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Abstract
In this present investigation, based on the (p, q)-Lucas polynomials, we want to build a bridge between
the Theory of Geometric Functions and that of Special Functions, which are usually considered as very
different fields.

Keywords: (p, q)-Lucas polynomials; coefficient bounds; bi-univalent functions; Fekete-Szegö inequalities.

AMS Subject Classification (2020): Primary: 30C45; Secondary: 05A15; 33D15.

*Corresponding author

1. Introduction, preliminaries and known results

In modern science there is a huge interest in the theory and application of the the Dickson polynomials,
Chebyshev polynomials, Fibonacci polynomials, Lucas polynomials and Lucas-Lehmer polynomials. These
polynomials play a fundamental role in mathematics, and have numerous important applications in combinatorics,
number theory, numerical analysis, etc. Therefore, they have been studied extensively, and various generalizations
of them have been introduced (see, for example, [9, 12, 13, 18, 19]).

The classical Lucas polynomials Ln(x) studied by M. Bicknell in 1970 are defined by

Ln(x) = xLn−1(x) + Ln−2(x) (n ≥ 2),

with the initial condition L0(x) = 2 and L1(x) = x.
Since the above classical Lucas polynomials appeared, some authors have explored their different extensions.

For example, the (p, q)-Lucas polynomials with some properties introduced by Lee and Aşçı [7] as follows.

Definition 1.1. (see [7]) Let p(x) and q(x) be polynomials with real coefficients. The (p, q)-Lucas polynomials
Lp,q,n(x) are defined by the recurrence relation

Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x) (n ≥ 2),

from which the first few Lucas polynomials can be found as

Lp,q,0(x) = 2,

Lp,q,1(x) = p(x),

Lp,q,2(x) = p2(x) + 2q(x),

Lp,q,3(x) = p3(x) + 3p(x)q(x),
...

(1.1)
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For the special cases of p(x) and q(x), we can get the polynomials given in Table 1.

Table 1: Special cases of the Lp,q,n(x) with given initial conditions are given.
p(x) q(x) Lp,q,n(x)
x 1 Lucas polynomials Ln(x)
2x 1 Pell-Lucas polynomials Dn(x)
1 2x Jacobsthal-Lucas polynomials jn(x)
3x -2 Fermat-Lucas polynomials fn(x)
2x -1 Chebyshev polynomials first kind Tn(x)

Theorem 1.1. (see [7]) Let G{Lp,q,n(x)}(z) be the generating function of the (p, q)-Lucas polynomial sequence Lp,q,n(x).
Then

G{Lp,q,n(x)}(z) =

∞∑
n=0

Lp,q,n(x)zn =
2− p(x)z

1− p(x)z − q(x)z2
.

Let A be the class of functions f of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (1.2)

which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1} and normalized under the conditions

f(0) = 0,

f ′(0) = 1.

Further, by S we shall denote the class of all functions in A which are univalent in ∆.
Here, we recall some definitions and concepts of classes of analytic functions. Denote by S∗ the subclass of S of

starlike functions, so that f ∈ S∗ if and only if

<
(
zf ′(z)

f(z)

)
> 0 (z ∈ ∆).

Let f be given by (1.2). Then f ∈ RT if it satisfies the inequality

< (f ′(z)) > 0 (z ∈ ∆).

The subclass RT was studied systematically by MacGregor [10] who indeed referred to numerous earlier investiga-
tions involving functions whose derivative has a positive real part.

For α > 0, let B(α) denote the class of Bazilevic̆ functions defined in the open unit disk ∆ such that

<

(
f ′(z)

(
f(z)

z

)α−1
)
> 0 (z ∈ ∆).

This class of functions was studied first by Singh [15] and considered subsequently by London and Thomas [8].
With a view to recalling the principle of subordination between analytic functions, let the functions f and g be

analytic in ∆. Given functions f, g ∈ A, f is subordinate to g if there exists a Schwarz function w ∈ Λ, where

Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ ∆} ,

such that
f (z) = g (w (z)) (z ∈ ∆) .

We denote this subordination by
f ≺ g or f (z) ≺ g (z) (z ∈ ∆) .

In particular, if the function g is univalent in ∆, the above subordination is equivalent to

f(0) = g(0), f(∆) ⊂ g(∆).
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According to the Koebe-One Quarter Theorem [4], it ensures that the image of ∆ under every univalent function f ∈
A contains a disk of radius 1/4. Thus every univalent function f ∈ A has an inverse f−1 satisfying f−1 (f (z)) = z
and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

g(w) = f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let Σ denote the class of
bi-univalent functions in ∆ given by (1.2). For a brief history and interesting examples in the class Σ, see [16] (see
also [1, 3, 6, 11, 14]).

We want to remark explicitly that, in our article, by using the Lp,q,n(x), functions, our methodology builds a
bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of
Special Functions, which are usually considered as very different fields.

Definition 1.2. A function f ∈ Σ is said to be in the class

BΣ (β;x) (0 ≤ β ≤ 1, z, w ∈ ∆)

if the following subordinations are satisfied:(
z

f(z)

)1−β

f ′(z) ≺ G{Lp,q,n(x)}(z)− 1

and (
w

g(w)

)1−β

g′(w) ≺ G{Lp,q,n(x)}(w)− 1,

where the function g is given by (1.3).

Remark 1.1. Here, and in what follows, the argument x ∈ R is independent of the argument z ∈ C.

Example 1.1. Upon setting β = 0 in Definition 1.2, it is readily seen that a function f ∈ Σ is in the class

BΣ (x) (z, w ∈ ∆)

if the following conditions are satisfied:

zf ′(z)

f(z)
≺ G{Lp,q,n(x)}(z)− 1

wg′(w)

g(w)
≺ G{Lp,q,n(x)}(w)− 1,

where the function g is given by (1.3).

Example 1.2. Upon setting β = 1 in Definition 1.2, it is readily seen that a function f ∈ Σ is in the class

HΣ (x) (z, w ∈ ∆)

if the following conditions are satisfied:

f ′(z) ≺ G{Lp,q,n(x)}(z)− 1

and
g′(w) ≺ G{Lp,q,n(x)}(w)− 1,

where the function g is given by (1.3).
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2. Coefficient Estimates
We begin this section by finding the estimates on the coefficients |a2| and |a3| for functions in the class BΣ (β;x)

proposed by Definition 1.2.

Theorem 2.1. Let f given by (1.2) be in the class BΣ (β;x) . Then

|a2| ≤
|p(x)|

√
2 |p(x)|√

(β + 1) |βp2(x) + 4(β + 1)q(x)|

and

|a3| ≤
p2(x)

(β + 1)2
+
|p(x)|
β + 2

.

Proof. Let f ∈ BΣ (β;x) . From Definition 1.2, for some analytic functions Φ,Ψ such that

Φ(0) = 0, |Φ(z)| =
∣∣t1z + t2z

2 + t3z
3 + · · ·

∣∣ < 1 (z ∈ ∆),

|tk| ≤ 1 (k ∈ N)

and
Ψ(0) = 0, |Ψ(w)| =

∣∣s1w + s2w
2 + s3w

3 + · · ·
∣∣ < 1 (w ∈ ∆),

|sk| ≤ 1 (k ∈ N),

we can write (
z

f(z)

)1−β

f ′(z) = G{Lp,q,n(x)}(Φ(z))− 1

and (
w

g(w)

)1−β

g′(w) = G{Lp,q,n(x)}(Ψ(w))− 1,

or equivalently (
z

f(z)

)1−β

f ′(z) = −1 + Lp,q,0(x) + Lp,q,1(x)Φ(z) + Lp,q,2(x)Φ2(z) + · · · (2.1)

and (
w

g(w)

)1−β

g′(w) = −1 + Lp,q,0(x) + Lp,q,1(x)Ψ(w) + Lp,q,2(x)Ψ2(w) + · · · . (2.2)

From the equalities (2.1) and (2.2), we obtain that(
z

f(z)

)1−β

f ′(z) = 1 + Lp,q,1(x)t1z +
[
Lp,q,1(x)t2 + Lp,q,2(x)t21

]
z2 + · · · (2.3)

and (
w

g(w)

)1−β

g′(w) = 1 + Lp,q,1(x)s1w +
[
Lp,q,1(x)s2 + Lp,q,2(x)s2

1

]
w2 + · · · . (2.4)

Thus, upon comparing the corresponding coefficients in (2.3) and (2.4), we have

(β + 1)a2 = Lp,q,1(x)t1, (2.5)

(β − 1)(β + 2)

2
a2

2 + (β + 2)a3 = Lp,q,1(x)t2 + Lp,q,2(x)t21, (2.6)

− (β + 1)a2 = Lp,q,1(x)s1 (2.7)

and
(β + 2)(β + 3)

2
a2

2 − (β + 2)a3 = Lp,q,1(x)s2 + Lp,q,2(x)s2
1. (2.8)
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From the equations (2.5) and (2.7), we can easily see that

t1 = −s1, (2.9)

2(β + 1)2a2
2 = L2

p,q,1(x)
(
t21 + s2

1

)
. (2.10)

If we add (2.6) to (2.8), we get

(β + 1)(β + 2)a2
2 = Lp,q,1(x) (t2 + s2) + Lp,q,2(x)

(
t21 + s2

1

)
. (2.11)

By using (2.10) in the equality (2.11), we have[
(β + 1)(β + 2)L2

p,q,1(x)− 2(β + 1)2Lp,q,2(x)
]
a2

2 = L3
p,q,1(x) (t2 + s2) . (2.12)

which gives

|a2| ≤
|p(x)|

√
2 |p(x)|√

(β + 1) |βp2(x) + 4(β + 1)q(x)|
.

Moreover, if we subtract (2.8) from (2.6), we obtain

2(β + 2)(a3 − a2
2) = Lp,q,1(x) (t2 − s2) + Lp,q,2(x)

(
t21 − s2

1

)
. (2.13)

Then, in view of (2.9) and (2.10), (2.13) becomes

a3 =
L2
p,q,1(x)

2(β + 1)2

(
t21 + s2

1

)
+
Lp,q,1(x)

2(β + 2)
(t2 − s2) .

Then, with the help of (1.1), we finally deduce

|a3| ≤
p2(x)

(β + 1)2
+
|p(x)|
β + 2

.

Corollary 2.1. Let f given by (1.2) be in the class BΣ (x) . Then

|a2| ≤ |p(x)|

√∣∣∣∣ p(x)

2q(x)

∣∣∣∣
and

|a3| ≤ p2(x) +
|p(x)|

2
.

Corollary 2.2. Let f given by (1.2) be in the class HΣ (x) . Then

|a2| ≤
|p(x)|

√
|p(x)|√

|p2(x) + 8q(x)|

and

|a3| ≤
p2(x)

4
+
|p(x)|

3
.

3. Fekete-Szegö Problem

The classical Fekete-Szegö inequality, presented by means of Loewner’s method, for the coefficients of f ∈ S is∣∣a3 − ϑa2
2

∣∣ ≤ 1 + 2 exp(−2ϑ/(1− ϑ)) for ϑ ∈ [0, 1) .

As ϑ→ 1−, we have the elementary inequality
∣∣a3 − a2

2

∣∣ ≤ 1. Moreover, the coefficient functional

zϑ(f) = a3 − ϑa2
2

on the normalized analytic functions f in the unit disk ∆ plays an important role in function theory. The problem
of maximizing the absolute value of the functional zϑ(f) is called the Fekete-Szegö problem, see [5]. Many other
recent works on the Fekete-Szegö problem include, for example, [2, 17, 20].

In this section, we aim to provide Fekete-Szegö inequalities for functions in the classBΣ (β;x). These inequalities
are given in the following theorem.
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Theorem 3.1. Let f given by (1.2) be in the class BΣ (β;x) and ϑ ∈ R. Then

∣∣a3 − ϑa2
2

∣∣ ≤

|p(x)|
β + 2

, |ϑ− 1| ≤ β + 1

2(β + 2)

∣∣∣∣β + 4(β + 1)
q(x)

p2(x)

∣∣∣∣
2 |1− ϑ|

∣∣p3(x)
∣∣

(β + 1) |βp2(x) + 4(β + 1)q(x)|
, |ϑ− 1| ≥ β + 1

2(β + 2)

∣∣∣∣β + 4(β + 1)
q(x)

p2(x)

∣∣∣∣
.

Proof. From (2.12) and (2.13), we have

a3 − ϑa2
2 =

L3
p,q,1(x) (1− ϑ) (t2 + s2)

(β + 1)(β + 2)L2
p,q,1(x)− 2(β + 1)2Lp,q,2(x)

+
Lp,q,1(x) (t2 − s2)

2(β + 2)

= Lp,q,1(x)

[(
h (ϑ, x) +

1

2(β + 2)

)
t2 +

(
h (ϑ, x)− 1

2(β + 2)

)
s2

]
,

where

h (ϑ, x) =
L2
p,q,1(x) (1− ϑ)

(β + 1)(β + 2)L2
p,q,1(x)− 2(β + 1)2Lp,q,2(x)

.

Then, in view of (1.1), we conclude that

∣∣a3 − ϑa2
2

∣∣ ≤

|p(x)|
β + 2

, 0 ≤ |h (ϑ, x)| ≤ 1

2(β + 2)

2 |p(x)| |h (ϑ, x)| , |h (ϑ, x)| ≥ 1

2(β + 2)

.

Corollary 3.1. Let f given by (1.2) be in the class BΣ (x) and ϑ ∈ R. Then

∣∣a3 − ϑa2
2

∣∣ ≤

|p(x)|

2
, |ϑ− 1| ≤ |q(x)|

p2(x)

|1− ϑ|
∣∣p3(x)

∣∣
2 |q(x)|

, |ϑ− 1| ≥ |q(x)|
p2(x)

.

Corollary 3.2. Let f given by (1.2) be in the class HΣ (x) and ϑ ∈ R. Then

∣∣a3 − ϑa2
2

∣∣ ≤

|p(x)|

3
, |ϑ− 1| ≤

∣∣p2(x) + 8q(x)
∣∣

3p2(x)

|1− ϑ|
∣∣p3(x)

∣∣
|p2(x) + 8q(x)|

, |ϑ− 1| ≥
∣∣p2(x) + 8q(x)

∣∣
3p2(x)

.

If we choose ϑ = 1, we get the next corollaries.

Corollary 3.3. If f ∈ BΣ (β;x) , then ∣∣a3 − a2
2

∣∣ ≤ |p(x)|
β + 2

.

Corollary 3.4. If f ∈ BΣ (x) , then ∣∣a3 − a2
2

∣∣ ≤ |p(x)|
2

.

Corollary 3.5. If f ∈ HΣ (x) , then ∣∣a3 − a2
2

∣∣ ≤ |p(x)|
3

.
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