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Abstract
The notion of pseudo-UP algebras is introduced and analyzed in our forthcoming article as a generaliza-
tion of UP-algebras. In this article, as a continuation of the foregoing, we introduce and analyze concepts
of pseudo-UP ideals and pseudo-UP filters in pseudo-UP algebras.
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1. Introduction
The concept of pseudo-BCK algebras was introduced in [3] by G. Georgescu and A. Iorgulescu as an extension

of BCK algebra. The pseudo-ideals of pseudo-BCK algebras were introduced in 2003 by Y. B. Jun, M. Kondo and K.
H. Kim in article [8]. The notion of pseudo-BCI algebras was introduced and analyzed in [1] by W. A. Dudek and Y.
B. Jun as a generalization of BCI-algebras. The notion of pseudo-BCI ideals in pseudo-BCI algebras is introduced
2006 in [9] by Y. B. Jun, H. S. Kim and J. Neggers. These substructures in pseudo-BCK and pseudo-BCI algebras
have been studied by several authors such as, for example, K. J. Lee and C. H. Park. [11] and G. Dymek [2]. These
algebraic structures has been in the focus of many authors (for example, see [4, 6, 7, 19]).

Iampan [5] introduced a new algebraic structure which is called UP-algebras as a generalization of KU-algebras.
Somjanta et al. [18] introduced the notion of UP-filters of UP-algebras. The concept of proper UP-filters in such
algebras this author introduced 2018 in [12]. In addition, some new types of UP-filters in UP-algebras were
introduced by Y. B. Jun and A. Iampan in [10].

In our forthcoming article [17], we introduced the concept of pseudo-UP algebras and some properties of
pseudo-UP algebras are studied. In this article, as a continuation of the foregoing, we introduce and analyze the
concepts of pseudo-UP ideals and pseudo-UP filters in pseudo-UP algebras.

2. Preliminaries
In this section we will describe some elements of UP-algebras from the literature [5] necessary for our intentions

in this text.

Definition 2.1. ([5]) An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra where A is a nonempty set, ′ · ′ is a
binary operation on A, and 0 is a fixed element of A (i.e. a nullary operation) if it satisfies the following axioms:

(UP-1) (∀x, y ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2) (∀x ∈ A)(0 · x = x),
(UP-3) (∀x ∈ A)(x · 0 = 0), and
(UP-4) (∀x, y ∈ A)((x · y = 0 ∧ y · x = 0) =⇒ x = y).
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Definition 2.2. ([17]) A pseudo-UP algebra is a structure A = ((A,6), ·, ∗, 0), where ′ 6 ′ is a binary relation on a
set A, ′ · ′ and ′ ∗ ′ are internal binary operations on A and ′0 ′ is an element of A, verifying the following axioms:

(pUP-1) (∀x, yz ∈ A)(y · z 6 (x · y) ∗ (x · z) ∧ y ∗ z 6 (x ∗ y) · (x ∗ z));
(pUP-4) (∀x, y ∈ A)((x 6 y ∧ y 6 x) =⇒ x = y);
(pUP-5) (∀x, y ∈ A)((y · 0) ∗ x = x ∧ (y ∗ 0) · x = x) and
(pUP-6) (∀x, y ∈ A)((x 6 y ⇐⇒ x · y = 0) ∧ (x 6 y ⇐⇒ x ∗ y = 0)).

3. Pseudo-UP ideals and pseudo-UP filters in a pseudo-UP algebra

In the following definition, we introduce the concept of pseudo-UP ideals in pseudo-UP algebras

Definition 3.1. A nonempty subset J of a pseudo-UP algebra A is called a pseudo-UP ideal of A if it satisfies
(pJ1) 0 ∈ J ;
(pJ2) (∀x, y, z ∈ A)((x · (y ∗ z) ∈ J ∧ y ∈ J) =⇒ x · z ∈ J) and
(pJ3) (∀x, y, z ∈ A)((x ∗ (y · z) ∈ J ∧ y ∈ J) =⇒ x ∗ z ∈ J).

The following theorem describes the characteristic features of these substructures

Theorem 3.1. Let J be a pseudo-UP ideal in a pseudo-UP algebra A. Then:
(1) (∀y, z ∈ A)((y ∗ z ∈ J ∧ y ∈ J) =⇒ z ∈ J);
(2) (∀x, y ∈ A)(y ∈ J =⇒ x ∗ y ∈ J);
(3) (∀y, z ∈ A)((y · z ∈ J ∧ y ∈ J) =⇒ z ∈ J) and
(4) (∀x, y ∈ A)(y ∈ J =⇒ x · y ∈ J).

Proof. Since Equations (3) and (4) can be proved in a similar way to the proofs of equality (1) and (2), we will only
show the last two mentioned.

Putting x = 0 in (pJ2), we obtain (1) with respect to equality (9) in the article [17].
Putting z = y in (pJ3), we obtain (2) with respect to (pJ1) and to equalities (10) and (8) in the article [17].

Corollary 3.1. Let J be a pseudo-UP ideal in a pseudo-UP algebra A. Then:
(5) (∀y, z ∈ A)((y 6 z ∧ y ∈ J) =⇒ z ∈ J).

Proof. Let y, z ∈ A be arbitrary elements such that y 6 z and y ∈ J . Then y · z = 0 ∈ J (and y ∗ z = 0 ∈ J). Thus
z ∈ J by (3) (by (1) respectively).

If we use the labels

·(z, J) = {y ∈ A : y · z ∈ J} and ∗(z, J) = {y ∈ A : y ∗ z ∈ J},

introduced and used in [8] and [9], we can conclude that as a consequence of the preceding theorem, the following
is valid

Corollary 3.2. J be a pseudo-UP ideal in a pseudo-UP algebra A. Then
(6) (∀z ∈ A)(z ∈ J =⇒ (·(z, J) ⊆ J ∧ ∗(z, J) ⊆ J)).

Based on the orientation expressed in article [18], we introduce the concept of pseudo-UP filters as follows

Definition 3.2. A nonempty subset F of a pseudo-UP algebra A is called a pseudo-UP filter of A, if it satisfies the
following properties:

(pF1) 0 ∈ F ;
(pF2) (∀x, y ∈ A)((x ∈ F ∧ x · y ∈ F =⇒ y ∈ F ); and
(pF3) (∀x, y ∈ A)((x ∈ F ∧ x ∗ y ∈ F =⇒ y ∈ F ).

From this determination, immediately follows:

Proposition 3.1. Let F be a pseudo-UP filter in a pseudo-UP algebra A. Then
(∀x, y ∈ A)((x ∈ F ∧ x 6 y) =⇒ y ∈ F ).

Proposition 3.2. A nonempty subset F of a pseudo-UP algebra A is a pseudo-UP filter in A if and only if 0 ∈ F and holds
(F4) (∀z ∈ A)(z ∈ F =⇒ (·(z, F ) ⊆ F ∧ ∗(z, F ) ⊆ F )).
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Theorem 3.2. If F is a pseudo-UP filter of a pseudo-UP algebra A, then
(7) (∀x, y, z ∈ A)((x ∈ F ∧ y ∈ F ∧ z ∗ y 6 x) =⇒ z ∈ F ) and,
(8) (∀x, y, z ∈ A)((x ∈ F ∧ y ∈ F ∧ z · y 6 x) =⇒ z ∈ F ).

Proof. Suppose that F is a pseudo-UP filter of A and let x, y, z ∈ A be arbitrary elements.
Suppose that z ∗ y 6 x. Then (z ∗ y) · x = 0 ∈ F . Thus z ∗ y ∈ ·(x, F ) ⊆ F . It follows that z ∈ ∗(y, F ) ⊆ F .

Therefore, the condition (8) is proved.
Now let x ∈ F , y ∈ F and z · y 6 x be hold. Then (z · y) ∗ x = 0 ∈ F , and thus z · y ∈ ∗(x, F ) ⊆ F . Hence

z ∈ ·(y, F ) ⊆ F , which shows the condition (8).

4. Final observation
In the study of algebraic substructures of UP-algebras, this author took part with his texts ([12–16]). And this

text should be seen as a continuation of these his efforts.
Looking at the [8–10], some types of pseudo-UP filters one can be introduced in pseudo-UP algebras. For

example: one type of pseudo-UP filters can be introduced by requiring that the set F satisfies 0 ∈ F and the
following conditions

(∀x, y, z ∈ A)((((x · y) ∗ y) · z ∈ F ∧ z ∈ F ) =⇒ x ∗ y ∈ F ) and
(∀x, y, z ∈ A)((((x ∗ y) · y) ∗ z ∈ F ∧ z ∈ F ) =⇒ x · y ∈ F ).

Another type of pseudo-UP filters could be a subset of F of a pseudo-UP algebra A if 0 ∈ F and the following holds
(∀y ∈ A)(y ∈ F =⇒ ·(y, F ) ∩ ∗(y, F ) ⊆ F ).

Further, drawing on the ideas in article [10], some other similar conditions could be analyzed.
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