\}$ by: $f(v_0) = 2, f(v_1) = 1$ and label the vertices of the wings by the following:

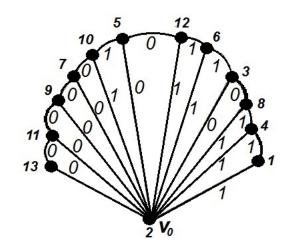


Fig. 2. A shell graph C(13, 10) and its divisor cordial labeling

where $(2m-1) \cdot 2^{k_m} \leq p$ and $m \geq 1, k_m \geq 0$. We observe that $(2m-1) \cdot 2^a$ divides $(2m-1) \cdot 2^b(a < b)$ and $(2m-1) \cdot 2^{k_i}$ does not divide 2m+1.

Let G' be a graph obtained from the bow graph G by adding the edge $v_m v_{m+1}$. The graph G' has an odd number of edges and it is a shell graph, then by Proposition 3.3 the graph G' is divisor cordial. The graph $G = G' - v_m v_{m+1}$ with even edges, then G is divisor cordial since:

Case 1: If m + n is even, then $e_f(0) = e_f(1) + 1$ hence the deleted edge $v_m v_{m+1}$ must be labeled 0.

Subcase i: If $f(v_m) = (2t-1) \cdot 2^{k_i}$ for some *i*, then the deleted edge $v_m v_{m+1}$ is labeled 0.

Subcase ii: If $f(v_m) \neq (2t-1) \cdot 2^{k_i}$ for some i, then we will shift the labels of vertices $v_2, v_3, ..., v_{m+n-l}$ in the wings, by l where l is the smallest integer satisfying $f(v_{m+1}) = (2t-1) \cdot 2^{k_i}$ for some i, and shift the labels of the vertices $v_{m+n-l+1}, v_{m+n-l+2}, ..., v_{m+n}$, by l+1 and take it modulo (m+n+1).

Case 2: If m + n is odd, then $e_f(1) = e_f(0) + 1$ hence the deleted edge $v_m v_{m+1}$ must be labeled 1.

Subcase i: If $f(v_m) = (2t-1) \cdot 2^{k_i}$ for some *i*, then we will shift the labels of vertices $v_2, v_3, ..., v_{m+n-1}$ in the wings, by one step and shift the label of vertex v_{m+n} by two and take it modulo (m+n+1).

Subcase ii: If $f(v_m) \neq (2t-1) \cdot 2^{k_i}$ for some *i*, then the edge $v_m v_{m+1}$ is labeled 1.

Then the bow graph G with two wings of m and n vertices is a divisor cordial graph for each m and n.

Example 3.6. The bow graph with two wings of 13 and 16 vertices respectively and its divisor cordial labeling are shown in Fig. 3

Butterfly Graphs

Proposition 3.7. The butterfly graphs are divisor cordial.

PROOF. Let G be a butterfly graph with shells of orders m and n excluding the apex then the number of vertices in G is p = m + n + 3 and the edges q = 2(m + n). The apex of the butterfly graph is denoted as v_0 , denote the vertices in the right wing of the butterfly graph from bottom to top as $v_1, v_2, ..., v_m$, the vertices in the left wing of the butterfly graph are denoted from top to bottom as $v_{m+1}, v_{m+2}, ..., v_{m+n}$, and the vertices in the pendant edges are v_{m+n+1}, v_{m+n+2} .

Since the butterfly defined as a bow graph with exactly two pendent edges at the apex, then we define the labeling $f: V \longrightarrow \{1, 2, ..., m + n + 3\}$ by:

 $f(v_0) = 2, f(v_1) = 1, f(v_{m+n+1}) = m + n + 2, f(v_{m+n+2}) = m + n + 3$ and labeled the vertices of the

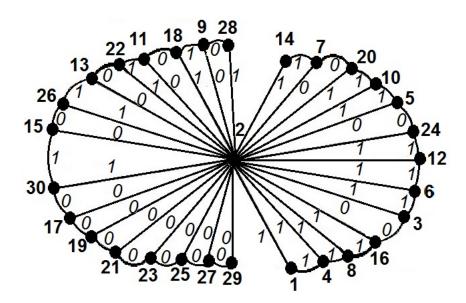


Fig. 3. A bow graph with m = 13, n = 16 and its divisor cordial labeling.

wings by the following:

where $(2m-1) \cdot 2^{k_m} \leq p$ and $m \geq 1, k_m \geq 0$. We observe that $(2m-1) \cdot 2^a$ divides $(2m-1) \cdot 2^b(a < b)$ and $(2m-1) \cdot 2^{k_i}$ does not divide 2m+1.

And we make the shift as in Proposition 3.5, for labeling of the vertices in the wings. Since the only one of the numbers m + n + 2 or m + n + 3 must be even then the pendent edges will be labeled 1 and 0, hence the graph G is divisor cordial.

Example 3.8. The butterfly graph G with two wings having m = 9, n = 15 vertices respectively, and its divisor cordial labeling is shown in Fig. 4.

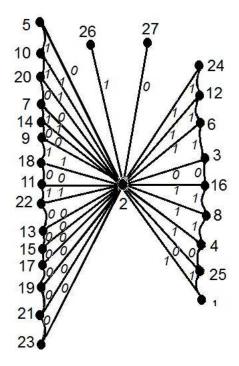


Fig. 4. A divisor cordial labeling for the butterfly with 27 vertices

References

- [1] F. Harary, *Graph Theory*, Addison-Wesley, Reading, Massachusetts, (1969).
- [2] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 21 (2018) #Ds6.
- [3] I. Cahit, Cordial Graph : A Weaker Version of Graceful and Harmonious Graphs, Ars Combinatoria 23 (1987) 201–208.
- [4] R. Varatharajan, S. Navanaeethakrishnan, K. Nagarajan, Divisor Cordial Graphs, International Journal of Mathematical Combinatorics 4 (2011) 15–25.
- [5] P. L. R. Raj, R. Valli, Some New Families of Divisor Cordial Graphs, International Journal of Mathematics Trends and Technology 7(2) (2014) 94–102.
- [6] P. Maya, T. Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics 5(2) (2014) 125–134.
- [7] A. Muthaiyan, P. Pugalenthi, Some New Divisorcordial Graphs, International Journal of Mathematics Trends and Technology 12(2) (2014) 81–88.
- [8] A. N. Murugan, V. B. Devi, A Study on Path Related Divisor Cordial Graphs, International Journal of Scientific Research 3(4) (2014) 286–291.
- [9] A. N. Murugan, M. T. Nisha, A Study on Divisor Cordial Labelling of Star Attached Paths and Cycles, Indian Journal of Research 3(3) (2014) 12–17.
- [10] S. K. Vaidya and N. H. Shah, Some Star and Bistar Related Divisor Cordial Graphs, Annals Pure Appl. Math. 3(1) (2013) 67–77.
- [11] S. K. Vaidya, N. H. Shah, Further Results on Divisor Cordial Labeling, Annals of Pure and Applied Mathematics 4(2) (2013) 150–159.
- [12] R. Varatharajan, S. Navanaeethakrishnan, K. Nagarajan, Special Classes of Divisor Cordial Graphs, International Mathematical Forum 7(35) (2012) 1737–1749.
- [13] D. M. Burton, *Elementary Number Theory*, 7th Edition, McGraw Hill, 2007; ISBN0-0706-305188-8.
- [14] K. Manimekalai, K. Thirusangu, Pair Sum Labeling of some Special Graphs, International Journal of Computer Applications 69(8) (2013) 34–38.
- [15] P. Deb, N. B. Limaya, On Harmonious Labeling of Some Cycle Related Graphs, Ars Combinatoria 65 (2002) 177–197.
- [16] J. J. Jesintha, K. E. Hilda, Butterfly Graphs with Shell Orders m and 2m + 1 Are Graceful, Bonfring International Journal of Research in Communication Engineering 2(2) (2012) 01–05.