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Abstract

We classify the curvature of interpolating sesqui-harmonic Legendre curves in generalized Sasakian space
forms. We investigate the necessary and sufficient conditions for these types of curves in nine cases to be
interpolating sesqui-harmonic.
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1. Introduction

Biharmonic maps ¢ : (M, g) — (NN, h) between Riemannian manifolds are well known a natural generalization
of the harmonic maps [7]. Biharmonic maps are a critical point of the bienergy functional

Ba(p) = / () dvy,

where
T(p) = tr(Vdy) (1.1)
is called the tension field of ¢ [7]. The Euler-Lagrange equation for E5(¢p) is

T2(p) = tr(V¥VY = VE)T(p) — tr(RN (de, 7(0))dep), (1.2)

which is the bitension field of ¢ [8]. The equation 73(¢) = 0 is called biharmonic equation.

Interpolating sesqui-harmonic maps ¢ : (M,g) — (N, h) between Riemannian manifolds are defined that
interpolated between the actions for harmonic and biharmonic maps [6]. The map ¢ is called interpolating sesqui-
harmonic if it is a critical point of Ej, s, (¢)

B a(9) = 01 [ gl vy 52 | Jr(o)| v 13)
Q
where 01, 62 € R [6]. The interpolating sesqui-harmonic map equation is given by

751,65 (p) = 0272(p) — 617(p) =0 (1.4)

for 41,02 € R [6]. If variations of the equation (1.3) that are normal to the image ¢(M) C N and 62 = 1, §; > 0 then,
an interpolating sesqui-harmonic map turns to biminimal [12].

In [6], Branding introduced an action functional for maps between Riemannian manifolds that interpolate
between the actions for harmonic and biharmonic maps and studied interpolating sesqui-harmonic curves in a
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3-dimensional sphere. In [5], the same author studied a conservation law and used it to show the smoothness
of weak solutions for a spherical target and found several classification results for interpolating sesqui-harmonic
maps. In [10], the author, Ozgiir and De studied interpolating sesqui-harmonic Legendre curves in Sasakian space
forms. In [16], Ozgiir and Giiveng studied biharmonic Legendre curves in generalized Sasakian space forms.
Motivated by the above studies, in the present paper, we investigate interpolating sesqui-harmonic Legendre curves
in generalized Sasakian space forms. We find the necessary and sufficient conditions for these types of curves in
nine cases to be interpolating sesqui-harmonic.

2. Preliminaries

Let N2t = (N27*1 ¢ €. 1, 9) be an almost contact metric manifold with almost contact metric structure
(¢,&,m,g). A manifold (N?"F1 ¢, & n, g) is called a Sasakian manifold if it is normal, that is,

N¢ = —2d’l7®§

where N, is the Nijenhuis tensor field of ¢ [4]. An almost contact metric manifold N?"*! is called a Kenmotsu
manifold [9] if

(Vx@)Y =g(¢X,Y)§ —n(Y)X

where V is the Levi-Civita connection. An almost contact metric manifold N2"*! is called a cosymplectic manifold if
V¢ = 0, which implies that V& = 0 [13].

The sectional curvature of a ¢-section is called a ¢-sectional curvature. When the ¢-sectional curvature is
constant, the manifold is called a space form (Sasakian,Kenmotsu, cosymplectic) (see [4], [9], [13]). The manifold N2"+1
= (N2 . & n, g) is called a generalized Sasakian space form if its curvature tensor R is given by

R(X,Y)Z = fi{g(Y, 2)X - ¢(X,Z)Y}

+f2{9(X,02)pY — g(Y,0Z)pX + 29(X, Y ) Z}

+ f3 (n(X)n(2)Y —n(X)n(Z)X + g(X, Z)n(Y)E — g(Y, Z)n(X)&} (2.1)

for certain differentiable functions f1, f> and f; on N?"*1 [1]. If N?"*1 is a Sasakian space form then f; = <2,

f2 = f3 = < [4],if N> is a Kenmotsu space form then f; = <32, f, = f3 = <L [9],if N?"*1 is a cosymplectic
space form then f; = fo = f3 = { [13].

A submanifold of a Sasakian manifold is called an integral submanifold if n(X) = 0, for every tangent vector
X. An integral curve of a Sasakian manifold (N2"*1 ¢, ¢ n,g) is called a Legendre curve [4]. Thus, a curve
v : I — (N1 ¢, & 0, g) is called a Legendre curve if n(T) = 0, where T is the tangent vector field of .

In [15], the notion of trans-Sasakian manifolds is introduced by Oubifia. An almost contact metric manifold N is
said to be a trans-Sasakian manifold if there exist two functions o and 8 on N such that

(Vx9)Y = alg(X,Y)E —n (V) X] + B9(¢X,Y)E =0 (V) X], (22)

for any vector fields X, Y on N. From (2.2), it is easy to see that
Vx§=—apX +B[X —n(X)¢]. (2.3)
If we have 5 = 0 (resp. a = 0), then N is called an ov—Sasakian manifold (resp. 5-Kenmotsu manifold). Another kind of

trans-Sasakian manifolds is that of cosymplectic manifolds, obtained for & = 8 = 0. By the use of the equation (2.3),
we have

Vx&=0,

which means that ¢ is a Killing vector field for a cosymplectic manifold [3].
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3. Interpolating sesqui-harmonic Legendre curves in generalized Sasakian space forms

Let (N, g) be an n-dimensional Riemannian manifold and « : I — (N, g) a unit-speed curve in (N, g). v is
called a Frenet curve of osculating order r, 1 < r < n, if there exists orthonormal vector fields {E;} =12, along ~
satisfying Frenet equations given by

El =T= ’7/7
VrE, = ki By,

VrE; =~ki1E; 1 +kiEip1, 2<i<n-—1, (3.1)

VTE = *kn—lEn—h

where the function {ky = k, ks = 7, k3, ..., kn—1 } are called the curvatures of v [11].
Now, we can state the following theorem:

Theorem 3.1. Let (N?"*1 ¢ & n,g) be a generalized Sasakian space form with constant ¢-sectional curvature ¢ and
y:I CR — (N*1 ¢, & n,g) be a Legendre curve of osculating order v and m = min{r,4}. Then ~y is interpolating
sesqui-harmonic if and only if there exists real numbers 61, do such that

(1) fo=00r¢T L Eyor ¢T € {Es,...,Ey,}; and

(2) fs=00r& L Byoré € {Ey,...,Ep}; and

(3) the first m of the following equations are satisfied:

— 30skik, = 0, (3.2)

Oy (KY — k3 — kuk3 — k1 fr) — 11 + 302 faks [9(¢T, En)]* — 0a fsky [n (E2))* = 0, (3.3)
0 (2K ko + kiky) + 30 fok19(¢T, E2)g(¢T, E3) — 02 fskin (E2) n (Es) = 0, (3.4)

02 (k1koks) + 302 fok19(¢T, E2)g(¢T, Es) — 02 fkin (E2)n (Ey) = 0. (3.5)

Proof. Let (N?"*1 ¢, & 1, g) be a generalized Sasakian space form and v : I — N2"*1 be a Legendre curve of
osculating order r. By the use of (1.1) and (3.1), we can write

T(’Y) = klEQ.

Using the equations (3.1), we find
VoVrT = —kiE) + k| Ey + ki1kyFs, (3.6)

VrVrVeT = —3kik By + (K — &} — kik3) Es
+ (2K ko + k1kb) Es + (kikaks) By, (3.7)
R(T,N1T)T = —k1f1F2 — 3fok19(dT, E2)¢T + fskin (E2)E. (3.8)
By the use of the equations (3.6), (3.7) and (3.8) into (4.1) in [6], we obtain

Ts1,6,(7) = (=302k1 k) Br + [0 (K — kY — kak3 + fik1) — 61k1] Eo

+ 0 (2K ko + k1kb) Es + 0o (k1koks) Eq + 302 fok1g(dT, E2)¢T — 62 f3kin (E2) £. (3.9)

Then taking the scalar product of (3.9) with E,, F3 and E, respectively, we obtain the desired results. O

Now, we give the interpretions of Theorem 3.1:
Casel. fo = f3 =0.
From Theorem 3.1, we obtain following theorem:
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Theorem 3.2. Let (N*" 1 ¢, &, n, g) be a generalized Sasakian space form with fo = fs =0and v : I C R — N2"T1(1)
be a Legendre curve of osculating order r.
o . . . . . 5 . T . . _ 5 )

(1) v is interpolating sesqui-harmonic with 3 0 if and only if it is a Legendre circle with ky = |/ fi — 5- where f; >
is a constant;

(2) v is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre helix with ki + k3 = f1 — g—; where
f1> g—;, 01, 0o is a constant.

In both cases, if f1 < g—;, then such an interpolating sesqui-harmonic Legendre curve does not exist.

Proof. Let~y: I — N2"+1 be an interpolating sesqui-harmonic curve. From Theorem 3.1, if we take r = 2, then

is a circle with k1 = / f1 — where f > is a constant. Sumlarly, if we take r = 3, then we obtain that k, is a
non-zero constant. Thus, v is a helix with k2 +k2=f1 — where fi> 1 L is a constant. On the Contrary, letybea
Legendre circle with k; = |/ f1 — - or a Legendre helix w1th k2 + k2= f1 where fi > 3t isaconstant. It is
clear that +y satisfies Theorem 3.1, respectlvely. Thus, we obtain the desired result. O

Casell. f, =0, fs #0and & L Fs.
We can state:

Theorem 3.3. Let (N?"*1 ¢, &, n, g) be a generalized Sasakian space form with fo =0, f3 #0,& L Eyand~y: I CR —»
N2"+1(¢) a Legendre curve of osculating order r.

(1)  is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre circle with k1 = / f1 — g—; where f; > 3
is a constant; or

(2) v is interpolating sesqui-harmonic with §+ # 0 if and only if it is a Legendre helix with k? + k3 = f — § where
f1> g—;, 61, 02 1s a constant.

Ifr>3orf1 < g—;, then an interpolating sesqui-harmonic Legendre curve does not exist.

Proof. Assume that~ : I — N?"*! be an interpolating sesqui-harmonic curve. From Theorem 3.1 and n (E2) = 0,
we have

k1 = constant > 0,
0
k% + k% = fl - 717
02
ky =0,
koks = 0.
Using the above equations, we obtain the desired results. O
CaseIlIl. fo =0, f3 #£0,& € span{FEs, ..., B, } and n (Es) # 0.

Theorem 3.4. Let (N?"t1 ¢, & n, g) be a generalized Sasakian space form with fo = 0, f3 # 0, £ € span {Ea, ..., En},
n(E2) # 0and v : I C R — N?""1(c) a Legendre curve of osculating order r.
(1) If r > 4, then ~ is interpolating sesqui-harmonic with g—; # 0 if and only if

k1 = constant > 0, (3.10)
kI 4+ k3= fi — — — fycos®uy, (3.11)
— fzcosuy sinuy cosug = 0, (3.12)

koks — f3cosuy sinug sinus = 0.

(2) If we take r = 3, the equations (3.10), (3.11) and (3.12) are satisfied, taking ug = 0. If we take r = 2, then the equations
(3.10) and (3.11) are satisfied, taking u; = 0, 7.
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Proof. Assume that r > 4. Thus, we can write
& = cosuy Fo + sinuy cosug F3 + sinuy sinug By (3.13)

where u;,us : I — R are the angle functions between ¢ and E;; E3 and the orthogonal projection of ¢ onto
span{Es, E4} , respectively. From the equation (3.13), we have

1 (E2) = cosuy,
1 (E3) = sinu; cos ua,

7 (E4) = sinuy sin us. (3.14)

Assume that r = 3. We can write
§ = COS ulEQ + sin U1E3 (315)

where u; : I — R is the angle function between ¢ and E». The equation (3.15) can be found taking us = 0 in (3.13).
Finally, let r = 2. We can write

We obtain (3.16) from (3.13), taking u; = 0,7 and us = 0. Using Theorem 3.1 and the equations (3.13), (3.15) and
(3.16), we obtain the desired results. O

Now, let v : I € R — N?"*! be a Legendre curve of osculating order r in trans-Sasakian generalized Sasakian
space form (N1 ¢, £, n, g). Since v is a Legendre curve, n (T') = 0. Then, we have
Vo€ = —adT + BT (3.17)

which gives us

9(Vr&,T) = B. (3.18)
Differentiating n(T") = 0 along v, if we use (3.1) and (3.18), we get

kan(Ez) = —B. (3.19)

Corollary 3.1. Let (N?"T1 ¢ £ n, g) be a trans-Sasakian generalized Sasakian space form with f; =constant, fo = 0, f3
and (3 are non-zero constants, £ € span{Es, ..., By}, n(E2) # 0and v : I C R —s N2"*1 g Legendre curve of osculating
order r.

01

(1)  is interpolating sesqui-harmonic with g—; < Oifand only if yis acirclewith ky =/ f1 — 5+ — f3 where f,— g—; —f3>

0is a constant, 0 < 32 < —%7 E|| Bz and o =0, or

(2)  is interpolating sesqui-harmonic with g—; # 0ifand only if v is a helix with k1 = F6 > 0,ke = \/fl - g—; — f3— /2,
where f1 — g—; — f3— 32 > Oisaconstant, ¢ || Ea, o # 0 is a constant, ¢T || B3 and dim N = 3.

Proof. Let N?"*1 be a trans-Sasakian generalized Sasakian space form, then we have
Vrn(Er) = kin(E2) + 8 =0, (3.20)
Vrn(Es) = kan(Es) — ag(¢T, Es), (3.21)
Virn(Es) = —kan(E>) + ksn(Es) — ag(¢T, Es),

Vrn(E4) = —ksn(Es) + kan(Es) — ag(¢T, Ey).

Let v be interpolating sesqui-harmonic.
1. If r = 2, from Theorem 3.1, we have
k1 = constant > 0,

ki =fi— % — f3[n(E2)]?
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and £ € span{E>}. Hence we obtain n(Fs) = £1. So v is a circle with ky = / f1 — g—; — f3, where f; — g—; —f3>0is

a constant and & || Es. Differentiating £ = +E5 along v, we get « = 0 and k; = 0. Since a = 0, N is a f-Kenmotsu
generalized Sasakian space form. Then $-Kenmotsu generalized Sasakian space forms satisfy

fi—f3+B2=0.

Then, we have 0 < 8% < —3L with § < 0.
2. If we take r = 3, using Theorem 3.1, we have

k1 = constant > 0, (3.22)

§
ki + k3 =fi— é — faln(Ba))?, (3.23)
ky — fan(Ez2)n(Ey) =0 (3.24)

and ¢ € span{Es, E4}. Differentiating the equation (3.23) and using (3.21), (3.24), we get
2kon(Es) = ag(¢T, Es). (3.25)
From the equation (3.20), we obtain that n(E») is a constant, since 5 # 0 is a constant. Using (3.21), we find
kan(Es) = ag(¢T), Ez). (3.26)

By the use of (3.25) and (3.26), we obtain n(E3) = 0. Since { € span {Es, Es} and n(E3) = 0, we find £ || E2. From

the equations (3.20), (3.22), (3.23) and (3.24), we obtain that + is a helix with k; = £8 > 0, k2 = \/ fi— g—; — f3— 2,
01

where f; — 3 — f5 — % > 0is a constant and ¢ || Es. Differentiating £ = +F5 along v, we get a # 0. From [14], we
obtain dim N = 3.
3. If we take r > 4, then dim N > 5. Since 3 # 0 is a constant, from [14], we have o = 0. Thus we obtain that NV is
a f-Kenmotsu generalized Sasakian space form and dim N > 5. Using [1], we find f3 = 0, which is a contradiction.
On the contrary, let v be the given curve. It is easily seen that the first three of the equations in Theorem 3.1 are
satisfied (replacing k,, = 0). So v is interpolating sesqui-harmonic. O

CaseIV. f, #0, fs =0and ¢T L F,.
In this case, we have g (¢T, E2) = 0. From Theorem 3.1, we have

Theorem 3.5. Let (N2"*1 ¢ & n, g) be a generalized Sasakian space form with fo # 0, f3 = 0, ¢T L Eyand v : I C
R — N2""1(c) a Legendre curve of osculating order r.

(1)  is interpolating sesqui-harmonic with g—; # 0ifand only if it is a Legendre circle with k1 = / f1 — g—; where f1 > g—;
is a constant; or

(2) v is interpolating sesqui-harmonic with $- # 0 if and only if it is a Legendre helix with k? + k3 = f — § where
f1> g—;, 61, 02 1s a constant.

If 1 < g—;, then an interpolating sesqui-harmonic Legendre curve does not exist.

Case V. fo # 0, f3 =0, ¢T € span{Es, E3, E4} and g (¢T, E2) # 0.

Theorem 3.6. Let (N*"1 ¢, & n, g) be a generalized Sasakian space form with fo # 0, f3 =0, ¢T € span{Es, E3, E4},
g (¢T, E) # 0and v : I C R — N?"F1(c) a Legendre curve of osculating order r.
(1) If r > 4, then ~ is interpolating sesqui-harmonic with g—; # 0 if and only if

k1 = constant > 0, (3.27)
§

k24 k3= f — 5i + 3f5cos?wy, (3.28)
2

kb + 3 f2 cos wy sinwq coswe = 0, (3.29)

koks + 3 fo coswy sin wy sinws = 0.

(2) If we take r = 3, the equations (3.27), (3.28) and (3.29) are satisfied, taking wo = 0. If we take r = 2, then the
equations (3.27) and (3.28) are satisfied, taking w, = 0, 7.
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Proof. Assume that r > 4. Thus, we can write
¢T = coswy Ey 4 sinwq cos we F3 + sinwy sinws Fy (3.30)

where wy,wy : I — R are the angle functions between ¢T" and E; E3 and the orthogonal projection of ¢T" onto
span{Es, E,}, respectively. From the equation (3.30), we can write

g (¢T, Ey) = coswy,
g (¢T, E3) = sin w; cos wa,

g (9T, E4) = sin wy sin ws. (3.31)

Let r = 3. We can write
¢T = coswy Fy + sinwy F3 (3.32)

where w; : I = R is the angle function between ¢T" and E,. The equation (3.32) can be found taking w, = 0 in
(3.30). Finally, let r = 2. We can write

¢T = FEs. (3.33)
We obtain (3.33) from (3.30), taking w; = 0, 7 and wy = 0. Using Theorem 3.1 and the equations (3.30), (3.32) and
(3.33), we obtain the desired results. O

Using the same method of Corollary 3.2 in [16], we have the following corollary:

Corollary 3.2. Let (N?"*1 ¢ £ n, g) be a connected trans-Sasakian generalized Sasakian space form with f, =constant,
fa # 0 isaconstant, f3 = 0, ¢T € span{Es,...,Ey}, g(¢T,E2) # 0and v : I C R — N?"*! g Legendre curve of
osculating order r. Then ~y is interpolating sesqui-harmonic with g—; # 0 if and only if v is a Frenet curve of order v > 4 with

__B _
ki = T constant > 0,
P 2__ B2
ko = \/fl 5 +3f2[9 (¢T, Ez)] 1 (B2 >0,

—39(¢T E,) g (¢T, Ey)
LR 28Rl T B -

ke 90BN ES) s

n(E2) g (¢T, Ey)
—~2—— isa constant, g (¢T,E3) =0, =0, g (¢T, Es) # 0and g (¢T, E4) # 0 are

>0,

where f — % + 32 [g (4T, Bs))* —
constants, 3 # 0 and n (Eq) # 0.

[(E)]

Proof. Assume that N?"! is a trans-Sasakian generalized Sasakian space form, then we have

VT = af + k1¢Es, (3.34)
Vrg(¢T, Ez) = an(E2) + kag(¢T, Es), (3.35)
Vrg(¢T, E3) = an(E3) + ki1g(¢E2, E3) — kag(¢T, E2) + k3g(¢T, Ey), (3.36)

Vrg(¢T, Es) = an(Ey) + kag(¢E2, Es) — k3g(¢T, E3).

Let v be interpolating sesqui-harmonic.
1. If we take r = 2, using Theorem 3.1, we have

k1 = constant > 0,

=fi— + 3falg(oT, E)]?
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and ¢T € span{E}. Thus, we can write ¢T = £ E,. Differentiating ¢T' = +FE», using (3.1) and (3.34), we have
Oég + k1¢E2 = :Fle

Hence we obtain « = 0. From the equation (3.20), we get 5 = 0. So N is cosymplectic which requires f, = f3. This
is a contradiction.
2. If r = 3, from Theorem 3.1, we have

k1 = constant > 0, (3.37)
i+ k3 = f - + 3f2lg(6T, E)]?, (3.38)
ke + 3f29(¢T7 Ez)g(ﬁbT, E3) =0 (3.39)
and ¢T € span{E», E4}. Differentiating the equation (3.38) and using (3.35), (3.39), we obtain
— 2kog($T, E3) = an(Es). (3.40)
For ¢T € span{Fs, E4}, we can write
OT = g(T, E2)Es + (4T, Bs)Es. (341)

It is clear that g(¢E», E'3) = 0. Differentiating the equation (3.41) and using (3.1), (3.34), (3.35) and (3.36), we find
Oéf + k‘1¢E2 = —klg(qu, E2)T + Oé?’](EQ)EQ + Oé’r](Eg,)Eg. (342)

Let a = 0. From the equation (3.42), we have g(¢T, E3) = 0, that is, 9T = £FE5. Using the equation (3.36), we
find ko = 0. This is a contradiction. Thus « # 0. From (3.42), we obtain

[N(E2))* + [n(E3)]* =1
So ¢ € span{Esy, E3} and ¢T = +E,. Hence ¢ = +E5. Using the equation (3.20), we find 5 = 0. Differentiating
¢ = £Fj3 and using the equations (3.1), (3.17), (3.37), (3.38) and (3.39), we obtain k; = \/f1 — g—; +3f2 —a?,

ke = +a > 0, where f; — g—; +3fa —a? >0, a # 0 is a constant. Thus N is a connected a-Sasakian generalized
Sasakian space form. If dim N > 5, using [2], we find fo = f3, which is a contradiction. If dim N = 3, using [2], we
have fo = 0, which is also a contradiction.

Assume that » > 4. From Theorem 3.1, we have

k1 = constant > 0, (3.43)

B+ 8 = fi - S+ 3Rl B, (344
ky + 3f29(¢T, E2)g(¢T, E3) = 0, (3.45)
kaks + 3f29(¢T, E2)g(¢T, E4) =0 (3.46)

and ¢T € span{Es, Es, E,}. Differentiating (3.44) and using (3.35), (3.45), we get
— 2kag(¢T, E3) = an(E»). (3.47)

3. Assume that r > 4 and ¢(¢T, E3) = 0. We obtain o = 0. Since g(¢T, E5) = 0, we get ¢T € span{Es, E,}. By
the use of equation (3.35), g(¢T, E2) # 0is a constant. So using ¢T € span{Es, E4} and (3.46), g(¢T,E,) # 0
is a constant. Using the equations (3.20), (3.43), (3.44), (3.45) and (3.46), we find k; = B j =constant>

n(Ez
0, by = \/f1 5t +3f2[g (¢T,E2)]2—7g2 s > 0, ks = —39(¢T,55)g(¢T, Ba) > 0 where f; — & +
[77( 2)] \/fl**+3f2[ (d)T Eg)]2 [(;722 02
n(E3)]
2
3f2 g (¢T, Eg)]2 - [n(g2)]2 =constant > 0. If » > 5, differentiating ¢(¢T,E5) = 0 and using (3.34), we find

j, — —B9(dE2.Es)
47 N(E2)9(@T,Ea)"
4. If r > 4 and g(¢T, F3) # 0, then « # 0 and n(E2) # 0. Since dim N > 5 and « # 0, we find § = 0. This

contradicts n(E2) # 0.
On the contrary, let v be the given curve. Using Theorem 3.1,  is interpolating sesqui-harmonic. O
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Case VL. fo £ 0, f3 £0,¢T 1 Eyand €1 Es.
In this case, we have g (¢T, E5) = 0 and n (E3) = 0 . Using Theorem 3.1, we have

Theorem 3.7. Let (N?"*1 ¢, £, n, g) be a generalized Sasakian space form with fo # 0, f3 # 0, ¢T L Eo, & 1 Ey and
v : I C R — N?""1(c) a Legendre curve of osculating order r.

(1) v is interpolating sesqui-harmonic with g—; # 0if and only if it is a Legendre circle with ky = |/ f1 — 2—; where f1 > g—;
is a constant; or

(2) ~y is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre helix with k¥ + k3 = f1 — g—; where
fi> g—;, 01, 0o is a constant.

If fr < g—;, then an interpolating sesqui-harmonic Legendre curve does not exist.

Case VIL fo £ 0, f3 #0,¢T L Es, £ € span{Es,...,Ey} and n (E3) # 0.
Since g (¢T, E2) = 0, using Theorem 3.1 and equations (3.13) and (3.14), we have

Theorem 3.8. Let (N?"V1 ¢ & n,q) be a generalized Sasakian space form with fo # 0, f3 # 0, ¢T L Ey, € €
span{Ea, ..., Ep},n(E2) #0.and v : I C R — N?"*1(c) a Legendre curve of osculating order r.
(1) If r > 4, then ~ is interpolating sesqui-harmonic with g—; # 0 if and only if

k1 = constant > 0, (3.48)
)

K2+ k2= f— 5*1 — fycos?uy, (3.49)
2

ky — f3 cosuy sinuy cosug = 0, (3.50)

koks — f3cosuy sinug sinus = 0.

(2) If we take r = 3, the equations (3.48), (3.49) and (3.50) are satisfied, taking ug = 0. If we take r = 2, then the equations
(3.48) and (3.49) are satisfied, taking u; = 0, .

Corollary 3.3. Let (N?"*1 ¢ &, n, g) be a trans-Sasakian generalized Sasakian space form with fy =constant, fs and fs are
non-zero constants, ¢T L Es, & € span{Ea, ..., Ey}, n(E2) # 0and v : I C R — N1 g Legendre curve of osculating
order r. Then +y is interpolating sesqui-harmonic if and only if v is a helix of order r > 4 with

ki = 77(52) = constant > 0,
_p 0 2 P
ko = \/fl 5 f3[n(E2)] ()] >0,

b — f377 (E2) n (E4)
3 = 51 2 52
VA2 - B E)] - i
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where f1 — 5t — f3[n (By)]? — ﬁ is a positive constant, n (E3) = 0, a = 0.

= constant > 0,

Proof. The proof is similar to the proof of Corollary 3.1. O

Case VIIL f5 £ 0, f3 £ 0,¢T L Es, ¢T € span{FEs,...,En}, g(¢T,Ey) #0and £ L Fs.
Since 1 (E3) = 0, using Theorem 3.1 and equations (3.30) and (3.31), we obtain the following theorem:

Theorem 3.9. Let (N?"*1 ¢.& n,g) be a generalized Sasakian space form with fo # 0, f3 # 0, ¢T L Es, ¢T €
span{Ea, ... Epn}, g (6T, Ey) #0,& L Eyand vy : I C R — N2"*1(c) a Legendre curve of osculating order r.
(1) If r > 4, then + is interpolating sesqui-harmonic with g—; # 0 if and only if

ky = constant > 0, (3.51)
0
K24 k3= f, — 5i + 3f5cos?wy, (3.52)
2
k5 + 3 f2 cos wy sinwy coswy = 0, (3.53)
koks + 3 f3 cos wy sin wy sinws = 0.

(2) If we take r = 3, the equations (3.51), (3.52) and (3.53) are satisfied, taking wo = 0. If we take r = 2, then the
equations (3.51) and (3.52) are satisfied, taking wy = 0, 7.
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Corollary 3.4. Let (N?"*1 ¢ £ n, g) be a trans-Sasakian generalized Sasakian space form with fi =constant, fo and f3
are non-zero constants, ¢T € span{Es, ..., En}, g(¢T, Ey) #0,& L Eyand v : I C R — N1 g Legendre curve of
osculating order r. Then y is interpolating sesqui-harmonic with g—; # 0 if and only if

(1) vy is a circle with kv =/ f1 — g—; + 3fy wherea= =0, ¢T | Exand fi; — g—; + 3 f2 is a positive constant; or

(2) v is a helix with k; = \/fl — g—; +3fs —a?, k1 = Fa > 0 where f1 — g—; +3fo8—a? >0, a # 0is a constant,
B=0,9T | Exand ¢ || Es; or
(3) ~y is a Frenet curve of order r > 4 with

]ﬁ:)\>0,

ko = \/fl - % +3f2[g (6T, E2)]> — X2 > 0,

b =329 (6T, F3) g (4T, E)
3= >0,
VI = %+ 32l (6T, Eo) — 22
NOELE)
TP R A

where g (¢T, E3) = 0, g (¢T, E3) # 0and g (¢T, Ey) # 0 are constants, f1 — g—; +3f2[g (8T, E2)]> = X2 > 0and A > 0
are constants.

Proof. The proof is similar to the proof of Corollary 3.2. O

Case IX. fo #£ 0, f3 # 0, ¢T L FEs, ¢T € span{F2,...,En}, g(¢T, E2) # 0 and £ € span{Exs, ..., B} and
n(Ez) # 0.
From Theorem 3.1 and equations (3.13), (3.14), (3.30) and (3.31), we have the following theorem:

Theorem 3.10. Let (N?"*1 ¢ &, 0, g) be a generalized Sasakian space form with ¢T € span{Ea, ..., En}, & € span{Ea, ..., By}
and v : I C R — N?"F1(c) a Legendre curve of osculating order r.
(1) If r > 4, then ~ is interpolating sesqui-harmonic with g—; # 0 if and only if

k1 = constant > 0, (3.54)
0
E24+k2=f — 5—1 + 3facos? wy — f3cos>uy, (3.55)
2
kb + 3 f2 cos wy sinwy coswe — f3 cosuy sinuy cosug = 0, (3.56)

koks + 3 fo coswy sin wy sinws — f3 cosuy sinuy sinug = 0.

(2) If we take r = 3, the equations (3.54), (3.55) and (3.56) are satisfied, taking wo = 0 and uy = 0. If we take r = 2, then
the equations (3.54) and (3.55) are satisfied, taking wy = 0,7 and up = 0, 7wy =0, .

Corollary 3.5. Let (N?"*1 ¢ £ n, g) be a trans-Sasakian generalized Sasakian space form with fi =constant, fy and f3
are non-zero constants, T € span{Esa, ..., En}, g (¢T, Ey) #0,& € span{Es,...,Epn},n(E2) #0and~y: I CR —
N2+1 g Legendre curve of osculating order v > 4. Then ~y is interpolating sesqui-harmonic with g—; # 0 if and only if

(1)

-5
k1 = ——— = constant > 0,
LT (B
A
ko = ﬂ >0,
o — 20{ fan (Ea) n (Es) — 3f29(¢T, Eo)g(¢T, Ey)} 0
3 = \ >0,

where A # 0 and p # 0; or
(2)

ki, = EB = constant > 0,
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\/fl _a +3f2[9 (6T, E2)]* = fa[n (By))* — ———

{f377 (Ea)n (E4) — 3f29(¢T, E2)g(¢T, Eq)}

\/f1 8 +3hg (8T, E2)]* — f3[n (Es)]” — [77(272)]2

> 0,

where fy— g—; +3f2 [g (¢T, E2)]* — f3[n (E2))* — ﬁ is a positive constant, A = p = 0, X = (3 f2— f3)ag(¢T, Ea)n (E2)
and p = fsn (E2) 1 (Es) — 3f29(¢T, E2)g(¢T), Es).

Proof. By the use of Theorem 3.1, we have
k1 = constant > 0,

Kb = fi = 5 30209 0T, B2 = fs[n (o)), (357)
— fan (E2)n (E3) + 3f29(¢T, E2)g(¢T, E3) = 0, (3.58)
kaoks — f3n (E2) n (Ea) + 3f29(¢T, E2)g(¢T, Ey) = 0. (3.59)
Differentiating n (T') = 0 along  and using (3.1), we obtain k7 (E;) = —f, that s,
_ =B
= n(Ea)

Differentiating the equation (3.57) along v, we find
koky = 3fag (¢T, E2) Vg (6T, Ea) — fan (E2) Von (Ea) . (3.60)

Since N is a trans- Sasakian manifold, if we replace (3.21), (3.35), (3.58) in (3.60), we have

ot = A. (3.61)
If A # 0and i # 0, then (3.61) gives us ky = ’\ s 7 0. Thus, the equation (3. 59) gives us k3. If ;4 = 0, from the equation
(3.58) that k2 is a constant. Using the equation (3 57), we obtam ko = \/ fi—§ +3f2[9 (T, Eg)]2 — f3n(E )] o @Z)P ,
where fi — & + 3, [g (¢T, E2)]* — f3[n(E2)]* — [n(E Ty > U is a constant. So the equation (3.59) gives us
ks = {fBTI(Ez)U(E4) 3f29(¢T,E2)9(¢T,Ea)} > 0. ]

B2

\/fl*%+3f2[ (¢T,E2)]*>— f3[n(E2))? W

4. Applications

Let (N2"1, ¢, &, 7, g) be a Sasakian space form. Thuswehavea =1, 3 =0, f; = <2, f, = f3 = <1
case, equation (3.19) gives us n(E,) = 0, since k; > 0.
For Case I and Case VI, using Theorem 3.2 and Theorem 3.7, then we obtain the following result in [10]:

Theorem 4.1. [10]Let (N?"*1 ¢ £, m, g) be a Sasakian space form withc = 1or ¢T L Esand v : I C R — N2l g
Legendre curve of osculating order r.

(1) ~y is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre circle with ki = \/@ where 1 > g—;,
or

(2) vy is interpolating sesqui-harmonic with 51 # 0 if and only if it is a Legendre helix with ki + k3 =1 — & L where

1>%
If1< g—;, then an interpolating sesqui-harmonic Legendre curve does not exist.

For Case VIII, if we use Corollary 3.4, we obtain the following theorem:
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Theorem 4.2. Let (N?"1 ¢, & n,g) be a Sasakian space form with ¢ # 1, ¢T € {Ea,...,En}, g(¢T, E2) # 0 and
v: I C R — N**! g Legendre curve of osculating order r.

(1) ~y is interpolating sesqui-harmonic with g—; # 0 if and only if it is a helix with ky = \/c — 1 — §- and ky = 1 where
c> 5 L+1,¢T || Exand & || Es; or
(2) ~y is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Frenet curve of order r > 4 with

]{/‘1:)\>O,

b2 = \/C+3 _Q+M[g<¢T,E2>]2—A2 >0,

4 P 4

8erl) g (6T, Bs) g (4T, Ea)

ks = 3(c—1 2 >0,
J% b+ M g OT o) - a2
Ag (¢E2,E5) .
ky =222 S 0 ifr > 5
ICN) /

where g (¢T, E3) = 0, g (¢T', Ez) # 0 and g (¢T, E4) # 0 are constants, 42 — g1 + e 1g (¢T, Ea))* — A2 > 0 and
A > 0 are constants.

Proof. If wetakea =1, 8 =0, f; = C+3 ,fo=fs=in Corollary 3.4, we obtain the desired results. O

Remark 4.1. k4 does not need to be constant. So, there exists interpolating sesqui-harmonic curves which are not helices
in a Sasakian space form with dim N > 5.

Let (N2t ¢, &, g) be a Kenmotsu space form. Thus we havea =0, =1, fi =
[1] and [2] we obtain f, = ¢t} =0, thatisc = —1.
By the use of Theorem 3.2, we obtain the following theorem:

3, fo = f3 = <L From

Theorem 4.3. Let (N?"t1 ¢, & n, g) be a cosymplectic space form with ¢ = —1land v : I C R — N?"*1(—1) bea
Legendre curve of osculating order r.

(1) ~y is interpolating sesqui-harmonic if and only if it is a circle with ky = (/—1 — where 51 < —lor;
(2) v is interpolating sesqui-harmonic if and only if it is a helix with k} + k3 = —1 - where gl < -1
Let (N2"*1 ¢, ¢,n, g) be a cosymplectic space form. Hence a = =0, fi = fo = f3 = - From the equation

(3.19), we obtain kyn (E2) = 0, thatis n (Ey) = 0, with k; > 0.
For the Case VI, using Theorem 3.7, we obtain the following theorem:

Theorem 4.4. Let (N?"*1 4. & n,g) be a cosymplectic space form with ¢ # 0, ¢T L Eo, & 1 Esandy : I C R —»
N2"+1(¢) a Legendre curve of osculating order r.

(1) ~y is interpolating sesqui-harmonic with 5—1 # 0 if and only if it is a circle with ky = |/ § — g—l where § > g—; or;
(2) ~y is interpolating sesqui-harmonic with 51 # 0 if and only if it is a helix with k¥ + k3 = § — 5—1 here £> g—;.

For the Case VIII, from Corollary 3.4, we obtain the following theorem:

Theorem 4.5. Let (N1 ¢, & n, g) be a cosymplectic space form with ¢ # 0, ¢T € {Ea2, E3, Es}, g (¢T, E2) #0,& L Es
and vy : I C R — N?"*1 g Legendre curve of osculating order r.

(1) ~y is interpolating sesqui-harmonic with g—; # 0 if and only if it is a circle with ky = y/c — §- where ¢ > & L oT || B
or

(2) ~ is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Frenet curve of order r > 4 with

ki =\>0,

kQZ\/C—dwgc[ (¢T, E2)]* — A2 > 0,
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ks = - > > 0,
Vi 25 lo@n B’ - N
Ag (pE3, E5) .
ey = 2207275 0 ifr > 5
4T (4T, Ey) fr

where g (¢T', E3) = 0, g (¢T, Ea) # 0and g (¢T', E4) # 0 are constants, § — g—; + % [g (T, EQ)]2 — X2 >0and X > Qare
constants.
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