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Some Involutions which Generate the Finite
Symmetric Group
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Abstract
Let Sn be the symmetric group on Xn = {1, . . . , n} for n ≥ 2. In this paper we state some properties
of subsemigroups generated by two involutions (a permutation with degree 2) α, β such that αβ is an
n-cycle, and then we state some generating sets of Sn which consists of involutions.
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1. Introduction
Let Xn = {1, . . . , n} for n ≥ 2, and let Sn be the symmetric group (the group of all permutations) on Xn. Recall

from Cayley’s theorem for finite groups that every group G is isomorphic to a subgroup of the symmetric group
acting on G. Hence the finite symmetric group Sn and its subgroups have an important role in finite group theory
and also in finite semigroup theory.

We consider the concept of quasi-idempotent, a bijection α such that α 6= α2 = α4, as introduced by Garba and
Imam in [6], and also studied by Bugay in [2]. Then clearly α ∈ Sn is a quasi-idempotent if and only if the order of
α is 2, and so ε 6= α = α−1 where ε is the identity permutation on Xn. As usual a quasi-idempotent in Sn is also
called an involution. We denote the set of all involutions in any subset U ⊆ Sn by I(U). As it is well known that
the involutions are used for classification of finite simple groups. As emphasized in [9], although there appears to
be almost nothing that can be said about the structure of a subgroup generated by two elements of given orders
m ≥ 1 and n ≥ 1 in any case other than m = n = 2, two involutions in any group generate a dihedral subgroup.
Moreover, involutions also have an important role for group presentation, since there is no need to use the inverse
of any generators in relations since the inverse of any involution is itself.

Let S be a semigroup, and let W be a nonempty subset of S. Then the subsemigroup generated by W , that is
the smallest subsemigroup of S containing W , is denoted by 〈W 〉. There are a lot of studies which examine some
properties of special kinds of generating sets (see, for example, [1, 4, 5, 7]). In this paper we restrict attention to
another special kind of elements, say involutions, which generate Sn.

The fix and shift of α ∈ Sn are defined by

fix (α) = {x ∈ Xn : xα = x} and
shift (α) = {x ∈ Xn : xα 6= x} = Xn \ fix (α),

respectively. A permutation α ∈ Sn with shift (α) = {a1, . . . , ak} (2 ≤ k ≤ n) is called a cycle of size k (k−cycle) and
denoted by α = (a1 . . . ak) if

aiα = ai+1 (1 ≤ i ≤ k − 1) and akα = a1.
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In particular, a 2−cycle (a1a2) is called a transposition. The identity permutation ε on Xn is expressible as (a), for
any 1 ≤ a ≤ n, and called a 1-cycle. Two cycles (a1 . . . ak) and (b1 . . . bt), for 1 ≤ k, t ≤ n, are said to be disjoint if the
sets {a1, . . . , ak} and {b1, . . . , bt} are disjoint.

Recall that every permutation can be written as a product of disjoint cycles, more particularly, as a product
of transpositions. Also recall that S2 = 〈(12)〉, S3 = 〈(13), (23)〉, and that Sn = 〈(12), (12 . . . n)〉 for n ≥ 3. For
unexplained terms see [3, 8] for semigroup theory, and see [9] for group theory. In this paper first we state some
properties of subsemigroups generated by two involutions α, β such that αβ is an n-cycle, and then state some
generating sets of Sn consists of involutions.

2. Some involutions which generate Sn

Lemma 2.1. For two distinct involutions α, β ∈ I(Sn), αβ ∈ I(Sn) if and only if αβ = βα.

Proof. (⇒) Let αβ ∈ I(Sn) for two distinct involutions α, β ∈ I(Sn). Then we have

αβ = (αβ)−1 = β−1α−1 = βα, (2.1)

as required.
(⇐) Suppose that αβ = βα for two distinct involutions α, β ∈ I(Sn). Then we have

(αβ)2 = α(βα)β = α(αβ)β = α2β2 = ε, (2.2)

and so the order of αβ is 2 since αβ 6= ε. Thus, αβ ∈ I(Sn), as required.
For any α, β ∈ Sn, it is well known that fix (α)∩fix (β) ⊆ fix (αβ), in other words, shift (αβ) ⊆ shift (α)∪shift (β).

Hence, it is easy to see that for any α ∈ Sn

(i) if fix (α) 6= ∅ then αk is not an n-cycle for each k ∈ Z+;

(ii) if α is not an n-cycle then αk is not an n-cycle for each k ∈ Z+;

(iii) if α is an n-cycle then shift (αk) = shift (α) = Xn for each k ∈ Z \ nZ, and shift (αk) = ∅ for each k ∈ nZ.

Now, for convenience we define a new notation. Let (b1, b2, . . . , bm) be an ordered m-tuple for any 2 ≤ m ≤ n.
Then let

[[b1, b2, . . . , bm]] =

{
(b1bm)(b2bm−1) · · · (bm

2
bm

2 +1), if m is an even number
(b1bm)(b2bm−1) · · · (bm−1

2
bm+3

2
), if m is an odd number (2.3)

where (bi bj) denotes a 2-cycle for 1 ≤ i, j ≤ m.

Lemma 2.2. For any n-cycle π ∈ Sn let

M(π) = {k ∈ N : π = α1 · · ·αk ; αi ∈ I(Sn), 1 ≤ i ≤ k}. (2.4)

Then min(M(π)) = 1 for n = 2 and min(M(π)) = 2 for n ≥ 3.

Proof. Let π = (a1 . . . an) ∈ Sn be any n-cycle. For n = 2 clearly (a1a2) = (12) ∈ I(S2), as required. For n ≥ 3 it
is also clear that π = (a1 . . . an) /∈ I(Sn) and so min(M(π)) ≥ 2. Now consider the maps α = [[a1, . . . , an]] and
β = [[a2, . . . , an]]. Then α, β ∈ I(Sn) and it is easy to check that π = αβ, and so min(M(π)) = 2, as required.

Lemma 2.3. For any α, β ∈ I(Sn) there exists 1 ≤ m < n! such that

〈α, β〉 = {(αβ)k, (βα)k, (αβ)kα, (βα)kβ : 1 ≤ k ≤ m}. (2.5)

Proof. Let α, β ∈ I(Sn) and let U be the set which is on the right side of the above equality. Obviously, U ⊆ 〈α, β〉.
Conversely, let γ ∈ 〈α, β〉. Then there exist p ∈ Z+ and some integers 0 ≤ k1, . . . , kp, t1, . . . , tp ≤ 1 such that

γ = αk1βt1αk2βt2 · · ·αkpβtp . (2.6)

Moreover, if m is the order of αβ, and so of βα, then 1 ≤ m < n!. Thus we have γ ∈ U since

α(βα)k = (αβ)kα and β(αβ)k = (βα)kβ, (2.7)

for any k ∈ Z+, α2 = β2 = ε, and since (αβ)m = (βα)m = ε, as required.
Notice that for any α, β ∈ I(Sn), ((αβ)k)−1 = (βα)k for each k ∈ Z+. Moreover, for any n-cycle π ∈ Sn, π−1 is

also an n-cycle. Hence we conclude that (αβ)k is an n-cycle if and only if (βα)k is an n-cycle for any α, β ∈ I(Sn).
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Theorem 2.1. For any α, β ∈ I(Sn), 〈α, β〉 contains an n-cycle if and only if αβ (and so βα) is an n-cycle.

Proof. First suppose that, for any α, β ∈ I(Sn), 〈α, β〉 contains an n-cycle π ∈ Sn. Then notice that, for any k ∈ Z+,
neither (αβ)kα nor (βα)kβ can be an n-cycle since ((αβ)kα)2 = ε = ((βα)kβ)2. Thus, 〈α, β〉 contains an n-cycle π if
and only if there exists 1 ≤ k < n! such that (αβ)k = π or (βα)k = π from Lemma 2.3. Then αβ (and so βα) is an
n-cycle.

The other side of the proof is clear.

Lemma 2.4. For any α, β ∈ I(Sn) if αβ is an n-cycle then

〈α, β〉 = {(αβ)k, (αβ)kα : 1 ≤ k ≤ n}. (2.8)

Proof. Suppose that, for any α, β ∈ I(Sn), αβ is an n-cycle. Then, since (αβ)−1 = βα and (αβ)−1 = (αβ)n−1, we
have

βα = (αβ)−1 = (αβ)n−1,
(βα)k = ((αβ)n−1)k = (αβ)k(n−1),
(βα)kβ = (αβ)k(n−1)β = (αβ)k(n−1)−1α,

for each 1 ≤ k ≤ n, and since the order of αβ is n, the result is clear from Lemma 2.3.

Lemma 2.5. Let n ≥ 4 and let αβ be an n-cycle for any α, β ∈ I(Sn), say αβ = (a1 . . . an). Then the 2-cycle (aiai+1) /∈
〈α, β〉 for each 1 ≤ i ≤ n where an+1 = a1.

Proof. It is enough to show that (a1a2) /∈ 〈α, β〉 since

(a1 . . . an) = (a2 a3 . . . an a1) = · · · = (an a1 . . . an−1). (2.9)

First notice that neither α nor β can be (a1a2). Otherwise, it must be β = (a1a3 . . . an) when α = (a1a2) and
it must be α = (a2a3 . . . an) when β = (a1a2), which contradicts with the assumptions n ≥ 4 and α, β ∈ I(Sn) in
both cases. Moreover, since shift (αβ)k = Xn for each 1 ≤ k ≤ n− 1 and (αβ)n = ε we have (αβ)k 6= (a1a2) . Now
suppose that there exists 1 ≤ k ≤ n− 1 such that (αβ)kα = (a1a2). Then, since

(αβ)k =

(
a1 a2 a3 · · · an−1 an
a1+k a2+k a3+k · · · an−1+k an+k = ak

)
,

we have

α =

(
a1+k a2+k a3+k · · · an−k+k = an · · · an−1+k an+k = ak
a2 a1 a3 · · · an−k · · · an−1 an

)
where an+1 = a1, an+2 = a2, . . . , a2n−1 = an−1, a2n = an. Then we have akα2 = an−k = ak, and since α ∈ I(Sn),
we have n = 2k. However, when n = 2k, we have a1α2 = a2 which contradicts with the assumption α ∈ I(Sn).
Hence the result follows from Lemma 2.4, as required.

Lemma 2.6. Let n ≥ 4 and let αβ be an n-cycle for any α, β ∈ I(Sn), say αβ = (a1 . . . an). Then shift (α)∩{ai, ai+1} 6= ∅
and shift (β) ∩ {ai, ai+1} 6= ∅ for each 1 ≤ i ≤ n where an+1 = a1.

Proof. Suppose that n ≥ 4 and αβ = (a1 . . . an) for any α, β ∈ I(Sn). It is enough to see for i = 1 due to similar
reasons mentioned in the proof of Lemma 2.5. First assume that {a1, a2} ⊆ fix (α). Then, since a1αβ = a2
and a2αβ = a3, we have a1β

2 = a3 which contradicts with the assumption β ∈ I(Sn). Now assume that
{a1, a2} ⊆ fix (β). Then, since anαβ = a1 and a1αβ = a2, we have anα2 = a2 which similarly contradicts with the
assumption α ∈ I(Sn). Therefore {a1, a2} * fix (α) and {a1, a2} * fix (β), as required.
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Corollary 2.1. Let n ≥ 4 and let (a1 . . . an) be an arbitrary n-cycle in Sn. Then αβ = (a1 . . . an) for α, β ∈ I(Sn) if and
only if α and β have one of the following n many forms:

• α = [[a1, . . . , ak+1]] [[ak+2, . . . , an]],
β = [[a1, . . . , ak+2]] [[ak+3, . . . , an]] (1 ≤ k ≤ n− 4 and n ≥ 5);

• α = [[a1, . . . , an−2]](an−1an),
β = [[a1, . . . , an−1]];

• α = [[a1, . . . , an−1]],
β = [[a1, . . . , an]];

• α = [[a1, . . . , an]],
β = [[a2, . . . , an]];

• α = [[a2, . . . , an]],
β = (a1a2) [[a3, . . . , an]].

Corollary 2.2. For n ≥ 4, Sn = 〈(a1a2), α, β〉 for each α, β ∈ I(Sn) with one of the n-many forms given above.

Proof. The result is clear since αβ = (a1a2 . . . an) for each case.
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