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Abstract
The main topic of this study is to investigate rotation matrices in four dimensional Euclidean space in two
different ways. The first of these ways is Rodrigues formula and the second is Cayley formula.The most
important common point of both formulas is the use of skew symmetric matrices. However, depending on
the skew symmetric matrix used, it is possible to classify the rotation matrices by both formulas. Therefore,
it is also revealed how the rotation matrices obtained by both formulas are classified as simple, double
or isoclinic rotation. Eigenvalues of skew symmetric matrices play the major role in this classification.
With the use of all results, it is also seen which skew symmetric matrix is obtained from a given rotation
matrix by Rodrigues and Cayley formula, respectively. Finally, an algorithm for classification of rotations
is given with the help of the obtained data and explained with an example.
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1. Introduction
Linear transformations appear in many areas of mathematical sciences. Among the linear transformations,

orthogonal transformations are the well known ones. These transformations contribute to the solution of many
problems in kinematics, physics and computer graphics [1-8]. There are different types of orthogonal transforma-
tions: reflections, rotations and their various combinations. In this study, We aim to investigate the second kind of
orthogonal transformations i.e. rotations in four dimensional Euclidean space. In the literature, there are many
studies dealing with rotation matrices in three dimensional space [10-16] while there are limited studies examining
rotation matrices in higher dimensions [6-9]. Mostly, three dimensional rotation matrices have been analyzed with
the help of skew symmetric matrices [14-16]. For any given skew-symmetric matrix

A =

 0 −a12 a13
a12 0 −a23
−a13 a23 0

 ,
we obtain exponential of θA as follows:

R = Rod(θA) = I + sin(θ)A+ (1− cos(θ))A2

with the use of the property A3 = −A. The matrix R corresponds to a rotation matrix where the unit vector
u = (a23,−a13, a12) is axis of rotation and θ is the angle of rotation. This is called Rodrigues rotation formula which
requires to evaluate exponential of a skew-symmetric matrix θA. An uncomplicated procedure of computing eA

for a given skew-symmetric matrix A is stated in [5]. Additionally, the derivative of a rotation with Rodrigues
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rotation formula is investigated in [22] by exponential coordinates. Cayley rotation formula is an admitted formula
to compose a rotation matrix by using any skew-symmetric matrix A. According to this formula,

R = Cay(A) = (I +A)(I −A)−1

corresponds to a rotation matrix [17-19].

In this study, we investigate 4× 4 rotation matrices by two different methods: Rodrigues formula and Cayley
formula. Both formulas use the skew symmetric matrices to determine the rotation matrices. However, we classify
the rotation matrices as simple, double or isoclinic rotations by depending on the skew symmetric matrices used. It
is essential to note that eigenvaluesof the skew symmetric matrices play the major role in this classification. Then, it
is also given how to find the skew symmetric matrix which generates a given rotation matrix by Rodrigues and
Cayley formula, respectively. Furthermore, an algorithm for classification of rotation matrices is given with the help
of the obtained data and explained with an example. This is an example of a numbered first-level heading.

2. Preliminaries
We need the axis of rotation to characterize three-dimensional rotation matrices. In four dimensional case, this
situation is very different. Instead of axis of rotations, the concept of plane of rotation is revealed. Plane (or planes)
of a given rotation help us describe the rotations in E4. Simply, the plane of rotation is the plane that transforms
itself under the rotation which is not fixed. But all vectors in the plane of rotation are transformed to other vectors
in the same plane by the rotation. We can classify the rotations depending on the number of planes of the rotation.

i. Simple Rotation: A rotation, which has one plane of rotation, is called a simple rotation. There should be a
another plane which is orthogonal to the plane of rotation. All vectors in this plane are transformed to themselves.
In this case, the rotation takes place in the plane of rotation. Consider the rotation matrix

1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα

 ,
xy-plane is the orthogonal plane to the plane of rotation and zw-plane is the plane of rotation. The points in
zw-plane are rotated through an angle α.

ii. Double Rotation: A rotation, which has two planes of rotation, is called a double rotation. The planes of rotation
are orthogonal to each other. The rotation is said to take place in both planes of rotation. There are two nonzero
angles of rotation, one for each plane of rotation. Points in the first plane rotate through θ, while points in the
second plane rotate through β. All other points rotate through an angle between θ and β. For example;

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ


is a double rotations where the plane of rotations are xy and zw planes with the angles of rotations β and θ,
respectively.

iii. Isoclinic Rotation: Isoclinic rotations are considered as a specific case of the double rotation. In this case, angles
of rotations should be equal. But it differs from the double rotation, since the planes of rotation are not unique but
identifiable. There are infinitely many number of orthogonal pairs of planes which are considered as planes of
rotation [21].

In the following two sections, we will need a special kind of matrix decomposition for skew symmetric matrices.
This is a well known matrix decomposition and deeply discussed in the study [3] for n dimensional case. But,
we will give the proof of this property by a different approach in four dimensional case. Firstly, it is necessary to
express the eigenvalues of 4× 4 skew symmetric matrices to understand the decomposition. In following parts of
the paper, we denote 4× 4 identity and zero matrix by I4 and 04, respectively.
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Let A = (ajk) ∈M4×4(R) be any skew-symmetric matrix. Since eigenvalue of skew symmetric matrix A is either 0
or purely imaginary, then the eigenvalues of A take the form

θ1i,−θ1i, θ2i,−θ2i where θ1 > 0, θ2 > 0 (1)

By direct computations, the eigenvalues satisfy the characteristic equation

PA(θ) = θ4 + 2aθ2 + b2 = 0

where
a =

1

2

∑
j<k

a2jk and b = a12a34 − a13a24 + a14a23.

Hence

θ1 =

√
a−

√
a2 − b2,

θ2 =

√
a+

√
a2 − b2.

A skew symmetric matrix A = 0 if and only if θ1 = θ2 = 0.

Lemma 2.1. Assume that A ∈M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1).

i) If θ1 > 0, θ2 > 0 and θ1 6= θ2, then we have
A = θ1A1 + θ2A2

where A1 and A2 are skew-symmetric matrices and satisfy the following properties

A1A2 = A2A1 = 04, A
3
1 = −A1 and A3

2 = −A2.

Moreover, we have the unique expressions of A1 and A2 as follows:

A1 =
1

θ1(θ22 − θ21)
(
θ22A+A3

)
and A2 =

1

θ2(θ21 − θ22)
(
θ21A+A3

)
.

ii) If θ1 = θ2 = θ, then we obtain
A2 = −θ2I4.

iii) If θ1 = 0 and θ2 = θ, then we get
A3 = −θ2A.

Proof. It is clear that the skew-symmetric matrix Ais unitary diagonalizable because it a normal matrix. Therefore,
we write

A = UDU∗

where D is a diagonal and U is a unitary matrix.
i) Suppose that θ1 > 0, θ2 > 0 and θ1 6= θ2. We have

D = diag{θ1i, − θ1i, θ2i, − θ2i}.

If we define
D1 = diag{i ,−i , 0, 0} and D2 = diag{0, 0, i,−i},

then we get
D = θ1D1 + θ2D2.

Let us define the skew-symmetric matrices A1 = UD1U
∗and A2 = UD2U

∗. Thus we get

A = θ1A1 + θ2A2. (2)
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Since D3
1 = −D1 and D3

2 = −D2, it follows that A3
1 = −A1 and A3

2 = −A2. By using these properties, we have

A2 = (θ1A1 + θ2A2)(θ1A1 + θ2A2) = θ21A
2
1 + θ22A

2
2

A3 = (θ1A1 + θ2A2)(θ
2
1A

2
1 + θ22A

2
2) = −θ31A1 − θ32A2 (3)

Solving the equations (2) and (3), we find

A1 =
1

θ1(θ22 − θ21)
(
θ22A+A3

)
and A2 =

1

θ2(θ21 − θ22)
(
θ21A+A3

)
.

ii) Assume that θ1 = θ2 = θ. Then we get

D = diag{θi,−θi, θi,−θi}

is the diagonal matrix. Therefore we have
AT = A∗ = U∗DU.

Then we find
AAT = AA∗ = −A2 = U∗DDU.

Since DD = θ2I4, then we see that
A2 = −θ2I4.

iii) Let θ1 = 0 and θ2 = θ.Then we have D = diag{0, 0, θi, −θi}. Therefore we obtain

AT = A∗ = UDU∗.

Then we get
−A3 = AATA = UDDDU∗.

Since DDD = θ2D, then we see that
−A3 = U(θ2D)U∗ = θ2A.

Thus, we get
A3 = −θ2A.

3. Rotations by Rodrigues Formula

Rodrigues rotation formula, which is named after Olinde Rodrigues, gives an efficient method for computing
rotation matrices in three dimensional Euclidean space by exponential of skew symmetric matrices. In this part,
we will give Rodrigues rotation formula for four dimensional Euclidean space by using Lemma 2.1. We will also
use the relation between eigenvalues of a skew symmetric matrix and eigenvalues of its exponential matrix. If
{θ1i,−θ1i, θ2i,−θ2i} is the set of eigenvalues of a given skew symmetric matrix, then the eigenvalues of matrix
exponential R = eA are eθ1i, e−θ1i, eθ2i and e−θ2i. This relation helps us to classify the rotation matrices. For details
of matrix exponential, the readers are referred to [5] and [3].

Theorem 3.1. Suppose that A = θ1A1 + θ2A2 ∈ M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1)
where θ1 > 0, θ2 > 0 and θ1 6= θ2.Then

R = Rod(A) = eA = I4 + sin θ1A1 + (1− cos θ1)A
2
1 + sin θ2A2 + (1− cos θ2)A

2
2

is a rotation matrix.

Proof. We know that A1A2 = A2A1 = 04 by i) of Lemma 2.1. Therefore, we write

eA = eθ1A1+θ2A2 = eθ1A1eθ2A2 .
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The property A3
1 = −A1 implies that

eθ1A1 = I4 +
∑
k≥1

θk1A
k
1

k!

= I4 +

(
θ1
1!
− θ31

3!
+
θ51
5!
− · · ·

)
A1 −

(
−θ

2
1

2!
+
θ41
4!
− θ61

6!
− · · ·

)
A2

1

= I4 + sin θ1A1 + (1− cos θ1)A
2
1.

Similarly, the property A3
2 = −A2 yields that

eθ2A2 = I4 +
∑
k≥1

θk2A
k
2

k!

= I4 +

(
θ2
1!
− θ32

3!
+
θ52
5!
− · · ·

)
A2 −

(
−θ

2
2

2!
+
θ42
4!
− θ62

6!
− · · ·

)
A2

2

= I4 + sin θ2A2 + (1− cos θ2)A
2
2.

Using the property A1A2 = A2A1 = 04, we obtain

R = [I4 + sin θ1A1 + (1− cos θ1)A
2
1][I4 + sin θ2A2 + (1− cos θ2)A

2
2]

= I4 + sin θ1A1 + (1− cos θ1)A
2
1 + sin θ2A2 + (1− cos θ2)A

2
2.

Since AT = −A, then we have eA
T

eA = I4. This yields RTR = I4. We know that trace(A) = 0. Therefore, we have

detR = det eA = etrace(A) = e0 = 1.

Theorem 3.2. Assume that A ∈M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1) where θ1 = θ2 = θ.
Then

R = Rod(A) = eA = (
1

θ
sin θ)A+ (cos θ)I4

is a rotation.

Proof. By ii) of Lemma 2.1, we have A2 = −θ2I4. This implies that

R = eA = I4 +A− θ2

2!
I4 −

θ2

3!
A+

θ4

4!
I4 +

θ4

5!
A− θ6

6!
I4 −

θ6

7!
A+

θ8

8!
I4 + · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
− · · ·

)
I4 +

1

θ

(
θ

1!
− θ3

3!
+
θ5

5!
− · · ·

)
A

= (cos θ)I4 + (
1

θ
sin θ)A.

Similar to the proof of above theorem, one can easily see that R is a rotation matrix.

Theorem 3.3. Let A ∈M4×4(R) be a skew-symmetric matrix with the eigenvalues (1) where θ1 = 0, θ2 = θ > 0. Then

R = Rod(A) = eA = I4 +
sin θ

θ
A+

1− cos θ

θ2
A2

is a rotation matrix.

Proof. By iii) of Lemma 2.1, we have A3 = −θ2A. This implies that

R = eA = I4 +A+
1

2!
A2 − θ2

3!
A− θ2

4!
A2 +

θ4

5!
A+

θ4

6!
A2 − θ6

7!
A− θ6

8!
A2 + · · ·

= I4 +
1

θ
(θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · · )A+

1

θ2

(
θ2

2!
− θ4

4!
+
θ6

6!
− θ8

8!
+ · · ·

)
A2

= I4 +
sin θ

θ
A+

1− cos θ

θ2
A2.

Similar to proof of Theorem 3.1 and Theorem 3.2, it is easily seen that R is a rotation matrix.
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Note that, construction of rotation matrices with Rodrigues rotation formula was discussed for four dimensional
Euclidean space under the condition a = 1 in the study [20].

Remark. Note that A = θ(A1 +A2) in Theorem 3.2 and A = θA2 in Theorem 3.3, where A1, A2 were defined in
Lemma 2.1. In other words, the exponential eA is continues at 0 with respect to θ.

Theorem 3.4. Let R ∈ SO(4) be given where {eθ1i, e−θ1i, eiθ2 , e−iθ2 : θ1, θ2 6= π} is the set of eigenvalues of R. Then we
obtain the skew-symmetric matrix A such that R = eA as follows:

i. If θ1 6= 0, θ2 6= 0 and θ1 6= θ2, then

A = θ1
R2 −

(
R2
)T − 2 cos θ2(R−RT )

4 sin θ1(cos θ1 − cos θ2)
+ θ2

R2 −
(
R2
)T − 2 cos θ1(R−RT )

4 sin θ2(cos θ2 − cos θ1)
.

ii. If θ1 = θ2 = θ 6= 0, then

A =
θ

2 sin θ
(R−RT ).

iii. θ1 = 0, θ2 = θ 6= 0 then

A =
θ

2 sin θ
(R−RT ).

Proof. i. Suppose that θ1 6= θ2, then we have

R = I4 + sin θ1A1 + (1− cos θ1)A
2
1 + sin θ2A2 + (1− cos θ2)A

2
2.

Since we have AT1 = −A1 and AT2 = −A2, then we find

RT = I4 − sin θ1A1 + (1− cos θ1)A
2
1 − sin θ2A2 + (1− cos θ2)A

2
2

So, we obtain
R−RT = 2 sin θ1 A1 + 2 sin θ2 A2. (4)

On the other hand, we get

R2 = I4 + 2 sin θ1 cos θ1A1 + 2 sin2 θ1A
2
1 + 2 sin θ2 cos θ2A2 + 2 sin2 θ2A

2
2

and (
R2
)T

= I4 − 2 sin θ1 cos θ1A1 + 2 sin2 θ1A
2
1 − 2 sin θ2 cos θ2A2 + 2 sin2 θ2A

2
2.

Therefore, we find
R2 −

(
R2
)T

= 4 sin θ1 cos θ1 A1 + 4 sin θ2 cos θ2 A2. (5)

If we solve equations (4) and (5), then we obtain

A1 =
R2 −

(
R2
)T − 2 cos θ2(R−RT )

4 sin θ1(cos θ1 − cos θ2)
.

and

A2 =
R2 −

(
R2
)T − 2 cos θ1(R−RT )

4 sin θ2(cos θ2 − cos θ1)
.

Thus, we get

A = θ1
R2 −

(
R2
)T − 2 cos θ2(R−RT )

4 sin θ1(cos θ1 − cos θ2)
+ θ2

R2 −
(
R2
)T − 2 cos θ1(R−RT )

4 sin θ2(cos θ2 − cos θ1)
.

ii. Suppose that θ1 = θ2 = θ, then we get

R = (cos θ)I4 +
1

θ
(sin θ)A.
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Using the property AT = −A, we get

RT = (cos θ)I4 −
1

θ
(sin θ)A.

We obtain
A =

θ

2 sin θ
(R−RT ).

iii. Assume that θ1 = 0, θ2 = θ, then we have then

R = I4 +
1

θ
(sin θ)A+

1

θ2
(1− cos θ)A2

By the property AT = −A, we obtain

A =
θ

2 sin θ
(R−RT ).

Remark 3.1. Let R ∈ SO(4) be given where {eθ1i, e−θ1i, eiπ, e−iπ} is the set of eigenvalues of R.
Case:1 If θ1 = 0, then we have

R = I4 +
2

π2
A2.

Thus, we have

A2 =
π2

2
(R− I4).

If we denote the matrix
π2

2
(R − I4) by B, then it is needed to find skew-symmetric matrix A2 such that A2 = B

where B is known and A3 = −π2A. Since A has the set of eigenvalues {0, 0, πi,−πi}, then we obtain that the
eigenvalues of B are 0,−π2. This means that there exists an orthogonal matrix P such that

B = PKPT

where K = diag{0, 0,−π2,−π2}. If we choose

E =


0 0 0 0
0 0 0 0
0 0 0 π
0 0 −π 0

 .
then, we have

K = E2

So, we get
A2 = PE2PT = PEPTPEPT .

That is
A = PEPT .

Case: 2 If θ1 6= 0, π, then we have

R = I4 + sin θ1A1 + (1− cos θ1)A
2
1 + 2A2

2. (6)

By using the properties AT1 = −A1 and AT2 = −A2 we get

R−RT = 2 sin θ1A1.

So, we have

A1 =
1

2 sin θ1
(R−RT ).

If we substitute A1 in equation (6), we get

A2
2 =

1

2

[
1

2
(RT +R− 2I4) +

cos θ1 − 1

4 sin2 θ1
(R2 − (RT )2)

]
.
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Let us denote
1

2

[
1

2
(RT +R− 2I4) +

cos θ1 − 1

4 sin2 θ1
(R2 − (RT )2)

]
by C. Similar to case1, it is necessary to obtain skew-symmetric matrix A2 satisfies A3

2 = −A2 such that A2
2 = C

where C is known. We can find A2 by same method given in case 1.
Case:3 If θ1 = π, then we have R = −I4. This case corresponds to the identity transformation. Simply, we can
choose

A = UDU∗

for any unitary matrix U where D = diag{πi,−πi, πi,−πi}. Since eD = −I4.

4. Rotations by Cayley Formula

Cayley rotation formula was discovered by Arthur Cayley in 1846. This formula also express special orthogonal
matrices with skew-symmetric matrices. In this section, we will discuss Cayley rotation formula for four dimensional
Euclidean space. In this manner, we will again use Lemma 2.1.

Theorem 4.1. Suppose that A = θ1A1 + θ2A2 ∈ M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1)
where θ1 > 0, θ2 > 0 and θ1 6= θ2. Then

R = Cay(A) = (I4 +A)(I4 −A)−1 = I4 +
2θ1

1 + θ21
A1 +

2θ21
1 + θ21

A2
1 +

2θ2
1 + θ22

A2 +
2θ22

1 + θ22
A2

2

is a rotation matrix.

Proof. We need to compute (I4 −A)−1 by using the properties in Lemma 2.1. It is easily seen that

A2 = θ21A
2
1 + θ22A

2
2,

A3 = −θ31A1 − θ32A2,

A4 = −θ41A2
1 − θ42A2

2,

A5 = θ51A1 + θ52A2,

...

Therefore, we obtain

(I4 −A)−1 = I4 +
∑
k≥1

Ak

= I4 + (θ1 − θ31 + θ51 − · · · )A2 +
(
θ21 − θ41 + θ61 − · · ·

)
A2

1

+ (θ2 − θ32 + θ52 − · · · )A2 +
(
θ22 − θ42 + θ62 − · · ·

)
A2

2

= I4 +
θ1

1 + θ21
A1 +

θ21
1 + θ21

A2
1 +

θ2
1 + θ22

A2 +
θ22

1 + θ22
A2

2.

By using the properties of A1 and A2 in Lemma 2.1, we obtain

R = (I4 + θ1A1 + θ2A2)

(
I4 +

θ1
1 + θ21

A1 +
θ21

1 + θ21
A2

1 +
θ2

1 + θ22
A2 +

θ22
1 + θ22

A2
2

)
= I4 +

2θ1
1 + θ21

A1 +
2θ21

1 + θ21
A2

1 +
2θ2

1 + θ22
A2 +

2θ22
1 + θ22

A2
2.

By using the properties in Lemma 2.1, we get

RT = I4 −
2θ1

1 + θ21
A1 +

2θ21
1 + θ21

A2
1 −

2θ2
1 + θ22

A2 +
2θ22

1 + θ22
A2

2.

Again with the use of the properties in i) of Lemma 2.1, then we can easily see that RTR = I4. On the other hand, it
is easily seen that det(I4 −A) = det(I4 +A). Thus, it is seen that R is a rotation matrix.
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Theorem 4.2. Assume that A ∈M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1) where θ1 = θ2 = θ.
Then

R = Cay(A) = (I4 +A)(I4 −A)−1 =
1− θ2

1 + θ2
I4 +

2

1 + θ2
A.

is a rotation matrix.

Proof. By Lemma 2.1, we have A2 = −θ2I4. This implies that

(I4 −A)−1 = I4 +
∑
k≥1

Ak

= I4 +A− θ2I4 − θ2A+ θ4I4 + θ4A− θ6I4 − θ6A+ θ8I4 + θ8A+ · · ·
= (1− θ2 + θ4 − θ6 + θ8 · · · )I4 + (1− θ2 + θ4 − θ6 + θ8 · · · )A

=
1

1 + θ2
(I4 +A).

Then we have

R = Cay(A) = (I4 +A)(I4 −A)−1 =
1

1 + θ2
(I4 +A)(I4 +A)

=
1

1 + θ2
(I4 +A2 + 2A)

=
1

1 + θ2
(I4 − θ2I4 + 2A)

=
1− θ2

1 + θ2
I4 +

2

1 + θ2
A.

Similarly, we can easily see that R is a rotation matrix as in the proof of above theorem.

Theorem 4.3. Let A ∈ M4×4(R) be a nonzero skew-symmetric matrix with the eigenvalues (1) where θ1 = 0, θ2 = θ > .
Then

R = Cay(A) = (I4 +A)(I4 −A)−1 = I4 +
2

1 + θ2
A+

2

1 + θ2
A2

is a rotation matrix.

Proof. By Lemma 2.1, we have A3 = −θ2A. This implies that

(I4 −A)−1 = I4 +
∑
k≥1

Ak

= I4 +A+A2 − θ2A− θ2A2 + θ4A+ θ4A2 − θ6A− θ6A2 + θ8A+ θ8A2 + · · ·
= I4 + (1− θ2 + θ4 − θ6 + θ8 · · · )A+ (1− θ2 + θ4 − θ6 + θ8 · · · )A2

= I4 +
1

1 + θ2
(A+A2).

Then we have

R = Cay(A) = (I4 +A)(I4 −A)−1 = (I4 +A)(I4 +
1

1 + θ2
(A+A2).)

= I4 + (
1

1 + θ2
+ 1− θ2

1 + θ2
)A+ (

1

1 + θ2
+

1

1 + θ2
)A2

= I4 +
2

1 + θ2
A+

2

1 + θ2
A2.

Similarly, we can easily see that R is a rotation matrix as in the proof of above theorem.

Lemma 4.1. Assume that A = θ1A1 + θ2A2 ∈M4×4(R) is a nonzero skew-symmetric matrix with the eigenvalues (1). Then
the set of eigenvalues R = Cay(A) is obtained as follows

{ (1 + θ1i)
2

1 + θ21
,
(1− θ1i)2

1 + θ21
,
(1 + θ2i)

2

1 + θ22
,
(1− θ2i)2

1 + θ22
}.
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Proof. It is clear that the skew-symmetric matrix Ais unitary diagonalizable because it is a normal matrix. We write

A = UDU∗

where D = diag{θ1i, −θ1i, θ2i, −θ2i} and U is a unitary matrix. Therefore, we obtain

R = (I4 + UDU∗)(I4 − UDU∗)−1 = U(I +D)(I −D)−1U∗.

Since we have

(I +D)(I −D)−1 = diag(
(1 + θ1i)

2

1 + θ21
,
(1− θ1i)2

1 + θ21
,
(1 + θ2i)

2

1 + θ22
,
(1− θ2i)2

1 + θ22
),

then R is also diagonalizable with the set of eigenvalues{
(1 + θ1i)

2

1 + θ21
,
(1− θ1i)2

1 + θ21
,
(1 + θ2i)

2

1 + θ22
,
(1− θ2i)2

1 + θ22

}
.

Theorem 4.4. Let R ∈ SO(4) with the set of eigenvalues

{ (1 + θ1i)
2

1 + θ21
,
(1− θ1i)2

1 + θ21
,
(1 + θ2i)

2

1 + θ22
,
(1− θ2i)2

1 + θ22
}.

Then we can find the skew-symmetric matrix A such that R = Cay(A) as follows:

i. if θ1 > 0, θ2 > 0 and θ1 6= θ2, then

A =
(1 + θ21)

2(1 + θ22)

16(θ22 − θ21)

(
R2 − (R2)T − 2(1− θ22)

1 + θ22
(R−RT )

)
+

(1 + θ22)
2(1 + θ21)

16(θ21 − θ22)

(
R2 − (R2)T − 2(1− θ21)

1 + θ21
(R−RT )

)
,

ii. if θ1 = θ2 = θ, then

A =
1 + θ2

4
(R−RT )

iii. if θ1 = 0, θ2 = θ > 0, then

A =
1 + θ2

4
(R−RT ).

Proof. i. If θ1 > 0, θ2 > 0 and θ1 6= θ2, then we have

R = I +
2θ1

1 + θ21
A1 +

2θ21
1 + θ21

A2
1 +

2θ2
1 + θ22

A2 +
2θ22

1 + θ22
A2

2.

Since AT1 = −A1 and AT2 = −A2, then we find

R−RT =
4θ1

1 + θ21
A1 +

4θ2
1 + θ22

A2, (7)

R2 − (R2)T =
8θ1(1− θ21)
(1 + θ21)

2
A1 +

8θ2(1− θ22)
(1 + θ22)

2
A2. (8)

If we solve the equations (7) and (8), then we obtain

A1 =
(1 + θ21)

2(1 + θ22)

16θ1(θ22 − θ21)

(
R2 − (R2)T − 2(1− θ22)

1 + θ22
(R−RT )

)
and

A2 =
(1 + θ22)

2(1 + θ21)

16θ2(θ21 − θ22)

(
R2 − (R2)T − 2(1− θ21)

1 + θ21
(R−RT )

)
.
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That is

A = θ1A1 + θ2A2

=
(1 + θ21)

2(1 + θ22)

16(θ22 − θ21)

(
R2 − (R2)T − 2(1− θ22)

1 + θ22
(R−RT )

)
+

(1 + θ22)
2(1 + θ21)

16(θ21 − θ22)

(
R2 − (R2)T − 2(1− θ21)

1 + θ21
(R−RT )

)
.

The proof of ii. and iii. can be done by using Theorem 4.2 and Theorem 4.3.

5. Classifications of Rotations
By using matrix decomposition of skew-symmetric matrices, we have given two different methods to generating
rotation matrices with skew-symmetric matrices in E4 in previous sections. One of them is called Rodrigues rotation
formula and the other one is called Cayley rotation formula. The explicit form of the rotation matrices, which are
generated by these formulas, are obtained as follows;

R = eA = I4 +
2∑
k=1

sin θk Ak + (1− cos θk)A
2
k,

R = (I4 +A)(I4 −A)−1 = I4 +

2∑
k,j=1

2θjk
1 + θ2k

Ajk,

with the set of eigenvalues {
eθ1i, e−θ1i, eθ2i, e−θ2i

}
,

{ (1 + θ1i)
2

1 + θ21
,
(1− θ1i)2

1 + θ21
,
(1 + θ2i)

2

1 + θ22
,
(1− θ2i)2

1 + θ22
},

respectively. As a conclusion of this result, we classify rotations according to the values of θ1 and θ2 as follows:

i. If θj = 0 and θk 6= 0 (j 6= k), then formulas generates simple rotations;

ii. If θ1, θ2 are nonzero and θ1 6= θ2, then formulas generates double rotations;

iii. If θ1, θ2 are nonzero and θ1 = θ2, then formulas generates isoclinic rotations.

6. Algorithm and application

In this part, we will give an algorithm to generate rotations by Rodrigues and Cayley formulas with mathematica.
The algorithm starts to work by giving entries of the upper triangular part of the 4 × 4 skew-symmetric matrix.
Firstly, it finds the values of θ1 and θ2 and gives the type of rotations. Then, it obtains the skew-symmetric matrices
A1 and A2 and generates two different rotation matrices, namely Rrod and Rcay. This simple algorithm is given as
follows:

>f[i_, j_] = Which[i == j, 0, i < j, a[i, j], i > j, -a[j, i]];

>A = Table[f[i, j], {i, 4}, {j, 4}];

>A // MatrixForm

>θ1 = Min[SingularValueList[A, 4]]

>θ2 = Max[SingularValueList[A, 4]]

>If[θ1 == 0, Print[This is a simple rotation],
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If[θ1 == θ2, Print[This is an isoclinic rotation], Print[This is a double rotation]]]

>A1 = If[θ1 == 0, DiagonalMatrix[{0, 0, 0, 0}], 1
θ1(θ22−θ21)

(θ22A+MatrixPower[A,3])];

>A2 = If[θ1 == 0, 1
θ2

A, 1
θ2(θ21−θ22)

(θ21A+MatrixPower[A,3])];

>A1 // MatrixForm

>A2 // MatrixForm

>Rrod=[IdentityMatrix[4]+Sin[θ1]A1+(1-Cos[θ1])MatrixPower[A1,2]+Sin[θ2]A2+(1-Cos[θ2])MatrixPower[A2,2])];

>Rrod // MatrixForm

>Rcay=[IdentityMatrix[4]+( 2θ1
1+θ21

)A1+( 2θ21
1+θ21

)MatrixPower[A1,2]

+( 2θ2
1+θ22

)A2+( 2θ2
1+θ22

)MatrixPower[A2,2])];

>Rcay // MatrixForm

Let us give a numerical example as an application. For given values a12 = 1, a13 = −1, a14 = 1, a23 = 1, a24 = 0
and a34 = 1, we obtain the following skew-symmetric matrix

A =


0 1 −1 1

−1 0 1 0

1 −1 0 1

−1 0 −1 0


where the set of eigenvalues of A is {i, −i, 2i, −2i} i.e. θ1 = 1 and θ2 = 2. We find

A1 =
1

3


0 1 1 1

−1 0 1 2

−1 −1 0 1

−1 −2 −1 0

 and A2 =
1

3


0 1 −2 1

−1 0 1 −1

2 −1 0 1

−1 1 −1 0

 .

Here, we easily see that skew-symmetric matrices A1 and A2 satisfying the properties given in (1). The rotation
matrix, which is generated by Cayley rotation formula, is given as follows:

Rcay =
1

5


−2 4 −1 2

−2 −1 4 2

1 −2 −2 4

−4 −2 −2 −1

 .

The eigenvectors of the rotation matrix corresponding to the eigenvalues η1 = i, η2 = −i, η3 = − 3
5 +

4
5 i, η4 = 3

5 +
4
5 i

are found as

v1 = (−1− i, 2i, 1− i, 2),
v2 = (−1 + i, 2i, 1 + i, 2),

v3 = (1− i, i, − 1− i, 1),
v4 = (1 + i, − i, − 1− i, 1),
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respectively. Thus, the plane of rotations are

P1 = span{(−1, 0, 1, 2), (1, 2,−1, 0)},
P2 = span{(1, 0,−1, 1), (−1, 1,−1, 0)}.

Note that the vectors, which are lying on the planes P1 and P2, transform to the other vectors lying on the planes P1

and P2 by the rotation, respectively. Here rotation angles are θ1 = 90◦ +2kπ and θ2 = 127◦ +2kπ. Notice that, since
θ1, θ2 are nonzero and θ1 6= θ2, then there are two plane of rotations, the rotation matrix represent a double rotation.
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