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Abstract − In this paper, the path energy is investigated for path matrix. Some
bounds are explored for the path energy in terms of the eigenvalues and vertices.
Also, some relations are obtained for tree connected graphs.
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1. Introduction

The path matrix is a popular matrix in graph theory, recently and it had started to develop in 2016.
The path matrix of a graph G is defined as a real and symmetric matrix whose (i,j)-entry is the
maximum number of internally disjoint paths between the vertices vi and vj when i 6= j and is zero
when i = j. Its eigenvalues are real and they are called path eigenvalues of G. The spectral radius of
P (G) is represented by ρ = ρ(G). The concept of path matrix deals with vertices whose mathematical
properties are reported in [1].

The path energy is described as the sum of the absolute values of path eigenvalues and it is denoted
by PE = PE(G). For several positive eigenvalues of order n, PE(G) ≥ 2(n−1). If G is a k-connected
tree graph then ρ(G) ≥ k(n−1) ≥ k2. Also, PE(G) ≥ 2ρ(G) for the spectral radius ρ(G). The survey
of properties of path energy is given in [2], [3].

The purpose of this paper is to examine different bounds for path energy in terms of defining
relations. These bounds are important for they can be used in many areas of graph theory. Considering
these cases, known and related results are given in second section. Then, main bounds are obtained
using the vertices, the edges and the eigenvalues for path energy in the third section. These bounds
are sharp.

2. Preliminaries

In order to prove the main results, some lemmas are needed:

Lemma 2.1. [4] If a1, a2, ..., an ∈ R and 0 < m ≤ ai ≤M then,

(
1

n

n∑
i=1

ai)(
n∑

i=1

1

ai
) ≤ M + n

4Mn
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Lemma 2.2. [5] Let p = (pi) and a = (ai), i = 1, 2, ..., n be real sequences with p1 + p2 + ...+ pn = 1
and r ≤ ai ≤ R. For such sequences,

0 ≤
n∑

i=1

pi(ai)
2 − (

n∑
i=1

piai)
2 ≤ 1

2
(R− r)

n∑
i=1

pi|ai −
n∑

j=1

pjaj |

See [6], [7] for details.

3.MAIN RESULTS

In this section, some relations and bounds for energy of path matrix are established. These sharp re-
sults are surveyed with some fixed parameters. In addition, a relation is determined for tree connected
graphs under the assumption of Lemma 2.2.

Theorem 3.1. Let G be a connected graph with eigenvalues of path matix; λP1 , λ
P
2 , ..., λ

P
n . Then,

PE(G) ≤

√
n2

4(n− 1)
(ρ− η)

where η = η(G) = |λPn |.

Proof. Let ai = |λPi |, bi = 1. Assume that all the path eigenvalues of G are non-zero. A classical
lemma (the Ozeki’s inequality) refered in the article [8] implies that

n
n∑

i=1

|λPi |2 − (
n∑

i=1

|λPi |)2 ≤
n2

4
(ρ− η)

That is;

(
n∑

i=1

|λPi |)2 ≤
n

4
(ρ− η) +

(PE(G))2

n

By the arrangements, the above ineguality transforms into

(n− 1)

n
(PE(G))2 ≤ n

4
(ρ− η)

Consequently,

PE(G) ≤

√
n2(ρ− η)

4(n− 1)

Theorem 3.2. Let G be a connected graph consisting n vertices. Then,

PE(G) ≤

√
n(ρ+ η)

4ρη

where η = η(G) = |λPn |.

Proof. Let ai = |λPi |, m = η, M = ρ. By the Lemma 2.1, the following inequality gives that

(
1

n

n∑
i=1

|λPi |)(
n∑

i=1

1

|λPi |
) ≤ 1

n
(

n∑
i=1

|λPi |)2

=
1

n
(PE(G))2
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On the other hand,

1

n
(PE(G))2 ≤ ρ+ η

4ρη

Thus, the proof is completed with

PE(G) ≤

√
n(ρ+ η)

4ρη

Theorem 3.3. If G is a connected graph and G has n vertices, then

PE(G) ≥
√

4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

where |[P (G)]| is the determinant of [P (G)].

Proof. By the Arithmetic-Geometric Mean inequality, the definition of path energy turns into

(PE(G))2 =

n∑
i=1

|λPi |2 + 2
∑

1≤i<j≤n

|λPi ||λPj |

≥
n∑

i=1

|λPi |2 + n(n− 1)(

n∏
i=1

|λPi |)
2
n

Since
∑n

i=1 |λPi |2 ≥ (PE(G))2, then
∑n

i=1 |λPi |2 ≥ (PE(G))2 ≥ 4(ρ(G))2. Hence, the inequality
gives that

(PE(G))2 ≥ 4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

Thus,

PE(G) ≥
√

4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

Corollary 3.4. Let G be a k-connected tree graph with n vertices. Then,

PE(G) ≥
√

(n− 1)[4k2(n− 1) + n|[P (G)]|
2
n ]

Proof. As noted in [1], ρ(G) ≥ k(n− 1) in this case. Therefore the corollary is clear.

Corollary 3.5. Let G be a k-connected tree graph of order n. Then
i)

PE(GC) ≥
√

(n− 1)[4k2(n− 1) + n|[P (G)]|
2
n ]

where GC is the complement of G.
ii)

ρ(G
′
) ≥

√
(n− 2)[4k2(n− 2) + (n− 1)|[P (G)]|

2
n−1 ]

where G
′

is formed from G by deleting edge ij.
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Theorem 3.6. Let G be a connected graph of order n then,

PE(G) ≤ m+
√

2mn

Proof. Minkowski inequality gives that

(
n∑

i=1

(|λPi |+ 1)2)
1
2 ≤ (

n∑
i=1

|λPi |2)
1
2 + (

n∑
i=1

1)
1
2

By the help of Bernoulli inequality, it is stated that

(n+ 2PE(G))
1
2 ≤ (

n∑
i=1

|λPi |2)
1
2 + n

1
2

Since
∑n

i=1(λ
P
i )2 = 2m, then

n+ 2PE(G) ≤ (
√

2m+
√
n)2

Hence,

PE(G) ≤ m+
√

2mn

Corollary 3.7. Let G be a connected graph with n vertices and m edges. Then, PE(GC) ≤
n(n− 1)− 2m

2
+
√

(n(n− 1)− 2m)n where GC is the complement of G.

Proof. By the Theorem 3.6, PE(GC) ≤ mC+
√

2mCn. Since 2(m+mC = n(n−1)), then PE(GC) ≤
n(n− 1)

2
−m+

√
2(
n(n− 1)

2
−m)n. Hence, PE(GC) ≤ n(n− 1)− 2m

2
+
√

(n(n− 1)− 2m)n.

Theorem 3.8. Let G be a connected tree graph of order n. Then,

PE(G) ≥ 4mn− 8(n− 1)2

n(ρ− η)
+ 2ρ

where η = η(G) = |λPn |.

Proof. Let pi = 1
n , ai = |λPi |, r = η, R = ρ. Lemma 2.2 implies that

1

n

n∑
i=1

|λPi |2 − (

n∑
i=1

1

n
|λPi |)2 ≤

1

2
(ρ− η)(

n∑
i=1

1

n
||λPi | −

1

n

n∑
j=1

|λPj ||)

This requires

2m

n
− 1

n2
(PE(G))2 ≤ 1

2
(ρ− η)(

1

n
PE(G)− 2n

1

n2
ρ)

Since PE(G) ≥ 2(n− 1), we have

2m

n
− 4(n− 1)2

n2
≤ (ρ− η)

2n
(PE(G))− ρ(ρ− η)

n

Hence,

PE(G) ≥ 4mn− 8(n− 1)2

n(ρ− η)
+ 2ρ
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4. Conclusion

In this paper, the path energy is studied using the path matrix. Different bounds are obtained for the
path energy with some fixed parameters.
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