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Abstract − In this paper we define and study the product of tritopological spaces (which we 

named it δ∗-product). Moreover, to motivate our definition, we show that the product 

properties for tritopological spaces are not preserved. Further, we provide some necessary 

and sufficient conditions for these spaces to be preserved under a finite product. 
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1. Introduction 

In mathematics, the Cartesian product of a collection of sets is one of the most important and widely used 

ideas. The theory of product spaces constitutes a very interesting and complex part of set-theoretic topology. 

The Cartesian product of arbitrarily topological spaces was defined by Tychonoff in 1930 [1].  

 

Then almost 33 years later in 1963, the idea of bitopological spaces was initiated by Kelly [2], and after that, 

a large number of papers have been produced in order to generalize the topological concepts to bitopological 

setting. In 1972, Datta [3] defined the Cartesian product of arbitrarily bitopological spaces. It is also well-

known that the Tychonoff Product Theorem plays an important role in a general product. 

 

A tritopological space is simply a set 𝑋 which is associated with three arbitrary topologies, was initiated by 

Kovar [4]. In 2004, Hassan introduced the definition of δ∗-open set in tritopological spaces as follows, a subset 

𝐴 of 𝑋 is said to be 𝛿∗-open set iff A ⊆ 𝒯 int(𝒫 cl(𝒬 int(A))) [5]. And in [6] she defined the 𝛿∗-connectedness 

in tritopological spaces, also Hassan et al. [7] defined the δ∗-base in tritopological spaces. In [8] and [9] the 

reader can find a relationship among separation axioms, and relationships among some types of continuous 

and open functions in topological, bitopological and tritopological spaces, and in 2017, Hassan introduced the 

new definitions of countability and separability in tritopological spaces namely δ∗-countability and δ∗-

separability [10]. In 2017, Hassan presented the concept of soft tritopological spaces [11]. However, no concept 

of tritopologization in product spaces has been given until now. 

 

In the present paper, the concept of product topological spaces has been generalized to initiate the definition 

and study of product tritopological spaces. Besides, we introduce and characterize new definitions and 

theorems in tritopological spaces, and we provide some necessary and sufficient conditions for these spaces to 

be preserved under the  δ∗-product.  
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In section 2, some preliminary concepts about tritopological spaces are given. The main section of the 

manuscript is third which the definition of 𝛿∗-product tritopology of two tritopological spaces with examples 

and some theorems are given. Section 4 is devoted to the generalization to theorems for tritopological product 

of spaces. In section 5 the definition of 𝛿∗-Tychonoff tritopology and some theorems are introduced. Finally, 

in section 6 the conclusions and some future work is suggested 

2. Preliminaries 

In the following, we will mention some basic definitions and notations in tritopological space which we need 

in this work. 

Definition 2.1. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, a subset 𝐴 of X is said to be δ∗-open set iff 𝐴 ⊆

𝒯 int(𝒫 cl(𝒬 int(𝐴))), and the family of all δ∗-open sets is denoted by δ∗. O(𝑋). (δ∗. O(𝑋) not always 

represent a topology). The complement of δ∗-open set is called a δ∗-closed set.  

Definition 2.2. [5] (X, 𝒯, 𝒫, 𝒬)  is called a discrete tritopological space with respect to δ∗-open if δ∗. O(𝑋) 

contains all subsets on 𝑋. And (X, 𝒯, 𝒫, 𝒬) is called an indiscrete tritopological space with respect to δ∗-open 

if δ∗. O(𝑋) = {𝑋, ∅}. 

Definition 2.3. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let 𝑥 ∈ 𝑋, a subset 𝑁 of 𝑋 is said to be a δ∗-

nhd of a point x iff  there exists a δ∗-open set U such that 𝑥 ∈ 𝑈 ⊂ 𝑁. The set of all δ∗-nhds of a point x  is 

denoted by δ∗ − 𝑁(𝑥). 

Definition 2.4. [7] A collection δ∗-β of a subset of X is said to form a δ∗-base for the tritopology (𝒯, 𝒫, 𝒬)  iff:  

δ∗-β  ⊂ δ∗. O(X). for each point x ∈ X and each  δ∗-neighbourhood 𝒩 of x  there exists some ℬ ∈ δ∗-β such 

that x ∈ ℬ ⊂ 𝒩.  

Definition 2.5. [5] The function 𝑓: (𝑋, 𝒯, 𝒫, 𝒬) →  (𝑌, 𝒯 ′, 𝒫′, 𝒬′)  is said to be δ∗-continuous at 𝓍 ∈ X  iff for 

every δ∗-open set V in Y containing 𝑓(𝑥) there exists δ∗-open set U in X containing 𝓍 such that 𝑓(𝑈) ⊂ 𝑉. We 

say f is δ∗-continuous on X  iff  𝑓 is δ∗-continuous at each 𝓍 ∈ X.  

Definition 2.6. [5] The function 𝑓: (𝑋, 𝒯, 𝒫, 𝒬) →  (𝑌, 𝒯 ′, 𝒫′, 𝒬′) is said to be δ∗-open  iff  𝑓 (𝐺) is δ∗-open 

in  𝑌 for every δ∗-open set 𝐺 in 𝑋. 

Definition 2.7. [5] Let (X, 𝒯, 𝒫, 𝒬) and (Y, 𝒯 ′, 𝒫′, 𝒬′) are two tritopological spaces and 𝑓: (X, 𝒯, 𝒫, 𝒬) → 

(Y, 𝒯 ′, 𝒫′, 𝒬′)  be a function, then 𝑓 is δ∗-homeomorphism if and only if:   

i. 𝑓 is bijective (one to one, onto). 

ii. 𝑓 and  𝑓−1 are δ∗-continuous (or 𝑓 is δ∗-continuous and δ∗-open).  

Definition 2.8. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, a point 𝑥 is called δ∗-limit point of a subset 𝐴 of  

𝑋   iff   for each δ∗-open set  𝐺  containing another point different from 𝑥 in 𝐴; that is  ( 𝐺  {𝑥}⁄  ) ∩ 𝐴 ≠ ∅, and 

the set of all δ∗-limit points of 𝐴 is denoted by δ∗ − 𝑙𝑚(𝐴). 

Definition 2.9. [5] A tritopological space (X, 𝒯, 𝒫, 𝒬) is called δ∗-𝑇2-space (δ∗-Hausdorff) if and only if for 

each pair of distinct points  𝑥, 𝑦 of 𝑋, there exists two  δ∗-open sets 𝐺, 𝐻 such that  𝑥  𝐺,  𝑦  𝐻,  𝐺 ∩ 𝐻 = ∅. 

Definition 2.10. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let  𝐴  be any subset of  X, then the collection 

C = {Gλ   : λ ∈  Λ }  is called δ∗-open cover to 𝐴 if C is a cover to 𝐴and C  δ∗. O(X).    

Definition 2.11. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let  𝐴 be any subset of  𝑋, then 𝐴 is called 

δ∗-compact set iff every δ∗-open cover of 𝐴 has a finite sub-cover, i.e. for each {𝐺𝜆: 𝜆 ∈  𝛬 }  of  δ∗-open sets 

for which  𝐴 ⊂ ∪ {𝐺𝜆: 𝜆 ∈  𝛬 }, there exist finitely many sets Gλ1, … , Gλn   among the Gλ’s such that 𝐴 ⊂ 𝐺𝜆1 ∪

… ∪ 𝐺𝜆𝑛.  



 

71 

 

Journal of New Theory 30 (2020) 69 -78 / Tritopological Views in Product Spaces 

In particular, the space X is called δ∗-compact iff for each collection {𝐺𝜆 : 𝜆 ∈ 𝛬 } of δ∗-open sets for which  

𝑋 =∪ {𝐺𝜆: 𝜆 ∈ 𝛬 }, there exist finitely many sets Gλ1, … , Gλn   among the   Gλ ′s  such that  𝑋 = 𝐺𝜆1 ∪ … ∪

𝐺𝜆𝑛  . 

Definition 2.12. [10] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space. Space is said to be a δ∗-second countable (or 

to satisfy the second axiom of δ∗-countability in tritopology) iff there exists a δ∗-countable base for a 

tritopology. 

Definition 2.13. [12] Let {Xλ: λ ∈ Λ} is an arbitrary collection of sets indexed by Λ, then the Cartesian product 

of this collection is the set of all mappings x defined by x: Λ → ∪ {Xλ: λ ∈ Λ} such that x(λ) ∈ Xλ for all λ ∈ Λ 

and is denoted by π{Xλ: λ ∈ Λ} or by × {Xλ: λ ∈ Λ}. The set 𝑋𝜆is called the 𝜆𝑡ℎcoordinate set of the product. 

Definition 2.14. [12] Let 𝑋 =× {𝑋𝜆: 𝜆 ∈ Λ}, then the mapping 𝜋𝜆: 𝑋 →  𝑋𝜆 defined by 𝜋𝜆(𝑥) = 𝑥𝜆 for all 𝑥 ∈

X is called the 𝜆𝑡ℎ projection. 

3. Product space of two tritopological spaces 

In this section, we shall describe the technique for constructing a tritopology for the Cartesian product 𝑋 × 𝑌 

of two tritopological spaces 𝑋 and 𝑌 with the help of the families of all δ∗-open sets 𝛿∗. O(X)  and 𝛿∗. O(Y) of 

the two spaces (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) shall examine the properties of the tritopology thus obtained in 

minute details. Subsequent sections will be devoted to the way of tritopologizing the Cartesian product of an 

arbitrary collection of tritopological spaces. 

Because the families of all δ∗-open sets 𝛿∗. O(X)  and  𝛿∗. O(Y) does not always represent a topology [5]. We 

provide some necessary conditions for these theorems to be valid under a finite product. 

Theorem 3.1. Let  (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological space and if 𝛿∗. O(X) and 𝛿∗. O(Y) 

represent a topology. Then the collection 𝐸 = {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(X) and 𝐻 ∈ 𝛿∗. O(Y)} is a δ∗-base for some 

tritopology for 𝑋 × 𝑌. 

PROOF. Assume that δ∗. O(X) and δ∗. O(Y) represent a topology. We shall show that E satisfies the conditions 

[B1] and [B2] of  Theorem [7], Since  𝑋 × 𝑌 ∈ 𝐸, we have X × Y =∪ {G × H: G ∈ δ∗. O(X) and H ∈

δ∗. O(Y) }. Thus, [B1] is satisfied. 

Now let G1 × H1 and G2 × H2 be any two members of  E. We then have 

(G1 × H1) ∩ ( G2 × H2) = (G1 ∩ G2) × (H1 ∩ H2) (1) [see (2.18) (iii), ch. 1] 

Since we assume that δ∗. O(X) and δ∗. O(Y) represent a topology, we have  

𝐺1 ∈ 𝛿∗. O(X),   𝐺2 ∈ 𝛿∗. O(X) → 𝐺1 ∩ 𝐺2 ∈ 𝛿∗. O(X) 

And  𝐻1 ∈ δ∗. O(Y),   𝐻2 ∈ δ∗. O(Y) → 𝐻1 ∩ 𝐻2 ∈ δ∗. O(Y). 

Hence it follows from (1) that  (𝐺1 × 𝐻1) ∩ ( 𝐺2 × 𝐻2) ∈ 𝐸. Thus, we have shown that the intersection of any 

two members of 𝐸 is again a member of 𝐸 and so [𝐵2] is also satisfied. Therefore 𝐸 is a 𝛿∗-base for some 

tritopology for 𝑋 × 𝑌. 

Remark 3.2. If  𝛿∗. O(X) and 𝛿∗. O(Y) does not represent a topology; the above theorem is not achieved. 

Because the intersection of any two members of 𝐸 is not always a member of 𝐸 and so [𝐵2] is not satisfied. 

Therefore 𝐸 is not a 𝛿∗-base for some tritopology for 𝑋 × 𝑌. (see example 1.1.4 in [5]). 

Definition 3.3. Let (X, 𝒯, 𝒫, 𝒬) and  (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological space. Then the tritopology (𝑈, 𝑉, 𝑊) 

whose 𝛿∗-base is 𝐸 = {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(X) 𝑎𝑛𝑑 𝐻 ∈ 𝛿∗. O(Y)} is called the 𝛿∗-product tritopology for 𝑋 × 𝑌 

and (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) is called the 𝛿∗-product space of  𝑋 and 𝑌.          
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Observe that in view of theorem (3.1), 𝐸 is a 𝛿∗-base for some tritopology for 𝑋 × 𝑌. This is the tritopology 

(𝑈, 𝑉, 𝑊) of the above definition. 

Theorem 3.4. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. And  β  is a 𝛿∗-base for (𝒯, 𝒫, 𝒬) 

and ∁  is a 𝛿∗-base for (𝒯,́ 𝒫,́ �́�). Then ℘ = {𝐵 × 𝐶: 𝐵 ∈ β 𝑎𝑛𝑑 𝐶 ∈ ∁ } is a 𝛿∗-base for the 𝛿∗-product 

tritopology (𝑈, 𝑉, 𝑊) for 𝑋 × 𝑌.  

PROOF. Let (𝑥, 𝑦) be any point of 𝑋 × 𝑌 and let 𝑁 be a 𝛿∗-nhd of  (𝑥, 𝑦) in 𝑋 × 𝑌. Since 𝐸 = {𝐺 × 𝐻: 𝐺 ∈

𝛿∗. O(X) 𝑎𝑛𝑑 𝐻 ∈ 𝛿∗. O(Y)} is a 𝛿∗-base for (𝑈, 𝑉, 𝑊), there exists a member 𝐺 × 𝐻 of 𝐸 such that (𝑥, 𝑦) ∈

𝐺 × 𝐻 ⊂ 𝑁.                              … (1) 

Since 𝐺 is 𝛿∗-open and β is a 𝛿∗-base for (𝒯, 𝒫, 𝒬), there exists some 𝐵 ∈ β such that 𝑥 ∈ 𝐵 ⊂ 𝐺.  Similarly, 

there exists some 𝐶 ∈ ∁  such that 𝑦 ∈ 𝐶 ⊂ 𝐻. It follows that   

(𝑥, 𝑦) ∈ 𝐵 × 𝐶 ⊂ 𝐺 × 𝐻.                      …  (2) 

Hence from (1) and (2), we get (𝑥, 𝑦) ∈ 𝐵 × 𝐶 ⊂ 𝑁. This implies that ℘ is a 𝛿∗-base for (U, V, W). 

Example 3.5. Let          𝑋 = {𝑎, 𝑏, 𝑐},      𝒯 = {X, Ø, {b}, {c}, {b, c}}  

                                                               ,     𝒫 = {X, Ø, {a}, {b}, {a, b}}  

                                                               ,     𝒬 = {X, Ø, {a}, {c}, {a, c}}  

 (X, 𝒯), (X, 𝒫) and  (X, 𝒬) are three topological space, then (X, 𝒯, 𝒫, 𝒬) is a tritopological space, the family of 

all 𝛿∗-open set of X is:   𝛿∗. O(X) = {X, Ø, {c}} 

And let                      𝑌 = {𝑝, 𝑞, 𝑟, 𝑠},      �́� = {Y, Ø}  

                                                              ,     �́� = {Y, Ø}  

                                                              ,     �́� = {Y, Ø, {p}, {q}, {p, q}, {r, s}, {p, r, s}, {q, r, s}}  

 (𝑌, �́�), (𝑌, �́�)  and  (𝑌, �́�)  are three topological space, then (𝑌, 𝒯,́ 𝒫,́ �́�)  is a tritopological space, the family 

of all 𝛿∗-open set of Y is:   

𝛿∗. 𝑂(𝑌) = {𝑌, Ø, {𝑝}, {𝑞}, {𝑝, 𝑞}, {𝑟, 𝑠}, {𝑝, 𝑟, 𝑠}, {𝑞, 𝑟, 𝑠}} 

Now we will find a 𝛿∗-base for the 𝛿∗-product tritopology of  𝑋 × 𝑌. 

It is easy to see that  β = {{𝑐}, 𝑋} is a 𝛿∗-base for (𝒯, 𝒫, 𝒬) and  ∁= {{𝑝}, {𝑞}, {𝑟, 𝑠}} is a 𝛿∗-base for (𝒯,́ 𝒫,́ �́�). 

Hence by theorem (3.4) above, a 𝛿∗-base for the 𝛿∗-product tritopology is given by 

℘ = {{𝑐} × {𝑝}, {𝑐} × {𝑞}, {𝑐} × {𝑟, 𝑠}}, 𝑋 × {𝑝}, 𝑋 × {𝑞}, 𝑋 × {𝑟, 𝑠}}

= {{(𝑐, 𝑝)}, {(𝑐, 𝑞)}, {(𝑐, 𝑟), (𝑐, 𝑠)}, {(𝑎, 𝑝), (𝑏, 𝑝), (𝑐, 𝑝)}, {(𝑎, 𝑞), (𝑏, 𝑞), (𝑐, 𝑞)}, 

{(𝑎, 𝑟), (𝑎, 𝑠), (𝑏, 𝑟), (𝑏, 𝑠), (𝑐, 𝑟), (𝑐, 𝑠)} } 

Definition 3.6. A tritopology (𝒯, 𝒫, 𝒬)  on a set  X  is said to be δ∗-weaker ( or δ∗-coarser or δ∗-smaller) than 

another Tritopology (𝒯,́ 𝒫,́ �́�) on X. Or we can say that (𝒯,́ 𝒫,́ �́�) is said  to be δ∗-stronger (or δ∗-finer or δ∗-

larger) than (𝒯, 𝒫, 𝒬) ) iff  𝛿∗. O(X) ⊂ 𝛿∗. O(X)́ , (where 𝛿∗. O(X) is the family of all δ∗-open sets in(X, 𝒯, 𝒫, 𝒬) 

and 𝛿∗. O(X)́   is the family of all δ∗-open sets in (X, 𝒯,́ 𝒫,́ �́�)).  

According to this definition, indiscrete tritopology on any set 𝑋 with respect to δ∗-open set is the δ∗-weakest 

whereas the discrete tritopology on any set 𝑋 with respect to δ∗-open set is the δ∗-strongest. It is easy to see 

that the collection  𝐶 off all tritopologies on a set 𝑋  is a δ∗-partially ordered set with respect to the relation ≤ 

defined by setting (𝒯, 𝒫, 𝒬) ≤ (𝒯,́ 𝒫,́ �́�)  iff (𝒯, 𝒫, 𝒬) is δ∗-weaker than (𝒯,́ 𝒫,́ �́�), where 

(𝒯, 𝒫, 𝒬) 𝑎𝑛𝑑 (𝒯,́ 𝒫,́ �́�) are members of 𝐶. The indiscrete tritopology on 𝑋 w.r.t. δ∗-open set is the δ∗-infimum 

and the discrete tritopology on 𝑋 w.r.t. δ∗-open set is the δ∗-supremum of (𝐶, ≤).  
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Theorem 3.7. The 𝛿∗-product tritopology on a non-empty set 𝑋 × 𝑌 is the 𝛿∗-weak tritopology for  𝑋 × 𝑌 

determined by the projection maps 𝜋𝑥 and 𝜋𝑦 from the tritopologies on 𝑋 𝑎𝑛𝑑 𝑌.  ( This theorem is valid when 

𝛿∗. O(𝑋) and 𝛿∗. O(𝑌) are satisfied a topology) 

PROOF. The 𝛿∗-weak tritopology has a 𝛿∗-subbase {𝐺𝜆: Gλ = 𝜋𝑥
−1[𝐴𝜆]  𝑜𝑟  𝐺𝜆 = 𝜋𝑦

−1[𝐵𝜆], for some 𝐴𝜆 𝛿∗-

open in 𝛿∗. O(𝑋) or 𝐵𝜆 𝛿∗-open in 𝛿∗. O(𝑌) } 

The intersection   𝜋𝑥
−1[𝐴1] ∩ … .∩ 𝜋𝑥

−1[𝐴𝑚] ∩ 𝜋𝑦
−1[𝐵1] ∩ … ∩ 𝜋𝑦[𝐵𝑛

−1] 

= (𝐴1 × 𝑌) ∩ … ∩ (𝐴𝑚 × 𝑌) ∩ (𝑋 × 𝐵1) … ∩ (𝑋 × 𝐵𝑛) 

[since (𝐴 × 𝐵) ∩ (𝑆 × 𝑇) = (𝐴 ∩ 𝑆) × (𝐵 ∩ 𝑇)]. Of a finite number of such sets has the form  

(𝐴1 ∩ 𝐴2 ∩ … 𝐴𝑚) × (𝐵1 ∩ 𝐵2 ∩ … ∩ 𝐵𝑛) = 𝐴⋆ × 𝐵⋆     

Where 𝐴⋆ is 𝛿∗-open in 𝛿∗. O(𝑋) and 𝐵⋆ is 𝛿∗-open in 𝛿∗. O(𝑌). Hence the 𝛿∗-weak tritopology has the same 

𝛿∗-base as the 𝛿∗-product tritopology, and so the two tritopologies are the same. 

[Note that  𝜋𝑥
−1[𝐴1] = 𝐴1 × 𝑌, 𝜋𝑦

−1[𝐵1] = 𝑋 × 𝐵1   𝑒𝑡𝑐. ] 

Definition 3.8. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. Then the mappings 

𝜋𝑥: 𝑋 × 𝑌 → 𝑋 ∶  𝜋𝑥((𝑥, 𝑦)) = 𝑥      ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌     and  

𝜋𝑦: 𝑋 × 𝑌 → 𝑌 ∶  𝜋𝑦((𝑥, 𝑦)) = 𝑦      ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌  

are called the projections of the 𝛿∗-product 𝑋 × 𝑌 on tritopological spaces 𝑋 and 𝑌 respectively. 

Theorem 3.9. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. And let (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) be the 

𝛿∗-product space of the two spaces. then the projections 𝜋𝑥 and 𝜋𝑦 are 𝛿∗-continuous and 𝛿∗-open mappings. 

further the 𝛿∗-product tritopology (𝑈, 𝑉, 𝑊) is the 𝛿∗-coarsest tritopology for which the projections are 𝛿∗-

continuous. 

PROOF. Recall that 𝜋𝑥 is a mapping of  𝑋 × 𝑌 onto 𝑋 defined by 𝜋𝑥 ((𝑥, 𝑦)) = 𝑥 for every (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Let 

𝐺 be any 𝛿∗-open set. Then it is evident from the definition of  𝜋𝑥 that  𝜋𝑥
−1[𝐺] = 𝐺 × 𝑌 which is a basic 𝛿∗-

open subset of  𝑋 × 𝑌.  

[ ∵ 𝐺 ∈ 𝛿∗. O(𝑋), 𝑌 ∈ 𝛿∗. O(𝑌) → 𝐺 × 𝑌 ∈ 𝐸 where 𝐸 is the 𝛿∗-base for (𝑈, 𝑉, 𝑊) ].  

Hence 𝜋𝑥 is a 𝛿∗-continuous mapping from (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) to (X, 𝒯, 𝒫, 𝒬). Similarly, 𝜋𝑦 is a 𝛿∗-continuous 

mapping from (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) to (𝑌, 𝒯,́ 𝒫,́ �́�). Now let 𝐴 be any 𝛿∗-open subset of  𝑋 × 𝑌. Then by the 

definition of the 𝛿∗-base  𝐸  for  (𝑈, 𝑉, 𝑊), we have 𝐴 =∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈

𝐸′ ⊂ 𝐸}. 

Hence  𝜋𝑥[𝐴] = 𝜋𝑥[∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

                       = ∪ {𝜋𝑥[𝐺 × 𝐻]: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} 

                       =∪ {𝐺: 𝐺 ∈ 𝛿∗. O(𝑋) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}       [By the definition of 𝜋𝑥] 

                           ∈ 𝛿∗. O(𝑋) 

It follows that 𝜋𝑥 is an 𝛿∗-open mapping. Finally, let (𝑈∗, 𝑉∗, 𝑊∗) be any tritopology for 𝑋 × 𝑌 for which the 

projections are 𝛿∗-continuous and let 𝐴 be any 𝛿∗-open set of 𝑋 × 𝑌. Then,  

𝐴 =∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} where 𝐸′ ⊂ 𝐸  

=∪ {(𝐺 ∩ 𝑋) × (𝑌 ∩ 𝐻): 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}  

=∪ {(𝐺 × 𝑌) ∩ (𝑋 × 𝐻): 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌)  𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}  
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=∪ {𝜋𝑥
−1[𝐺] ∩ 𝜋𝑦

−1[𝐻]: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} ∈  𝛿∗. O(𝑋 × 𝑌)∗    

[ Where 𝛿∗. O(𝑋 × 𝑌)∗ is the family of all 𝛿∗-open sets of the space(𝑋 × 𝑌, 𝑈∗, 𝑉∗, 𝑊∗) ] 

∵ 𝜋𝑥 𝑖𝑠   𝛿∗-continuous ⇒ 𝜋𝑥
−1[𝐺] ∈ 𝛿∗. O(𝑋 × 𝑌)∗ and 

    𝜋𝑦 𝑖𝑠   𝛿∗-continuous ⇒ 𝜋𝑦
−1[𝐻] ∈ 𝛿∗. O(𝑋 × 𝑌)∗ etc. 

Thus every 𝛿∗-open set in 𝛿∗. O(𝑋 × 𝑌) is 𝛿∗-open in 𝛿∗. O(𝑋 × 𝑌)∗ and so (𝑈, 𝑉, 𝑊) is 𝛿∗-coarser than 

(𝑈∗, 𝑉∗, 𝑊∗) is any tritopology for 𝑋 × 𝑌 for which the projections are 𝛿∗-continuous, it follows that (𝑈, 𝑉, 𝑊) 

is the 𝛿∗-coarsets tritopology for which the projections are 𝛿∗-continuous. 

Theorem 3.10. Let 𝑦𝑜 be a fixed element of  𝑌 and let 𝐴 = 𝑋 × {𝑦𝑜}. Then the restriction of  𝜋𝑥 to 𝐴 is a 𝛿∗-

homeomorphism of the subspace 𝐴 of 𝑋 × 𝑌 onto 𝑋. Similarly, the restriction of  𝜋𝑦 to 𝐵 = {𝑥𝑜} × 𝑌, 𝑥𝑜 ∈ 𝑋, 

is a 𝛿∗-homeomorphism. 

PROOF. Let 𝑔𝑥 denote the restriction of 𝜋𝑥 to 𝐴, that is, let 𝑔𝑥: 𝐴 → 𝑋: 𝑔𝑥((𝑥, 𝑦𝑜)) = 𝑥    ∀(𝑥, 𝑦𝑜) ∈ 𝐴. Then    

𝑔𝑥((𝑥1, 𝑦𝑜)) = 𝑔𝑥((𝑥2, 𝑦𝑜)) ⟹ 𝑥1 = 𝑥2 ⟹ ((𝑥1, 𝑦𝑜)) = ((𝑥2, 𝑦𝑜)) ⟹ 𝑔𝑥 is one − one, 

𝑔𝑥 is evidently onto. Since by the preceding theorem 𝜋𝑥 is 𝛿∗-continuous, it follows that 𝑔𝑥 is also 𝛿∗-

continuous [5]. We now show that 𝑔𝑥 is 𝛿∗-open. Let 𝐶 be any 𝛿∗-open subset of  𝐴. Then  𝐶 = 𝐴 ∩ 𝐵 for 

some 𝛿∗-open subset 𝐵 of  𝑋 × 𝑌. But  

𝐵 =∪ {𝐺 × 𝐻 ∶ 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝑋 × 𝐻 ∈ 𝐸′} 

Where 𝐸′ ⊂ 𝐸. We then have  

 𝑔𝑥[𝐶] = 𝑔𝑥[𝐴 ∩ 𝐵] = 𝑔𝑥[𝐴 ∩ [∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}]  

= 𝑔𝑥[∪ {𝐴 ∩ (𝐺 × 𝐻): 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑  𝐺 × 𝐻 ∈ 𝐸′] [Distributive law] 

=∪ {𝑔𝑥[(𝑋 × {𝑦𝑜}) ∩ (𝐺 × 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

 =∪ {𝑔𝑥[(𝑋 ∩ 𝐺) × ({𝑦𝑜}) ∩ 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

=∪ {𝑔𝑥[𝐺 × {𝑦𝑜} ∩ 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′]   … (1)  

If  𝑦𝑜 ∉ 𝐻, then it is easy to see from (1) that 𝑔𝑥[𝐶] = ∅. If  𝑦𝑜 ∈ 𝐻, then (1) gives 

𝑔𝑥[𝐶] =∪ {𝑔𝑥[𝐺 × {𝑦𝑜}]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

𝑔𝑥[𝐶] =∪ {𝐺: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} ∈ 𝛿∗. 𝑂(𝑋). 

This implies that 𝑔𝑥 is an 𝛿∗-open mapping as well. Thus, we have shown that 𝑔𝑥 is one-one, onto, 𝛿∗-

continuous and 𝛿∗-open mapping and consequently it is a 𝛿∗-homeomorphism. 

4. 𝜹∗-Product invariant properties for finite 𝜹∗-products 

We are going to generalize theorems for tritopological product of spaces. 

Theorem 4.1. The  𝛿∗-product space  𝑋 × 𝑌 is 𝛿∗-connected if and only if the tritopological spaces 𝑋 and 𝑌 

are 𝛿∗-connected. 

PROOF. Assume that 𝑋 × 𝑌 is 𝛿∗-connected. Since the projections 𝜋𝑥 and 𝜋𝑦 are 𝛿∗-continuous and onto 

mappings, it follows from Theorem in [6] that 𝑋 and 𝑌 are also 𝛿∗-connected spaces. Conversely, let  𝑋 and 𝑌 

be 𝛿∗-connected spaces. To show that  𝑋 × 𝑌 is also 𝛿∗-connected. Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be any two points 

of 𝛿∗. 𝑂(𝑋 × 𝑌). Then by theorem (3.10),  {𝑥1} × 𝑌 is 𝛿∗-homeomorphic to 𝑌 and  𝑋 × {𝑦2} is 𝛿∗-

homeomorphic to 𝑋. Hence {𝑥1} × 𝑌 and 𝑋 × {𝑦2} are 𝛿∗-connected by theorem in [6] They intersect in the 

points (𝑥1, 𝑦2) and hence there union is a δ∗-connected set by theorem in [6].Since this union contains (𝑥1, 𝑦1) 

and (𝑥2, 𝑦2), it follows from Theorem in [6] that 𝑋 × 𝑌 is 𝛿∗-connected. 
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Theorem 4.2. The 𝛿∗-product space 𝑋 × 𝑌 is 𝛿∗-compact if and only if each of the tritopological spaces 

𝑋 and 𝑌 is 𝛿∗-compact.             

PROOF. Let 𝑋 × 𝑌 be 𝛿∗-compact. Since the projection maps  𝜋𝑥: 𝑋 × 𝑌 → 𝑋 and  𝜋𝑦: 𝑋 × 𝑌 → 𝑌  are 𝛿∗-

continuous and onto, it follows from Theorem in [5] that 𝑋 and 𝑌 are also 𝛿∗-compact. Conversely, let 𝑋 and 

𝑌 be 𝛿∗-compact spaces. We want to show that 𝑋 × 𝑌 is 𝛿∗-compact. In view of Theorem in [5], it suffices to 

show that every basic 𝛿∗-open cover of  𝑋 × 𝑌 has a finite subcover. Since a basic 𝛿∗-open set in  𝑋 × 𝑌 is of 

the form 𝐺 × 𝐻 where 𝐺 is 𝛿∗-open in  𝑋 and  𝐻  is 𝛿∗-open in  𝑌, we may denote a basic 𝛿∗-open cover by              

𝐶 = {𝐺𝜆 × 𝐻𝜆: 𝜆 ∈ 𝛬} where 𝐺𝜆 is 𝛿∗-open in 𝑋 and 𝐻𝜆 is 𝛿∗-open in 𝑌. For a given point  𝑥 ∈ 𝑋, the set 

{𝑥} × 𝑌 is 𝛿∗-homeomorphic to 𝑌 by theorem (3.10), and is, therefore, 𝛿∗-compact by theorem in [5]. Since  

{𝑥} × 𝑌, being a subset of  𝑋 × 𝑌, is covered by 𝐶 and  {𝑥} × 𝑌 is 𝛿∗-compact, there exists a finite sub-family 

of C, say {Gλi × Hλi: i = 1,2, … , n}, which covers {𝑥} × 𝑌. Let  ∩ 𝐺𝜆𝑖 = 𝐺(𝑥). Then 𝐺(𝑥) is 𝛿∗-open in 𝑋 and 

contains 𝑥 since each 𝐺𝜆𝑖 contains 𝑥. Hence {𝐺(𝑥) × 𝐻𝜆𝑖: 𝑖 = 1,2, … , 𝑛} is still a finite 𝛿∗-open cover of 

{𝑥} × 𝑌.  Proceeding in this manner for each 𝑥 ∈ 𝑋, we construct the collection {𝐺(𝑥): 𝑥 ∈ 𝑋} of 𝛿∗-open sets 

in 𝑋 which covers 𝑋. By 𝛿∗-compactness of 𝑋, there exists a finite subcover {𝐺(𝑥𝑗): 𝑗 = 1,2, … , 𝑚} of this 

cover for 𝑋. Since each 𝐺(𝑥𝑗) is an intersection of 𝛿∗-open sets in 𝑋 which were used to form 𝐶, we may select 

an 𝛿∗-open set  𝐺𝜆𝑥𝑗
∈ 𝐶 such that 𝐺(𝑥𝑗) ⊂ 𝐺𝜆𝑥𝑗

 for  𝑗 = 1,2, … , 𝑚, Therefore  {𝐺𝜆𝑥𝑗
: 𝑗 = 1,2, … , 𝑚} is a finite 

𝛿∗-open cover of 𝑋, and for each 𝑗, 1 ≤ 𝑗 ≤ 𝑚, {𝐺𝜆𝑥𝑗
× 𝐻𝜆𝑖

: 𝑖 = 1,2, … , 𝑛} covers the subset 𝐺(𝑥𝑗) × 𝑌 of  

𝑋 × 𝑌. By its construction the collection  {𝐺𝜆𝑥𝑗
× 𝐻𝜆𝑖

: 𝑖 = 1,2, … , 𝑛 ;  𝑗 = 1,2, … , 𝑚}  is then a finite subcover 

of 𝐶 for 𝑋 × 𝑌 and therefore  𝑋 × 𝑌 is 𝛿∗-compact by theorem in [5]. 

Theorem 4.3. The 𝛿∗-product space of two δ∗-second countable tritopological spaces is 𝛿∗-second countable.   

PROOF. Let 𝑋 and 𝑌 be two 𝛿∗-second countable tritopological spaces. To show that 𝑋 × 𝑌 is also 𝛿∗-second 

countable. Let 𝐵 and 𝐶 be 𝛿∗-countable bases for 𝑋 and 𝑌 respectively. Consider the collection 𝐷 =

{𝐵 × 𝐶: 𝐵 ∈ 𝛿∗ − 𝛽, 𝐶 ∈ 𝛿∗ − ∁ }. Then 𝐷 is surely a countable collection [12]. It follows from theorem (3.4), 

that 𝐷 is a 𝛿∗-countable bases for 𝑋 × 𝑌. 

Theorem 4.4. The 𝛿∗-product space of two 𝛿∗-Hausdorff tritopological spaces is 𝛿∗-Hausdorff. 

PROOF. Let 𝑋 and 𝑌 be two 𝛿∗-Hausdorff tritopological spaces. To show that 𝑋 × 𝑌 is also a 𝛿∗-Hausdorff 

space. Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be any two distinct points in 𝛿∗. 𝑂(𝑋 × 𝑌). Then either 𝑥1 ≠ 𝑥2 or 𝑦1 ≠ 𝑦2. 

Take 𝑥1 ≠ 𝑥2. Since 𝑋 is 𝛿∗-Hausdorff, there exist 𝛿∗-open sets 𝐺1 and 𝐺2 in 𝛿∗. 𝑂(𝑋) such that 𝑥1 ∈ 𝐺1, 𝑥2 ∈

𝐺2  and 𝐺1 ∩  𝐺2 = ∅ [5]. Then 𝐺1 × 𝑌 and 𝐺2 × 𝑌 are 𝛿∗-open subset of 𝛿∗. 𝑂(𝑋 × 𝑌) such that (𝑥1, 𝑦1) ∈

𝐺1 × 𝑌, (𝑥2, 𝑦2) ∈ 𝐺2 × 𝑌 and  (𝐺1 × 𝑌) ∩ (𝐺2 × 𝑌) = (𝐺1 ∩ 𝐺2) × 𝑌 = ∅ × 𝑌 = ∅. It follows that the 

tritopological space  (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊)  is 𝛿∗-Hausdorff. 

5. 𝛅∗- Product tritopology (or 𝛅∗-Tychonoff tritopology) 

Definition 5.1. For each 𝜆 in an arbitrary index set Λ, let (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆) be a tritopological space and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. Then tritopology (𝒯, 𝒫, 𝒬)  for X which has a 𝛿∗-sub bases the collection 𝐵∗  = {𝜋𝜆
−1[𝐺𝜆]: 𝜆 ∈

𝛬, 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆}  is called the 𝛿∗-product tritopology (or the 𝛿∗-Tychonoff tritopology) for 𝑋, and 

(𝑋, 𝒯, 𝒫, 𝒬) is called the 𝛿∗-product space of the given spaces.  

Note that here 𝜋𝜆 denotes as usual the 𝜆𝑡ℎ projection. The collection 𝐵∗ is called the defining 𝛿∗-subbase for 

(𝒯, 𝒫, 𝒬). the collection 𝛽 of all finite intersections of elements of 𝐵∗ would then form a 𝛿∗-base for (𝒯, 𝒫, 𝒬). 

Remark 5.2. Since 𝜋𝜆
−1[𝐺𝜆] are 𝛿∗-open sets with respect to the 𝛿∗-product tritopology where Gλ is any 𝛿∗-

open set in  𝑋𝜆 it follows that the projection 𝜋𝜆 is a 𝛿∗-continuous map for each 𝜆 ∈ 𝛬. 
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Theorem 5.3. Let {(𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆): 𝜆 ∈ 𝛬}. Be an arbitrary collection of tritopological spaces and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. Let (𝒯, 𝒫, 𝒬) be a tritopology for 𝑋. Then the following statements are equivalent: (when all 

the families of 𝛿∗-open sets of tritopological spaces represent a topology, this theorem is satisfied) 

(a) (𝒯, 𝒫, 𝒬) is the 𝛿∗-product tritopology for X. 

(b) (𝒯, 𝒫, 𝒬) is the 𝛿∗-smallest tritopology for X for which the projections are 𝛿∗-continuous. 

PROOF. (a) ⟹ (b): Let πλ be the λthprojection map and let Gλ be any 𝛿∗
𝜆-open subset of  Xλ. Then by (a), 

πλ
−1[Gλ] must be δ∗

λ-open. It follows that πλ is  𝛿∗-continuous from (𝑋, 𝒯, 𝒫, 𝒬) to (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆). Now let 

(𝒯,́ 𝒫,́ �́�) be any tritopology on  X  such that  πλ is  δ∗-continuous from (𝑋,  𝒯,́ 𝒫,́ �́�) to (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆). for 

each 𝜆 ∈ 𝛬. Then 𝜋𝜆
−1[𝐺𝜆] is 𝛿∗-open in (𝒯,́ 𝒫,́ �́�) for every 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆. Since (𝒯,́ 𝒫,́ �́�)  is a tritopology 

for 𝑋, (𝒯,́ 𝒫,́ �́�) contains all the unions of finite intersections of members of the collection 

{πλ
−1[Gλ]: λ ∈ Λ and Gλ ∈ δ∗. O(X)λ}.      

This implies that 𝛿∗. 𝑂(𝑋)́  contains 𝛿∗. 𝑂(𝑋)(𝛿∗. 𝑂(𝑋) ⊂ 𝛿∗. 𝑂(𝑋))́ , that is (𝒯, 𝒫, 𝒬) is 𝛿∗-coarser than 

(𝒯,́ 𝒫,́ �́�). It follows (𝒯, 𝒫, 𝒬) is the 𝛿∗-smallest tritopology for X such that πλ is  δ∗-continuous for each λ ∈

Λ. 

(𝑏) ⟹ (𝑎) : Let 𝐵∗ be the collections of all sets of the form 𝜋𝜆
−1[𝐺𝜆] where Gλ is an δ∗-open subset of Xλ for 

λ ∈ Λ. Then by theorem in [5], a tritopology (𝒯,́ 𝒫,́ �́�)  for X will make all the projections 𝜋𝜆 𝛿∗-continuous iff  

𝐵∗ ⊂ 𝛿∗. 𝑂(𝑋)́ . Hence in view of [7], the δ∗-smallest tritopology for X which makes all the projections δ∗-

continuous is the tritopology determined by 𝐵∗ as a 𝛿∗-subbase, that is, it is the δ∗-product tritopology for 𝑋 

[see (5.1)]. 

Theorem 5.4. Let {(𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆): 𝜆 ∈ 𝛬}, an arbitrary collection of tritopological spaces and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. The collection C of all sets of the form × {𝐺𝜆: 𝜆 ∈ 𝛬}. Where 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 for each 𝜆 ∈ 𝛬, 

is a 𝛿∗-base for some tritopology for 𝑋. (if 𝛿∗. 𝑂(𝑋)𝜆 satisfy the topology this theorem is valid)  

PROOF. We shall show that 𝐶 satisfies the conditions [B1] and [B2] of Theorem in [7].  

[B1]: Let 𝑥 ∈ 𝑋 so that 𝑥 = {𝑥𝜆: 𝜆 ∈ 𝛬} where 𝑥𝜆 ∈ 𝑋𝜆. Then there exists a 𝛿∗
𝜆-open set 𝐺𝜆 (which may be 

𝑋𝜆) such that 𝑥𝜆 ∈ 𝐺𝜆. Hence x is an element of a set of the form × {𝐺𝜆: 𝜆 ∈ 𝛬} = 𝐺 say. Thus, to each 𝑥 ∈ 𝑋, 

there exists a member 𝐺 of 𝐶 such that 𝑥 ∈ 𝐺. It follows that 𝑋 =∪ {𝐺: 𝐺 ∈ 𝐶}. 

[B2] Let 𝐺 ∈ 𝐶 and 𝐺′ ∈ 𝐶. Then × {𝐺𝜆: 𝜆 ∈ 𝛬} = 𝐺  And  × {𝐺′
𝜆: 𝜆 ∈ 𝛬} = 𝐺′ 

Where 𝐺𝜆 ∈  𝛿∗. 𝑂(𝑋)𝜆  and  𝐺′
𝜆 ∈  𝛿∗. 𝑂(𝑋)𝜆 for every 𝜆 ∈ 𝛬. Now  

                   𝐺 ∩ 𝐺′ = ( × {𝐺𝜆: 𝜆 ∈ 𝛬})  ∩   × {𝐺𝜆
′: 𝜆 ∈ 𝛬}) 

                                =× {𝐺 ∩ 𝐺′: 𝜆 ∈ 𝛬}                                       … (1) 

Since ( 𝒯𝜆, 𝒫𝜆 , 𝒬𝜆) is a tritopology for 𝑋𝜆, we have 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 and 𝐺′
𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 →  𝐺 ∩ 𝐺′ ∈

𝛿∗. 𝑂(𝑋)𝜆. (that is if 𝛿∗. 𝑂(𝑋)𝜆 represent a topology) 

It follows from (1) that  𝐺 ∩ 𝐺′ ∈ 𝐶.  Thus [B2] is also satisfied.  

Theorem 5.5 Let 𝑓 be a mapping of a tritopological space 𝑌 into a 𝛿∗-product space 𝑋 =× {𝑋𝜆: 𝜆 ∈ 𝛬}. Then 

f is δ∗-continuous iff the composition 𝜋𝜆 𝑜  𝑓 ∶ 𝑌 → 𝑋𝜆 is 𝛿∗-continuous. 

PROOF. Let 𝑓 be 𝛿∗-continuous. Since all projection is 𝛿∗-continuous, it follows from Theorem in [5], that 𝜋𝜆 

of is also 𝛿∗-continuous. 

Conversely, let each composition map 𝜋𝜆 of be 𝛿∗-continuous and let 𝑈 be any member of the defining  𝛿∗-

subbase 𝐵∗ of the 𝛿∗-product space 𝑋. then 𝜋𝜆
−1[𝐺] = 𝑈 for some 𝜆 ∈ 𝛬 and some 𝐺 ∈ 𝛿∗. 𝑂(𝑋)𝜆 . Also  

𝑓−1[𝑈] = 𝑓−1[𝜋𝜆
−1[𝐺]] = (𝜋𝜆𝑜𝑓)−1[𝐺]. 
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Since 𝜋𝜆𝑜𝑓 is 𝛿∗-continuous, it follows that (𝜋𝜆𝑜𝑓)−1[𝐺] = 𝑓−1[𝑈] is 𝛿∗-open in 𝑌. Thus, we have shown 

that the inverse image under f of every sub basic 𝛿∗-open set in the 𝛿∗-product space 𝑋 is 𝛿∗-open in 𝑌. It 

follows from Theorem in [5] that f is 𝛿∗-continuous. 

Theorem 5.6. Each projection map is an 𝛿∗-open map. 

PROOF. The proof left to the reader. 

Theorem 5.7. Let 𝑋 be the non-empty 𝛿∗-product space × {𝑋𝜆: 𝜆 ∈ 𝛬}. Then a non-empty 𝛿∗-product subset 

𝐹 =× {𝐹𝜆: 𝜆 ∈ 𝛬} is 𝛿∗-closed in 𝑋 if and only if each 𝐹𝜆  is 𝛿∗-closed in 𝑋𝜆. 

PROOF. Let 𝐹𝜆  is 𝛿∗-closed in 𝑋𝜆 for every 𝜆 ∈ 𝛬 Since the projection 𝜋𝜆is 𝛿∗-continuous, for each 𝜆 ∈ 𝛬. 

𝜋𝜆
−1[𝐹𝜆]  is 𝛿∗-closed in 𝑋, it easy to see that  𝐹 =∩ {𝜋𝜆

−1[𝐹𝜆]: 𝜆 ∈ 𝛬}. 

It follows that F  is δ∗-closed in 𝑋, being an intersection of 𝛿∗-closed sets [5]. 

Conversely, let 𝐹 =× {𝐹𝜆: 𝜆 ∈ 𝛬} be 𝛿∗-closed in 𝑋. To show that each 𝐹𝜆 is 𝛿∗-closed in 𝑋𝜆. Let 𝜇 ∈ 𝛬 be 

arbitrary. we shall show that 𝐹𝜇 is 𝛿∗-closed in 𝑋𝜆. Let 𝜇 be any 𝛿∗-limit point 𝐹𝜇  in 𝑋𝜇. Consider the point 𝑧 

where 𝜋𝜆(𝑧) = 𝑧𝜇 and 𝜋𝜆(𝑧) is an element of 𝐹𝜇 for 𝜆 ≠ 𝜇 Let 𝐺 be any basic 𝛿∗-open set for the 𝛿∗-product 

topology containing 𝑧. Then 𝜋𝜇(𝐺) is 𝛿∗-open by theorem (5.6) and contains 𝑧𝜇. Since 𝑧𝜇 is a 𝛿∗-limit point 

of 𝜋𝜇(𝐺) must contain a point 𝑥𝜇 of  𝐹𝜇 different from 𝑧𝜇 Therefore 𝐺 contains the point x where πλ(x) =

πλ(z) for 𝜆 ≠ 𝜇 and 𝜋𝜆(𝑥) = 𝑥𝜇. Evidently, 𝑥 ∈ 𝐹, Also since 𝑥 and 𝑧 differ in 𝜇𝑡ℎ coordinate, we have 𝑥 ≠ 𝑧 

Thus we have shown that every basic 𝛿∗-open set containing 𝑧 contains a point of 𝐹 different from 𝑧. Hence z 

is a 𝛿∗-limit point of  𝐹. Since  𝐹 is 𝛿∗-closed in  𝑋, 𝑧 ∈ 𝐹 which implies that 𝜋𝜇(𝑧) ∈ 𝜋𝜇(𝐹). Thus 𝐹𝜇 contains 

all its 𝛿∗-limit points and so 𝐹𝜇 is 𝛿∗-closed. Since 𝜇 was arbitrary, we see that 𝐹𝜇 is 𝛿∗-closed for every 𝜆 ∈ 𝛬.  

6. 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧 

The purpose of this article is to introduce the concept of the product in tritopological spaces namely δ∗-product 

spaces. Several properties of 𝛿∗- product spaces concept is established. Moreover, we obtain a characterization 

and preserving theorems with the help of some necessary conditions and interesting examples. And we 

generalise theorems in 𝛿∗-connectedness, 𝛿∗-compactness, 𝛿∗-second countability and 𝛿∗-Hausdorff for 

tritopological product of spaces. Furthermore, the uses of tritopological results in this paper and some other 

papers are worthy for possible applications in areas of science and social science for the future. 
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