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Abstract
Diffraction of sound wave through a cavity with partial lining is analyzed rigorously. Fourier transform
technique and Mode Matching method are used to obtain Wiener-Hopf(WH) equation and solution. The
solution of the problem is found for various problem parameters numerically. The effect of the different
parameters such as the lining length, cavity depth, etc. on the diffraction are illustrated graphically. The
results are compared numerically with an existing study and found to be consistent.
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1. Introduction
Waveguide cavities is a well-known subject in acoustic, physics and electromagnetic. It has attracted the interest

of investigators studying in this area [1–4]. Diffraction of sound by open ended cavities is significant topic in
noise reduction. Different options for reducing noise have been widely discussed in the literature. The concept of
absorbent lining is thought to be most appropriate way to reduce unwanted sound. Rawlins proved that acoustically
absorbing lining is an efficient method to reduce the irritated sound [5]. The phenomenon of diffraction with
acoustically absorbing lining has also been investigated with and without flow by various researchers [6–9].

Demir et al. studied the sound wave diffraction from the cylindrical cavity with inner lining [10]. In their study,
Wiener-Hopf method and Mode Matching technique were applied successfully and some numerical results were
obtained graphically. Similar problem has been considered for some engineering applications. Matsui discussed
the diffraction phenomena of plane sound waves by the actual microphone system [11]. In the literature, parallel
problem which is related to the electromagnetic counterpart was studied by Kuryliak [12, 13].

This work was conceived by generalizing the study of [10]. Here, the case in which cavity is partially lined with
acoustically absorbing lining is considered. We intend to investigate diffraction properties of the partial lining and
the effects on the diffraction phenomenon. By using the waveguide modes in the cavity, the underlying problem
is obtained analytically with the help of sophisticated and suitable method known as Wiener-Hopf technique.
Numerical solution is found for different parameters of the problem like cavity depth, lining length, etc. The
parameters effects on the diffraction are investigated graphically.

The time dependency is taken to be e−iwt where w is the angular frequency.

2. Problem Formulation
The diffraction of sound waves by a cavity with partial lining defined by {ρ = a, z ∈ (−∞, 0)} with (ρ, φ, z)

denote the usual circular cylindrical coordinates, is considered. The outer surface of the semi-infinite cylinder
{ρ = a+, z ∈ (−∞, 0)} and some part of the interior surface of the cavity {ρ = a−, z ∈ (−l2,−l1)} are assumed
to be rigid while the other part of the inner surface of the cavity {ρ = a−, z ∈ (−l1, 0)} and base of the cavity
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{z = −l2 + 0, ρ ∈ (0, a)} are coated by absorbing lining which are characterized by a surface impedances β1 and β2
respectively. The incident field and the geometry of the problem are symmetric, this provides the independency of

Figure 1. The physical structure of the problem.

φ of the acoustic field in everywhere. The scalar potential u (ρ, z) is defined the velocity and pressure by v = gradu
and p = iωρ0u, respectively. The field of incident is taken as

ui (z) = e−ikz (2.1)

here k = ω/c is the wave number. The total field written as

uT (ρ, z) =


u1 (ρ, z) + ui (z) ,
u2 (ρ, z) + ui (z) ,
u3 (ρ, z) ,
u4 (ρ, z) ,

ρ > a,
ρ < a,
ρ < a,
ρ < a,

z ∈ (−∞,∞)
z > 0
−l1 < z < 0
−l2 < z < −l1

(2.2)

uj , j = 1 − 4 satisfy the Helmholtz equation in suitable regions. The unknown fields are determined with the
continuity and boundary conditions.

∂

∂ρ
u1 (a, z) = 0, z < 0 (2.3)

∂

∂ρ
u4 (a, z) = 0, − l2 < z < −l1 (2.4)(

ikβ1 −
∂

∂ρ

)
u3 (a, z) = 0, − l1 < z < 0 (2.5)(

ikβ2 +
∂

∂z

)
u4 (ρ,−l2) = 0, ρ < a (2.6)

∂

∂ρ
u1 (a, z)−

∂

∂ρ
u2 (a, z) = 0, z > 0 (2.7)

u1 (a, z)− u2 (a, z) = 0, z > 0 (2.8)

∂

∂z
u2 (ρ, 0) =

∂

∂z
u3 (ρ, 0) + ik, ρ < a (2.9)

u2 (ρ, 0) = u3 (ρ, 0)− 1, ρ < a (2.10)

∂

∂z
u3 (ρ,−l1) =

∂

∂z
u4 (ρ,−l1) , ρ < a (2.11)

u3 (ρ,−l1) = u4 (ρ,−l1) , ρ < a (2.12)

3. WH Equation

Diffracted fields uj , j = 1− 4 satisfy the wave equation for z ∈ R[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+ k2

]
uj (ρ, z) = 0, j = 1− 4. (3.1)

Consider the Fourier transform of the wave equation satisfied by u1 (ρ, z) in the region ρ > a for z ∈ R[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+K2

]
F (ρ, α) = 0 (3.2)
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where
K (α) =

√
k2 − α2 (3.3)

which is stated in the complex α−plane (Figure 2) and F (ρ, α) is the Fourier transform of the field u1 (ρ, z) defined
to be

F− (ρ, α) + F+ (ρ, α) =

∞∫
−∞

u1 (ρ, z) e
iαzdz = F (ρ, α) (3.4)

with

F+ (ρ, α) =

∞∫
0

u1 (ρ, z) e
iαzdz, F− (ρ, α) =

0∫
−∞

u1 (ρ, z) e
iαzdz (3.5)

Through the analyticity of Fourier integrals, F− (ρ, α) and F+ (ρ, α) are analytic functions in the lower half plane
(=mα < =mk) and in the upper half plane (=mα > =m (−k)), respectively. The general solution of (3.2) yields

− A (α)H
(1)
0 (Kρ)

KH
(1)
1 (Ka)

= F+ (ρ, α) + F− (ρ, α) (3.6)

where A (α) is a unknown coefficient and H(1)
0 is the Hankel function of the first type.

Figure 2. Complex α-plane.

The Fourier transform of (2.3), we get
Ḟ− (a, α) = 0 (3.7)

here the (·) defines the derivative according to ρ. At ρ = a, one can write the following equation by using the
derivation of (3.6) with respect to ρ

A (α) = Ḟ+ (a, α) (3.8)

Utilizing (3.8) in (3.6), one obtains

− Ḟ+ (a, α)H
(1)
0 (Kρ)

K (α)H
(1)
1 (Ka)

= F+ (ρ, α) + F− (ρ, α) (3.9)

For the region ρ < a, z > 0, the unknown field u2 (ρ, z) satisfies the wave equation for z ∈ (0,∞) as denoted (3.1).
The Fourier transform of this equation for ρ < a, z > 0 is[

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+K2

]
G+ (ρ, α) = f (ρ)− iαg (ρ) (3.10)

The function G+ (ρ, α) is an analytic in the upper half plane

G+ (ρ, α) =

∞∫
0

u2 (ρ, z) e
iαzdz (3.11)

with
∂

∂z
u2 (ρ, 0) = f (ρ) , u2 (ρ, 0) = g (ρ) (3.12)
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By applying the Green function, the particular solution of (3.10) can be obtained. The solution is

G+ (ρ, α) = − 1

J1 (Ka)

B (α)
J0 (Kρ)

K (α)
−

a∫
0

(f (x)− iαg (x))Q (x, ρ, α)xdx

 (3.13)

where

Q (ρ, x, α) =
π

2

{
J0 (Kρ) [J1 (Ka)Y0 (Kx)− Y1 (Ka) J0 (Kx)] , ρ < x
J0 (Kx) [J1 (Ka)Y0 (Kρ)− Y1 (Ka) J0 (Kρ)] , ρ > x

(3.14)

and B (α) is the unknown coefficient to be determined. Taking into account the (2.7), one gets

Ġ+ (a, α) = B (α) = Ḟ+ (a, α) (3.15)

Inserting now (3.15) into (3.13) we get

G+ (ρ, α) = − 1

J1 (Ka)

Ḟ+ (a, α)
J0 (Kρ)

K (α)
−

a∫
0

(f (x)− iαg (x))Q (x, ρ, α) tdt

 (3.16)

Although the left side of (3.16) is regular in the upper half-plane, the right side is not regular. J1 (Ka) has poles at
α = αm, satisfying

J1 (jm) = 0, m = 0, 1, ... (3.17)

αm =

√
k2 − (jm/a)

2
, α0 = k, =mαm ≥ =mk (3.18)

To ensure the analyticity of the right side of (3.16), the residue theorem is used. This gives

Ḟ+ (a, αm) =
a

2
J0 (jm) [fm − iαmgm] (3.19)

with

fm =
2

a2J2
0 (jm)

a∫
0

f (x) J0

(
jm
a
x

)
xdx, gm =

2

a2J2
0 (jm)

a∫
0

g (x) J0

(
jm
a
x

)
xdx (3.20)

Note that when m = 0, J0 (j0) = 1. Let us expand f and g as [15]

f (ρ) =

∞∑
m=0

fmJ0

(
jm
a
ρ

)
, g (ρ) =

∞∑
m=0

gmJ0

(
jm
a
ρ

)
(3.21)

Now consider the Fourier transform of (2.8) and taking into account (3.16) and (3.9), one gets

2

a

Ḟ+ (a, α)

K2M (α)
− F− (a, α) = − 1

aK (α) J1 (Ka)

a∫
0

(f (x)− iαg (x)) J0 (Kx)xdx (3.22)

with
M (α) = πiJ1 (Ka)H

(1)
1 (Ka) (3.23)

By evaluating the integral at the right-hand side of (3.22) after inserting (3.21) in (3.22), we obtain the Wiener-Hopf
equation as follows

Ḟ+ (a, α)

K2 (α)M (α)
− a

2
F− (a, α) =

a

2

∞∑
m=0

J0 (jm)

α2
m − α2

[fm − iαgm] (3.24)
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4. Solution of the WH Equation

By applying the Wiener-Hopf factorization method, the kernel function can be written

M (α) =M− (α)M+ (α) , M− (α) =M+ (−α) (4.1)

The functions M− (α) and M+ (α) are analytic and free of zeros in the lower and upper half plane, respectively. The
term of M+ (α) is given in [10] as

M+ (α) =

√
πiJ1 (ka)H

(1)
1 (ka) exp

{
i
aα

π

[
1− ζ + log

(
2π

ka

)
+ i

π

2

]
− ika

2

}
× exp

(
aK (α)

π
log

(
α+ iK (α)

k

)
+ q (α)

) ∞∏
m=1

(
1 +

α

αm

)
exp

(
iαa

mπ

)
(4.2)

where

q (α) =
1

π

∞∫
0

[
1− 2

πx

1

J2
1 (x) + Y 2

1 (x)

]
log

1 +
αa√

(ka)
2 − x2

 dx (4.3)

with constant ζ = 0.57721... The multiplication of both sides of (3.24) by (k − α)M− (α), we get

Ḟ+ (a, α)

M+ (α) (k + α)
− a

2
(k − α)M− (α)F− (a, α) =

a

2
M− (α) (k − α)

∞∑
m=0

J0 (jm)

α2
m − α2

[fm − iαgm] (4.4)

The solution of (4.4) can be obtained by using the Liouville theorem after the decomposition of the right side of (4.4)

Ḟ+ (a, α)

(k + α)M+ (α)
=
a

2

∞∑
m=0

(k + αm) J0 (jm)M+ (αm)

2αm (α+ αm)
[fm + iαmgm] (4.5)

5. Determination of the Expansion Coefficients

The region for ρ < a, −l1 < z < 0, the field can be defined as

u3 (ρ, z) =

∞∑
n=1

[
ane

iκnz + bne
−iκnz

]
J0

(
ξn
a
ρ

)
(5.1)

Here ξn’s are the roots of the characteristic equation

ikaβ1J0 (ξn) + ξnJ1 (ξn) = 0, n = 1, 2, ... (5.2)

while κn’s stand for

κn =

√
k2 −

(
ξn
a

)2

, n = 1, 2, ... (5.3)

Consider the equations (2.9), (2.10), namely

f (ρ) =
∂

∂z
u2 (ρ, 0) =

∂

∂z
u3 (ρ, 0) + ik (5.4)

g (ρ) = u2 (ρ, 0) = u3 (ρ, 0)− 1 (5.5)

Inserting the f (ρ) and g (ρ) given in (3.21) in (5.4), (5.5) respectively, and using (5.1), we get:

∞∑
m=0

fmJ0

(
jm
a
ρ

)
= i

∞∑
n=1

κn [an − bn] J0
(
ξn
a
ρ

)
+ ik (5.6)

∞∑
m=0

gmJ0

(
jm
a
ρ

)
=

∞∑
n=1

[an + bn] J0

(
ξn
a
ρ

)
− 1 (5.7)
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Multiplying both sides of (5.6), (5.7) by ρJ0
(
ξl
a ρ
)

and integrating from ρ = 0 to ρ = a, we obtain

an =
a2ξnJ1 (ξn)

2iκnPn

[ ∞∑
m=0

J0 (jm)

ξ2n − j2m
[fm + iκngm] +

i (κn − k)
ξ2n

]
(5.8)

bn = −a
2ξnJ1 (ξn)

2iκnPn

[ ∞∑
m=0

J0 (jm)

ξ2n − j2m
[fm − iκngm]− i (κn + k)

ξ2n

]
(5.9)

with

Pn =
a2

2

[
J2
0 (ξn) + J2

1 (ξn)
]

(5.10)

In region ρ < a, −l2 < z < −l1, u4 (ρ, z) can be expressed

u4 (ρ, z) =

∞∑
n=0

[
cne
−iαnz + dne

iαnz
]
J0

(
jn
a
ρ

)
(5.11)

By using the (2.6), (5.11) reduces to

u4 (ρ, z) =

∞∑
n=0

cn
[
e−iαnz +Rne

iαnz
]
J0

(
jn
a
ρ

)
(5.12)

with

Rn = −β2 − αn/k
β2 + αn/k

e2iαnl2 (5.13)

Now from (2.11), (2.12) and using (5.1), (5.12) we write

∞∑
n=1

κn
[
ane
−iκnl1 − bneiκnl1

]
J0

(
ξn
a
ρ

)
=

∞∑
m=0

cmαm
[
−eiαml1 +Rme

−iαml1
]
J0

(
jm
a
ρ

)
(5.14)

∞∑
n=1

[
ane
−iκnl1 + bne

iκnl1
]
J0

(
ξn
a
ρ

)
=

∞∑
m=0

cm
[
eiαml1 +Rme

−iαml1
]
J0

(
jm
a
ρ

)
(5.15)

Similarly one can obtain

an =
eiκnl1a2ξnJ1 (ξn)

2κnPn

∞∑
m=0

cm
[
αm
[
−eiαml1 +Rme

−iαml1
]
+ κn

[
eiαml1 +Rme

−iαml1
]]

ξ2n − j2m
J0 (jm) (5.16)

bn =
e−iκnl1a2ξnJ1 (ξn)

2κnPn

∞∑
m=0

cm
[
−αm

[
−eiαml1 +Rme

−iαml1
]
+ κn

[
eiαml1 +Rme

−iαml1
]]

ξ2n − j2m
J0 (jm) (5.17)

consider (5.8), (5.9) together with (5.16), (5.17), namely

∞∑
m=0

J0 (jm)

ξ2n − j2m
[fm + iκngm]

= ieiκnl1

∞∑
m=0

cm
[
αm
[
−eiαml1 +Rme

−iαml1
]
+ κn

[
eiαml1 +Rme

−iαml1
]]

ξ2n − j2m
J0 (jm)

− i (κn − k)
ξ2n

(5.18)
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∞∑
m=0

J0 (jm)

ξ2n − j2m
[fm − iκngm]

= −ie−iκnl1

∞∑
m=0

cm
[
−αm

[
−eiαml1 +Rme

−iαml1
]
+ κn

[
eiαml1 +Rme

−iαml1
]]

ξ2n − j2m
J0 (jm)

+
i (κn + k)

ξ2n
(5.19)

By replacing α = α1, α2, α3, .. in (4.5) and using (3.19), we get

J0 (jr) [fr − iαrgr]
(k + αr)M+ (αr)

=

∞∑
m=0

(k + αm)M+ (αm) J0 (jm)

2αm (αr + αm)
[fm + iαmgm] (5.20)

One can determines the coefficients fm, gm and cm by using the linear systems (5.18), (5.19) and (5.20).

6. Far Field
The diffracted field for ρ > a can be found by applying the inverse Fourier transform of F (ρ, α). From (11b) we

get

u1 (ρ, z) = −
1

2π

∫
L

Ḟ+ (a, α)H
(1)
0 (Kρ)

KH
(1)
1 (Ka)

e−iαzdα (6.1)

Here L is a line parallel to the real α-axis. By using the asymptotic expression of H(1)
0 (Kρ) for kρ→∞

H
(1)
0 (Kρ) =

√
2

πKρ
eiKρ−iπ/4 (6.2)

The substitution α = −k cosµ in (6.1) enables us to write

u1 (ρ, z) = −
1

2π

∫
L

Ḟ+ (a,−k cosµ)
k sinµH

(1)
1 (ka sinµ)

√
2

πρk sinµ
eiρk sinµ+ikz cosµ−iπ/4k sinµdµ (6.3)

and making the following substitutions
z = r cos θ, ρ = r sin θ (6.4)

in (6.3), the integral can be solved owing to the saddle-point formula [16], we have

u1 (r, θ) ∼
i

π

Ḟ+ (a,−k cos θ)
sin θH

(1)
1 (ka sin θ)

eikr

kr
(6.5)

where θ and r are the spherical coordinates.

7. Numerical Results
In order to show the influence of the parameters on the diffracted field phenomenon, numerical results are

presented. Graphics are obtained for 20 log |u1 (r, θ)× kr|with the observation angle θ changing from 0 to π.
Figure 3 shows that the modulus of the diffracted field becomes insensitive to the increasing value of N > 5

when ka = 1, kl1 = 1, kl2 = 10, β−11 = 1 + 3i, β−12 = 3 + 3i. For this reason, in all numerical computations N is
chosen as 5.

Figures 4 and 5 show the variation of the diffracted field amplitude versus observation angle θ for different
values of kl1. The diffracted field amplitude decreases with increasing lining length, as expected. In Figure 5, the
effect obtained by coating the cavity is also achieved by partial lining of the cavity, depending on the selection of
the problem parameters.

Figure 6 depicts the effect of the cavity depth kl2 on the diffraction phenomenon. The diffracted field becomes
almost constant (no resonance effect) after k = 5 due to the complex impedances, is observed.

Comparison of the amplitudes of diffracted field and cavity depth are presented in Figures 7 and 8. These
Figures show an excellent agreement between the present study (kl1 → kl2) and the study of [10]. This comparison
is also important for the accuracy of the mathematical results.
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Figure 3. Diffracted field against the truncation number with different observation angle.

Figure 4. Diffracted field against the cavity depth kl1.

Figure 5. Diffracted field versus cavity depth kl1.
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Figure 6. Diffracted field amplitude versus the cavity depth kl2.

Figure 7. Comparison of the diffracted field with the study of [10].

Figure 8. Comparison of the cavity depth with the study of [10].



132 B. Tiryakioglu

8. Conclusions
In this present study, diffraction of sound waves from cavity with partial lining is presented rigorously. By using

the Fourier transform, boundary and continuity condition, the problem reduced to WH equation. The analytic
solution is obtained by using the WH equation. At the end of the analysis, the inverse Fourier transform is applied
to determine the explicit expressions of the diffracted field. Also, some numerical results are presented to show the
effects of the some physical parameters to the diffracted field.

As is well known, the lining of the cavity provided a few decibel of sound wave reduction. In addition, the
effect of partial lining on diffracted field is clearly seen from Figures 4,5. Considering the cost and applicability, the
importance of a finite coating is obvious.

When the cavity is full lined (kl1 → kl2), the results found in this study are compared with the results of [10]
and the agreement is perfect.
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