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Abstract
We classify the curvature of interpolating sesqui-harmonic Legendre curves in generalized Sasakian space
forms. We investigate the necessary and sufficient conditions for these types of curves in nine cases to be
interpolating sesqui-harmonic.
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1. Introduction
Biharmonic maps ϕ : (M, g)→ (N,h) between Riemannian manifolds are well known a natural generalization

of the harmonic maps [7]. Biharmonic maps are a critical point of the bienergy functional

E2(ϕ) =

∫
Ω

‖τ(ϕ)‖2 dνg,

where
τ(ϕ) = tr(∇dϕ) (1.1)

is called the tension field of ϕ [7]. The Euler-Lagrange equation for E2(ϕ) is

τ2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ∇)τ(ϕ)− tr(R
N (dϕ, τ(ϕ))dϕ), (1.2)

which is the bitension field of ϕ [8]. The equation τ2(ϕ) = 0 is called biharmonic equation.
Interpolating sesqui-harmonic maps ϕ : (M, g) → (N,h) between Riemannian manifolds are defined that

interpolated between the actions for harmonic and biharmonic maps [6]. The map ϕ is called interpolating sesqui-
harmonic if it is a critical point of Eδ1,δ2(ϕ)

Eδ1,δ2(ϕ) = δ1

∫
Ω

‖dϕ‖2 dνg + δ2

∫
Ω

‖τ(ϕ)‖2 dνg, (1.3)

where δ1, δ2 ∈ R [6]. The interpolating sesqui-harmonic map equation is given by

τδ1,δ2(ϕ) = δ2τ2(ϕ)− δ1τ(ϕ) = 0 (1.4)

for δ1, δ2 ∈ R [6]. If variations of the equation (1.3) that are normal to the image ϕ(M) ⊂ N and δ2 = 1, δ1 > 0 then,
an interpolating sesqui-harmonic map turns to biminimal [12].

In [6], Branding introduced an action functional for maps between Riemannian manifolds that interpolate
between the actions for harmonic and biharmonic maps and studied interpolating sesqui-harmonic curves in a
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3-dimensional sphere. In [5], the same author studied a conservation law and used it to show the smoothness
of weak solutions for a spherical target and found several classification results for interpolating sesqui-harmonic
maps. In [10], the author, Özgür and De studied interpolating sesqui-harmonic Legendre curves in Sasakian space
forms. In [16], Özgür and Güvenç studied biharmonic Legendre curves in generalized Sasakian space forms.
Motivated by the above studies, in the present paper, we investigate interpolating sesqui-harmonic Legendre curves
in generalized Sasakian space forms. We find the necessary and sufficient conditions for these types of curves in
nine cases to be interpolating sesqui-harmonic.

2. Preliminaries
Let N2n+1 = (N2n+1, φ, ξ, η, g) be an almost contact metric manifold with almost contact metric structure

(φ, ξ, η, g). A manifold (N2n+1, φ, ξ, η, g) is called a Sasakian manifold if it is normal, that is,

Nφ = −2dη ⊗ ξ

where Nφ is the Nijenhuis tensor field of φ [4]. An almost contact metric manifold N2n+1 is called a Kenmotsu
manifold [9] if

(∇Xφ)Y = g(φX, Y )ξ − η(Y )X

where ∇ is the Levi-Civita connection. An almost contact metric manifold N2n+1 is called a cosymplectic manifold if
∇φ = 0, which implies that∇ξ = 0 [13].

The sectional curvature of a φ-section is called a φ-sectional curvature. When the φ-sectional curvature is
constant, the manifold is called a space form (Sasakian,Kenmotsu, cosymplectic) (see [4], [9], [13]). The manifold N2n+1

= (N2n+1, ϕ, ξ, η, g) is called a generalized Sasakian space form if its curvature tensor R is given by

R(X,Y )Z = f1 {g(Y, Z)X − g(X,Z)Y }

+f2 {g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f3 {η(X)η(Z)Y − η(X)η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ} (2.1)

for certain differentiable functions f1, f2 and f3 on N2n+1 [1]. If N2n+1 is a Sasakian space form then f1 = c+3
4 ,

f2 = f3 = c−1
4 [4], if N2n+1 is a Kenmotsu space form then f1 = c−3

4 , f2 = f3 = c+1
4 [9], if N2n+1 is a cosymplectic

space form then f1 = f2 = f3 = c
4 [13].

A submanifold of a Sasakian manifold is called an integral submanifold if η(X) = 0, for every tangent vector
X . An integral curve of a Sasakian manifold (N2n+1, φ, ξ, η, g) is called a Legendre curve [4]. Thus, a curve
γ : I −→ (N2n+1, φ, ξ, η, g) is called a Legendre curve if η(T ) = 0, where T is the tangent vector field of γ.

In [15], the notion of trans-Sasakian manifolds is introduced by Oubiña. An almost contact metric manifold N is
said to be a trans-Sasakian manifold if there exist two functions α and β on N such that

(∇Xφ)Y = α [g(X,Y )ξ − η (Y )X] + β [g(φX, Y )ξ − η (Y )φX] , (2.2)

for any vector fields X , Y on N . From (2.2), it is easy to see that

∇Xξ = −αφX + β [X − η (X) ξ] . (2.3)

If we have β = 0 (resp. α = 0), then N is called an α−Sasakian manifold (resp. β-Kenmotsu manifold). Another kind of
trans-Sasakian manifolds is that of cosymplectic manifolds, obtained for α = β = 0. By the use of the equation (2.3),
we have

∇Xξ = 0,

which means that ξ is a Killing vector field for a cosymplectic manifold [3].
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3. Interpolating sesqui-harmonic Legendre curves in generalized Sasakian space forms

Let (N, g) be an n-dimensional Riemannian manifold and γ : I −→ (N, g) a unit-speed curve in (N, g). γ is
called a Frenet curve of osculating order r, 1 ≤ r ≤ n, if there exists orthonormal vector fields {Ei}i=1,2,...n along γ
satisfying Frenet equations given by

E1 = T = γ′,

∇TE1 = k1E2,

∇TEi = −ki−1Ei−1 + kiEi+1, 2 ≤ i ≤ n− 1, (3.1)

∇TEn = −kn−1En−1,

where the function {k1 = k, k2 = τ, k3, ..., kn−1} are called the curvatures of γ [11].
Now, we can state the following theorem:

Theorem 3.1. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with constant φ-sectional curvature c and
γ : I ⊂ R −→ (N2n+1, φ, ξ, η, g) be a Legendre curve of osculating order r and m = min{r, 4}. Then γ is interpolating
sesqui-harmonic if and only if there exists real numbers δ1, δ2 such that

(1) f2 = 0 or φT ⊥ E2 or φT ∈ {E2, ..., Em} ; and
(2) f3 = 0 or ξ ⊥ E2 or ξ ∈ {E2, ..., Em} ; and
(3) the first m of the following equations are satisfied:

− 3δ2k1k
′
1 = 0, (3.2)

δ2
(
k′′1 − k3

1 − k1k
2
2 − k1f1

)
− δ1k1 + 3δ2f2k1 [g(φT,E2)]

2 − δ2f3k1 [η (E2)]
2
= 0, (3.3)

δ2 (2k
′
1k2 + k1k

′
2) + 3δ2f2k1g(φT,E2)g(φT,E3)− δ2f3k1η (E2) η (E3) = 0, (3.4)

δ2 (k1k2k3) + 3δ2f2k1g(φT,E2)g(φT,E4)− δ2f3k1η (E2) η (E4) = 0. (3.5)

Proof. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form and γ : I −→ N2n+1 be a Legendre curve of
osculating order r. By the use of (1.1) and (3.1), we can write

τ(γ) = k1E2.

Using the equations (3.1), we find
∇T∇TT = −k2

1E1 + k′1E2 + k1k2E3, (3.6)

∇T∇T∇TT = −3k1k
′

1E1 +
(
k′′1 − k3

1 − k1k
2
2

)
E2

+ (2k′1k2 + k1k
′
2)E3 + (k1k2k3)E4, (3.7)

R(T,∇TT )T = −k1f1E2 − 3f2k1g(φT,E2)φT + f3k1η (E2) ξ. (3.8)

By the use of the equations (3.6), (3.7) and (3.8) into (4.1) in [6], we obtain

τδ1,δ2(γ) = (−3δ2k1k
′
1)E1 +

[
δ2
(
k′′1 − k3

1 − k1k
2
2 + f1k1

)
− δ1k1

]
E2

+ δ2 (2k
′
1k2 + k1k

′
2)E3 + δ2 (k1k2k3)E4 + 3δ2f2k1g(φT,E2)φT − δ2f3k1η (E2) ξ. (3.9)

Then taking the scalar product of (3.9) with E2, E3 and E4 respectively, we obtain the desired results.

Now, we give the interpretions of Theorem 3.1:
Case I. f2 = f3 = 0.
From Theorem 3.1, we obtain following theorem:
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Theorem 3.2. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 = f3 = 0 and γ : I ⊂ R −→ N2n+1(1)
be a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a Legendre circle with k1 =

√
f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant;
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Legendre helix with k2

1 + k2
2 = f1 − δ1

δ2
where

f1 >
δ1
δ2
, δ1, δ2 is a constant.

In both cases, if f1 ≤ δ1
δ2

, then such an interpolating sesqui-harmonic Legendre curve does not exist.

Proof. Let γ : I −→ N2n+1 be an interpolating sesqui-harmonic curve. From Theorem 3.1, if we take r = 2, then γ

is a circle with k1 =
√
f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant. Similarly, if we take r = 3, then we obtain that k2 is a

non-zero constant. Thus, γ is a helix with k2
1 + k2

2 = f1 − δ1
δ2

where f1 >
δ1
δ2

is a constant. On the contrary, let γ be a

Legendre circle with k1 =
√
f1 − δ1

δ2
or a Legendre helix with k2

1 + k2
2 = f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant. It is
clear that γ satisfies Theorem 3.1, respectively. Thus, we obtain the desired result.

Case II. f2 = 0, f3 6= 0 and ξ ⊥ E2.
We can state:

Theorem 3.3. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 = 0, f3 6= 0, ξ ⊥ E2 and γ : I ⊂ R −→
N2n+1(c) a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a Legendre circle with k1 =

√
f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant; or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Legendre helix with k2

1 + k2
2 = f1 − δ1

δ2
where

f1 >
δ1
δ2
, δ1, δ2 is a constant.

If r > 3 or f1 ≤ δ1
δ2

, then an interpolating sesqui-harmonic Legendre curve does not exist.

Proof. Assume that γ : I −→ N2n+1 be an interpolating sesqui-harmonic curve. From Theorem 3.1 and η (E2) = 0,
we have

k1 = constant > 0,

k2
1 + k2

2 = f1 −
δ1
δ2
,

k′2 = 0,

k2k3 = 0.

Using the above equations, we obtain the desired results.

Case III. f2 = 0, f3 6= 0, ξ ∈ span {E2, ..., Em} and η (E2) 6= 0.

Theorem 3.4. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 = 0, f3 6= 0, ξ ∈ span {E2, ..., Em},
η (E2) 6= 0 and γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) If r ≥ 4, then γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if

k1 = constant > 0, (3.10)

k2
1 + k2

2 = f1 −
δ1
δ2
− f3 cos

2 u1, (3.11)

k′2 − f3 cosu1 sinu1 cosu2 = 0, (3.12)

k2k3 − f3 cosu1 sinu1 sinu2 = 0.

(2) If we take r = 3, the equations (3.10), (3.11) and (3.12) are satisfied, taking u2 = 0. If we take r = 2, then the equations
(3.10) and (3.11) are satisfied, taking u1 = 0, π.
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Proof. Assume that r ≥ 4. Thus, we can write

ξ = cosu1E2 + sinu1 cosu2E3 + sinu1 sinu2E4 (3.13)

where u1, u2 : I → R are the angle functions between ξ and E2; E3 and the orthogonal projection of ξ onto
span{E3, E4} , respectively. From the equation (3.13), we have

η (E2) = cosu1,

η (E3) = sinu1 cosu2,

η (E4) = sinu1 sinu2. (3.14)

Assume that r = 3. We can write
ξ = cosu1E2 + sinu1E3 (3.15)

where u1 : I → R is the angle function between ξ and E2. The equation (3.15) can be found taking u2 = 0 in (3.13).
Finally, let r = 2. We can write

ξ = ∓E2. (3.16)

We obtain (3.16) from (3.13), taking u1 = 0, π and u2 = 0. Using Theorem 3.1 and the equations (3.13), (3.15) and
(3.16), we obtain the desired results.

Now, let γ : I ⊂ R −→ N2n+1 be a Legendre curve of osculating order r in trans-Sasakian generalized Sasakian
space form (N2n+1, φ, ξ, η, g). Since γ is a Legendre curve, η (T ) = 0. Then, we have

∇T ξ = −αφT + βT (3.17)

which gives us

g(∇T ξ, T ) = β. (3.18)

Differentiating η(T ) = 0 along γ , if we use (3.1) and (3.18), we get

k1η(E2) = −β. (3.19)

Corollary 3.1. Let (N2n+1, φ, ξ, η, g) be a trans-Sasakian generalized Sasakian space form with f1 =constant, f2 = 0, f3

and β are non-zero constants, ξ ∈ span {E2, ..., Em}, η (E2) 6= 0 and γ : I ⊂ R −→ N2n+1 a Legendre curve of osculating
order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
< 0 if and only if γ is a circle with k1 =

√
f1 − δ1

δ2
− f3 where f1− δ1δ2−f3 >

0 is a constant, 0 < β2 < − δ1δ2 , ξ ‖ E2 and α = 0, or

(2) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if γ is a helix with k1 = ∓β > 0, k2 =

√
f1 − δ1

δ2
− f3 − β2,

where f1 − δ1
δ2
− f3 − β2 > 0 is a constant, ξ ‖ E2, α 6= 0 is a constant, φT ‖ E3 and dim N = 3.

Proof. Let N2n+1 be a trans-Sasakian generalized Sasakian space form, then we have

∇T η(E1) = k1η(E2) + β = 0, (3.20)

∇T η(E2) = k2η(E3)− αg(φT,E2), (3.21)

∇T η(E3) = −k2η(E2) + k3η(E4)− αg(φT,E3),

∇T η(E4) = −k3η(E3) + k4η(E5)− αg(φT,E4).

Let γ be interpolating sesqui-harmonic.
1. If r = 2, from Theorem 3.1, we have

k1 = constant > 0,

k2
1 = f1 −

δ1
δ2
− f3[η(E2)]

2
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and ξ ∈ span{E2}. Hence we obtain η(E2) = ±1. So γ is a circle with k1 =
√
f1 − δ1

δ2
− f3, where f1− δ1

δ2
− f3 > 0 is

a constant and ξ ‖ E2. Differentiating ξ = ±E2 along γ, we get α = 0 and k1 = ±β. Since α = 0, N is a β-Kenmotsu
generalized Sasakian space form. Then β-Kenmotsu generalized Sasakian space forms satisfy

f1 − f3 + β2 = 0.

Then, we have 0 < β2 < − δ1δ2 with δ1
δ2
< 0.

2. If we take r = 3, using Theorem 3.1, we have

k1 = constant > 0, (3.22)

k2
1 + k2

2 = f1 −
δ1
δ2
− f3[η(E2)]

2, (3.23)

k′2 − f3η(E2)η(E4) = 0 (3.24)

and ξ ∈ span{E2, E4}. Differentiating the equation (3.23) and using (3.21), (3.24), we get

2k2η(E3) = αg(φT,E2). (3.25)

From the equation (3.20), we obtain that η(E2) is a constant, since β 6= 0 is a constant. Using (3.21), we find

k2η(E3) = αg(φT,E2). (3.26)

By the use of (3.25) and (3.26), we obtain η(E3) = 0. Since ξ ∈ span {E2, E3} and η(E3) = 0, we find ξ ‖ E2. From

the equations (3.20), (3.22), (3.23) and (3.24), we obtain that γ is a helix with k1 = ±β > 0, k2 =
√
f1 − δ1

δ2
− f3 − β2,

where f1 − δ1
δ2
− f3 − β2 > 0 is a constant and ξ ‖ E2. Differentiating ξ = ±E2 along γ, we get α 6= 0. From [14], we

obtain dim N = 3.
3. If we take r ≥ 4, then dim N ≥ 5. Since β 6= 0 is a constant, from [14], we have α = 0. Thus we obtain that N is

a β-Kenmotsu generalized Sasakian space form and dim N ≥ 5. Using [1], we find f3 = 0, which is a contradiction.
On the contrary, let γ be the given curve. It is easily seen that the first three of the equations in Theorem 3.1 are

satisfied (replacing km = 0). So γ is interpolating sesqui-harmonic.

Case IV. f2 6= 0, f3 = 0 and φT ⊥ E2.
In this case, we have g (φT,E2) = 0. From Theorem 3.1, we have

Theorem 3.5. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 6= 0, f3 = 0, φT ⊥ E2 and γ : I ⊂
R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a Legendre circle with k1 =

√
f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant; or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Legendre helix with k2

1 + k2
2 = f1 − δ1

δ2
where

f1 >
δ1
δ2
, δ1, δ2 is a constant.

If f1 ≤ δ1
δ2

, then an interpolating sesqui-harmonic Legendre curve does not exist.

Case V. f2 6= 0, f3 = 0, φT ∈ span {E2, E3, E4} and g (φT,E2) 6= 0.

Theorem 3.6. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 6= 0, f3 = 0, φT ∈ span {E2, E3, E4},
g (φT,E2) 6= 0 and γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) If r ≥ 4, then γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if

k1 = constant > 0, (3.27)

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2 cos
2 w1, (3.28)

k′2 + 3f2 cosw1 sinw1 cosw2 = 0, (3.29)

k2k3 + 3f2 cosw1 sinw1 sinw2 = 0.

(2) If we take r = 3, the equations (3.27), (3.28) and (3.29) are satisfied, taking w2 = 0. If we take r = 2, then the
equations (3.27) and (3.28) are satisfied, taking w1 = 0, π.
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Proof. Assume that r ≥ 4. Thus, we can write

φT = cosw1E2 + sinw1 cosw2E3 + sinw1 sinw2E4 (3.30)

where w1, w2 : I → R are the angle functions between φT and E2; E3 and the orthogonal projection of φT onto
span{E3, E4} , respectively. From the equation (3.30), we can write

g (φT,E2) = cosw1,

g (φT,E3) = sinw1 cosw2,

g (φT,E4) = sinw1 sinw2. (3.31)

Let r = 3. We can write
φT = cosw1E2 + sinw1E3 (3.32)

where w1 : I → R is the angle function between φT and E2. The equation (3.32) can be found taking w2 = 0 in
(3.30). Finally, let r = 2. We can write

φT = ∓E2. (3.33)

We obtain (3.33) from (3.30), taking w1 = 0, π and w2 = 0. Using Theorem 3.1 and the equations (3.30), (3.32) and
(3.33), we obtain the desired results.

Using the same method of Corollary 3.2 in [16], we have the following corollary:

Corollary 3.2. Let (N2n+1, φ, ξ, η, g) be a connected trans-Sasakian generalized Sasakian space form with f1 =constant,
f2 6= 0 is a constant, f3 = 0, φT ∈ span {E2, ..., Em}, g (φT,E2) 6= 0 and γ : I ⊂ R −→ N2n+1 a Legendre curve of
osculating order r. Then γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if γ is a Frenet curve of order r ≥ 4 with

k1 =
−β
η (E2)

= constant > 0,

k2 =

√
f1 −

δ1
δ2

+ 3f2 [g (φT,E2)]
2 − β2

[η (E2)]
2 > 0,

k3 =
−3g (φT,E2) g (φT,E4)√

f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − β2

[η(E2)]2

> 0,

k4 =
−βg (φE2, E5)

η (E2) g (φT,E4)
> 0, ifr ≥ 5

where f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − β2

[η(E2)]2
is a constant, g (φT,E3) = 0, α = 0, g (φT,E2) 6= 0 and g (φT,E4) 6= 0 are

constants, β 6= 0 and η (E2) 6= 0.

Proof. Assume that N2n+1 is a trans-Sasakian generalized Sasakian space form, then we have

∇TφT = αξ + k1φE2, (3.34)

∇T g(φT,E2) = αη(E2) + k2g(φT,E3), (3.35)

∇T g(φT,E3) = αη(E3) + k1g(φE2, E3)− k2g(φT,E2) + k3g(φT,E4), (3.36)

∇T g(φT,E4) = αη(E4) + k2g(φE2, E4)− k3g(φT,E3).

Let γ be interpolating sesqui-harmonic.
1. If we take r = 2, using Theorem 3.1, we have

k1 = constant > 0,

k2
1 = f1 −

δ1
δ2

+ 3f2[g(φT,E2)]
2
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and φT ∈ span{E2}. Thus, we can write φT = ±E2. Differentiating φT = ±E2, using (3.1) and (3.34), we have

αξ + k1φE2 = ∓k1T.

Hence we obtain α = 0. From the equation (3.20), we get β = 0. So N is cosymplectic which requires f2 = f3. This
is a contradiction.

2. If r = 3, from Theorem 3.1, we have
k1 = constant > 0, (3.37)

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2[g(φT,E2)]
2, (3.38)

k′2 + 3f2g(φT,E2)g(φT,E3) = 0 (3.39)

and φT ∈ span{E2, E4}. Differentiating the equation (3.38) and using (3.35), (3.39), we obtain

− 2k2g(φT,E3) = αη(E2). (3.40)

For φT ∈ span{E2, E4}, we can write

φT = g(φT,E2)E2 + g(φT,E3)E3. (3.41)

It is clear that g(φE2, E3) = 0. Differentiating the equation (3.41) and using (3.1), (3.34), (3.35) and (3.36), we find

αξ + k1φE2 = −k1g(φT,E2)T + αη(E2)E2 + αη(E3)E3. (3.42)

Let α = 0. From the equation (3.42), we have g(φT,E3) = 0, that is, φT = ±E2. Using the equation (3.36), we
find k2 = 0. This is a contradiction. Thus α 6= 0. From (3.42), we obtain

[η(E2)]
2 + [η(E3)]

2 = 1.

So ξ ∈ span{E2, E3} and φT = ±E2. Hence ξ = ±E3. Using the equation (3.20), we find β = 0. Differentiating

ξ = ±E3 and using the equations (3.1), (3.17), (3.37), (3.38) and (3.39), we obtain k1 =
√
f1 − δ1

δ2
+ 3f2 − α2,

k2 = ±α > 0, where f1 − δ1
δ2

+ 3f2 − α2 > 0, α 6= 0 is a constant. Thus N is a connected α-Sasakian generalized
Sasakian space form. If dim N ≥ 5, using [2], we find f2 = f3, which is a contradiction. If dim N = 3, using [2], we
have f2 = 0, which is also a contradiction.

Assume that r ≥ 4. From Theorem 3.1, we have

k1 = constant > 0, (3.43)

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2[g(φT,E2)]
2, (3.44)

k′2 + 3f2g(φT,E2)g(φT,E3) = 0, (3.45)

k2k3 + 3f2g(φT,E2)g(φT,E4) = 0 (3.46)

and φT ∈ span{E2, E3, E4}. Differentiating (3.44) and using (3.35), (3.45), we get

− 2k2g(φT,E3) = αη(E2). (3.47)

3. Assume that r ≥ 4 and g(φT,E3) = 0. We obtain α = 0. Since g(φT,E3) = 0, we get φT ∈ span{E2, E4}. By
the use of equation (3.35), g(φT,E2) 6= 0 is a constant. So using φT ∈ span{E2, E4} and (3.46), g(φT,E4) 6= 0

is a constant. Using the equations (3.20), (3.43), (3.44), (3.45) and (3.46), we find k1 = −β
η(E2) =constant>

0, k2 =
√
f1 − δ1

δ2
+ 3f2 [g (φT,E2)]

2 − β2

[η(E2)]2
> 0, k3 = −3g(φT,E2)g(φT,E4)√

f1− δ1δ2 +3f2[g(φT,E2)]2− β2

[η(E2)]2

> 0 where f1 − δ1
δ2

+

3f2 [g (φT,E2)]
2 − β2

[η(E2)]2
=constant > 0. If r ≥ 5, differentiating g(φT,E5) = 0 and using (3.34), we find

k4 = −βg(φE2,E5)
η(E2)g(φT,E4) .

4. If r ≥ 4 and g(φT,E3) 6= 0, then α 6= 0 and η(E2) 6= 0. Since dimN ≥ 5 and α 6= 0, we find β = 0. This
contradicts η(E2) 6= 0.

On the contrary, let γ be the given curve. Using Theorem 3.1 , γ is interpolating sesqui-harmonic.
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Case VI. f2 6= 0, f3 6= 0, φT ⊥ E2 and ξ⊥ E2.
In this case, we have g (φT,E2) = 0 and η (E2) = 0 . Using Theorem 3.1, we have

Theorem 3.7. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 6= 0, f3 6= 0, φT ⊥ E2, ξ ⊥ E2 and
γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a Legendre circle with k1 =

√
f1 − δ1

δ2
where f1 >

δ1
δ2

is a constant; or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Legendre helix with k2

1 + k2
2 = f1 − δ1

δ2
where

f1 >
δ1
δ2
, δ1, δ2 is a constant.

If f1 ≤ δ1
δ2

, then an interpolating sesqui-harmonic Legendre curve does not exist.

Case VII. f2 6= 0, f3 6= 0, φT ⊥ E2, ξ ∈ span {E2, ..., Em} and η (E2) 6= 0.
Since g (φT,E2) = 0, using Theorem 3.1 and equations (3.13) and (3.14), we have

Theorem 3.8. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 6= 0, f3 6= 0, φT ⊥ E2, ξ ∈
span {E2, ..., Em} , η (E2) 6= 0. and γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) If r ≥ 4, then γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if

k1 = constant > 0, (3.48)

k2
1 + k2

2 = f1 −
δ1
δ2
− f3 cos

2 u1, (3.49)

k′2 − f3 cosu1 sinu1 cosu2 = 0, (3.50)

k2k3 − f3 cosu1 sinu1 sinu2 = 0.

(2) If we take r = 3, the equations (3.48), (3.49) and (3.50) are satisfied, taking u2 = 0. If we take r = 2, then the equations
(3.48) and (3.49) are satisfied, taking u1 = 0, π.

Corollary 3.3. Let (N2n+1, φ, ξ, η, g) be a trans-Sasakian generalized Sasakian space form with f1 =constant, f2 and f3 are
non-zero constants, φT ⊥ E2, ξ ∈ span {E2, ..., Em}, η (E2) 6= 0 and γ : I ⊂ R −→ N2n+1 a Legendre curve of osculating
order r. Then γ is interpolating sesqui-harmonic if and only if γ is a helix of order r ≥ 4 with

k1 =
−β
η (E2)

= constant > 0,

k2 =

√
f1 −

δ1
δ2
− f3 [η (E2)]

2 − β2

[η (E2)]
2 > 0,

k3 =
f3η (E2) η (E4)√

f1 − δ1
δ2
− f3 [η (E2)]

2 − β2

[η(E2)]2

= constant > 0,

where f1 − δ1
δ2
− f3 [η (E2)]

2 − β2

[η(E2)]2
is a positive constant, η (E3) = 0, α = 0.

Proof. The proof is similar to the proof of Corollary 3.1.

Case VIII. f2 6= 0, f3 6= 0, φT ⊥ E2, φT ∈ span {E2, ..., Em} , g (φT,E2) 6= 0 and ξ ⊥ E2.
Since η (E2) = 0, using Theorem 3.1 and equations (3.30) and (3.31), we obtain the following theorem:

Theorem 3.9. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with f2 6= 0, f3 6= 0, φT ⊥ E2, φT ∈
span {E2, ..., Em} , g (φT,E2) 6= 0, ξ ⊥ E2 and γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) If r ≥ 4, then γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if

k1 = constant > 0, (3.51)

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2 cos
2 w1, (3.52)

k′2 + 3f2 cosw1 sinw1 cosw2 = 0, (3.53)

k2k3 + 3f2 cosw1 sinw1 sinw2 = 0.

(2) If we take r = 3, the equations (3.51), (3.52) and (3.53) are satisfied, taking w2 = 0. If we take r = 2, then the
equations (3.51) and (3.52) are satisfied, taking w1 = 0, π.
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Corollary 3.4. Let (N2n+1, φ, ξ, η, g) be a trans-Sasakian generalized Sasakian space form with f1 =constant, f2 and f3

are non-zero constants, φT ∈ span {E2, ..., Em} , g (φT,E2) 6= 0, ξ ⊥ E2 and γ : I ⊂ R −→ N2n+1 a Legendre curve of
osculating order r. Then γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if

(1) γ is a circle with k1 =
√
f1 − δ1

δ2
+ 3f2 where α = β = 0, φT ‖ E2 and f1 − δ1

δ2
+ 3f2 is a positive constant; or

(2) γ is a helix with k1 =
√
f1 − δ1

δ2
+ 3f2 − α2, k1 = ∓α > 0 where f1 − δ1

δ2
+ 3f2β − α2 > 0, α 6= 0 is a constant,

β = 0, φT ‖ E2 and ξ ‖ E3; or
(3) γ is a Frenet curve of order r ≥ 4 with

k1 = λ > 0,

k2 =

√
f1 −

δ1
δ2

+ 3f2 [g (φT,E2)]
2 − λ2 > 0,

k3 =
−3f2g (φT,E2) g (φT,E4)√

f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − λ2

> 0,

k4 =
λg (φE2, E5)

g (φT,E4)
> 0, if r ≥ 5

where g (φT,E3) = 0, g (φT,E2) 6= 0 and g (φT,E4) 6= 0 are constants, f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − λ2 > 0 and λ > 0

are constants.

Proof. The proof is similar to the proof of Corollary 3.2.

Case IX. f2 6= 0, f3 6= 0, φT ⊥ E2, φT ∈ span {E2, ..., Em} , g (φT,E2) 6= 0 and ξ ∈ span {E2, ..., Em} and
η (E2) 6= 0.

From Theorem 3.1 and equations (3.13), (3.14), (3.30) and (3.31), we have the following theorem:

Theorem 3.10. Let (N2n+1, φ, ξ, η, g) be a generalized Sasakian space form with φT ∈ span {E2, ..., Em} , ξ ∈ span {E2, ..., Em}
and γ : I ⊂ R −→ N2n+1(c) a Legendre curve of osculating order r.

(1) If r ≥ 4, then γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if

k1 = constant > 0, (3.54)

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2 cos
2 w1 − f3 cos

2 u1, (3.55)

k′2 + 3f2 cosw1 sinw1 cosw2 − f3 cosu1 sinu1 cosu2 = 0, (3.56)

k2k3 + 3f2 cosw1 sinw1 sinw2 − f3 cosu1 sinu1 sinu2 = 0.

(2) If we take r = 3, the equations (3.54), (3.55) and (3.56) are satisfied, taking w2 = 0 and u2 = 0. If we take r = 2, then
the equations (3.54) and (3.55) are satisfied, taking w1 = 0, π and u2 = 0, π.w1 = 0, π.

Corollary 3.5. Let (N2n+1, φ, ξ, η, g) be a trans-Sasakian generalized Sasakian space form with f1 =constant, f2 and f3

are non-zero constants, φT ∈ span {E2, ..., Em} , g (φT,E2) 6= 0, ξ ∈ span {E2, ..., Em} , η (E2) 6= 0 and γ : I ⊂ R −→
N2n+1 a Legendre curve of osculating order r ≥ 4. Then γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if

(1)

k1 =
−β
η (E2)

= constant > 0,

k2 =
λ

2µ
> 0,

k3 =
2µ {f3η (E2) η (E4)− 3f2g(φT,E2)g(φT,E4)}

λ
> 0,

where λ 6= 0 and µ 6= 0; or
(2)

k1 =
−β
η (E2)

= constant > 0,
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k2 =

√
f1 −

δ1
δ2

+ 3f2 [g (φT,E2)]
2 − f3 [η (E2)]

2 − β2

[η (E2)]
2 > 0,

k3 =
{f3η (E2) η (E4)− 3f2g(φT,E2)g(φT,E4)}√

f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − f3 [η (E2)]

2 − β2

[η(E2)]2

> 0,

where f1− δ1
δ2
+3f2 [g (φT,E2)]

2−f3 [η (E2)]
2− β2

[η(E2)]2
is a positive constant, λ = µ = 0, λ = (3f2−f3)αg(φT,E2)η (E2)

and µ = f3η (E2) η (E3)− 3f2g(φT,E2)g(φT,E3).

Proof. By the use of Theorem 3.1, we have
k1 = constant > 0,

k2
1 + k2

2 = f1 −
δ1
δ2

+ 3f2 [g (φT,E2)]
2 − f3 [η (E2)]

2
, (3.57)

k′2 − f3η (E2) η (E3) + 3f2g(φT,E2)g(φT,E3) = 0, (3.58)

k2k3 − f3η (E2) η (E4) + 3f2g(φT,E2)g(φT,E4) = 0. (3.59)

Differentiating η (T ) = 0 along γ and using (3.1), we obtain k1η (E2) = −β, that is,

k1 =
−β
η (E2)

.

Differentiating the equation (3.57) along γ, we find

k2k
′
2 = 3f2g (φT,E2)∇T g (φT,E2)− f3η (E2)∇T η (E2) . (3.60)

Since N is a trans- Sasakian manifold, if we replace (3.21), (3.35), (3.58) in (3.60), we have

2k2µ = λ. (3.61)

If λ 6= 0 and µ 6= 0, then (3.61) gives us k2 = λ
2µ 6= 0. Thus, the equation (3.59) gives us k3. If µ = 0, from the equation

(3.58) that k2 is a constant. Using the equation (3.57), we obtain k2 =
√
f1 − δ1

δ2
+ 3f2 [g (φT,E2)]

2 − f3 [η (E2)]
2 − β2

[η(E2)]2
,

where f1 − δ1
δ2

+ 3f2 [g (φT,E2)]
2 − f3 [η (E2)]

2 − β2

[η(E2)]2
> 0 is a constant. So the equation (3.59) gives us

k3 = {f3η(E2)η(E4)−3f2g(φT,E2)g(φT,E4)}√
f1− δ1δ2 +3f2[g(φT,E2)]2−f3[η(E2)]2− β2

[η(E2)]2

> 0.

4. Applications

Let (N2n+1, φ, ξ, η, g) be a Sasakian space form. Thus we have α = 1, β = 0, f1 = c+3
4 , f2 = f3 = c−1

4 . In this
case, equation (3.19) gives us η(E2) = 0, since k1 > 0.

For Case I and Case VI, using Theorem 3.2 and Theorem 3.7, then we obtain the following result in [10]:

Theorem 4.1. [10]Let (N2n+1, φ, ξ, η, g) be a Sasakian space form with c = 1 or φT ⊥ E2 and γ : I ⊂ R −→ N2n+1 a
Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a Legendre circle with k1 =

√
1− δ1

δ2
where 1 > δ1

δ2
;

or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Legendre helix with k2

1 + k2
2 = 1 − δ1

δ2
where

1 > δ1
δ2

.
If 1 ≤ δ1

δ2
, then an interpolating sesqui-harmonic Legendre curve does not exist.

For Case VIII, if we use Corollary 3.4, we obtain the following theorem:
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Theorem 4.2. Let (N2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1, φT ∈ {E2, ..., Em} , g (φT,E2) 6= 0 and
γ : I ⊂ R −→ N2n+1 a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a helix with k1 =

√
c− 1− δ1

δ2
and k2 = 1 where

c > δ1
δ2

+ 1, φT ‖ E2 and ξ ‖ E3; or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Frenet curve of order r ≥ 4 with

k1 = λ > 0,

k2 =

√
c+ 3

4
− δ1
δ2

+
3 (c− 1)

4
[g (φT,E2)]

2 − λ2 > 0,

k3 =
− 3(c−1)

4 g (φT,E2) g (φT,E4)√
c+3

4 −
δ1
δ2

+ 3(c−1)
4 [g (φT,E2)]

2 − λ2
> 0,

k4 =
λg (φE2, E5)

g (φT,E4)
> 0, if r ≥ 5

where g (φT,E3) = 0, g (φT,E2) 6= 0 and g (φT,E4) 6= 0 are constants, c+3
4 −

δ1
δ2

+ 3(c−1)
4 [g (φT,E2)]

2 − λ2 > 0 and
λ > 0 are constants.

Proof. If we take α = 1, β = 0, f1 = c+3
4 , f2 = f3 = c−1

4 in Corollary 3.4, we obtain the desired results.

Remark 4.1. k4 does not need to be constant. So, there exists interpolating sesqui-harmonic curves which are not helices
in a Sasakian space form with dim N ≥ 5.

Let (N2n+1, φ, ξ, η, g) be a Kenmotsu space form. Thus we have α = 0, β = 1, f1 = c−3
4 , f2 = f3 = c+1

4 . From
[1] and [2] we obtain f2 = c+1

4 = 0, that is c = −1.
By the use of Theorem 3.2, we obtain the following theorem:

Theorem 4.3. Let (N2n+1, φ, ξ, η, g) be a cosymplectic space form with c = −1 and γ : I ⊂ R −→ N2n+1(−1) be a
Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic if and only if it is a circle with k1 =
√
−1− δ1

δ2
where δ1

δ2
< −1 or;

(2) γ is interpolating sesqui-harmonic if and only if it is a helix with k2
1 + k2

2 = −1− δ1
δ2

where δ1
δ2
< −1.

Let (N2n+1, φ, ξ, η, g) be a cosymplectic space form. Hence α = β = 0, f1 = f2 = f3 = c
4 . From the equation

(3.19), we obtain k1η (E2) = 0, that is η (E2) = 0, with k1 > 0.
For the Case VI, using Theorem 3.7, we obtain the following theorem:

Theorem 4.4. Let (N2n+1, φ, ξ, η, g) be a cosymplectic space form with c 6= 0, φT ⊥ E2, ξ ⊥ E2 and γ : I ⊂ R −→
N2n+1(c) a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a circle with k1 =

√
c
4 −

δ1
δ2

where c
4 >

δ1
δ2

or;

(2) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a helix with k2

1 + k2
2 = c

4 −
δ1
δ2

where c
4 >

δ1
δ2

.

For the Case VIII, from Corollary 3.4, we obtain the following theorem:

Theorem 4.5. Let (N2n+1, φ, ξ, η, g) be a cosymplectic space form with c 6= 0, φT ∈ {E2, E3, E4} , g (φT,E2) 6= 0, ξ ⊥ E2

and γ : I ⊂ R −→ N2n+1 a Legendre curve of osculating order r.

(1) γ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if and only if it is a circle with k1 =

√
c− δ1

δ2
where c > δ1

δ2
, φT ‖ E2;

or
(2) γ is interpolating sesqui-harmonic with δ1

δ2
6= 0 if and only if it is a Frenet curve of order r ≥ 4 with

k1 = λ > 0,

k2 =

√
c

4
− δ1
δ2

+
3c

4
[g (φT,E2)]

2 − λ2 > 0,
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k3 =
− 3c

4 g (φT,E2) g (φT,E4)√
c
4 −

δ1
δ2

+ 3c
4 [g (φT,E2)]

2 − λ2
> 0,

k4 =
λg (φE2, E5)

g (φT,E4)
> 0, if r ≥ 5

where g (φT,E3) = 0, g (φT,E2) 6= 0 and g (φT,E4) 6= 0 are constants, c4 −
δ1
δ2

+ 3c
4 [g (φT,E2)]

2 − λ2 > 0 and λ > 0 are
constants.
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