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Abstract 
 
Image fusion is one of the most common techniques used to enhance the interpretability 
and functionality of remotely sensed data. The aim of this study was to improve the 
performance of the SVM (Support Vector Machines) classifier with the aid of texture 
features (TF) extracted from fused images. As a first step, the spatial resolution of the 
WorldView-2 MS (multispectral) imagery was increased by fusing it with a WorldView-2 
PAN (panchromatic) image using the PCA (Principal Component Analysis), WSB (Wavelet 
Single Band), GS (Gram-Schmidt), BRV (Brovey), EHL (Ehlers), HCS (Hyperspherical Colour 
Space), HPF (High-Pass Filtering) and MCV (Multiplicative) algorithms. A PCA transform 
was then applied on all fused images. The first principal component obtained from each 
fused image was used to extract the Gabor TFs. As a final step, extracted Gabor TFs were 
combined with the original MS image. Resultant images were classified with the SVM 
algorithm to investigate to what degree the used methodology affect the classification 
accuracy. The results showed that the GS fusion-based Gabor TFs provided the greatest 
classification accuracy increase with 19.3%, whereas the PCA fusion-based Gabor TFs 
resulted in the second best classification accuracy increase with 18.7%.  
 
Keywords: Texture feature extraction, Image fusion, Gabor texture features, Principal 
component analysis, Image classification 
 

Özet 
 
Görüntü kaynaştırma, uzaktan algılanan verilerin yorumlanabilirliğini ve işlevselliğini 
artırmak için en yaygın olarak kullanılan tekniklerden biridir. Bu çalışmanın amacı Destek 
Vektör Makineleri (DVM) sınıflandırma algoritmasının performansının kaynaştırılmış 
görüntülerden elde edilen doku özellikleri yardımıyla iyileştirilmesidir. Bu amaçla, ilk 
aşama olarak bir WorldView-2 çok bantlı görüntüsü bir WorldView-2 pankromatik 
görüntüsü ile PCA (Principal Component Analysis), WSB (Wavelet Single Band), GS (Gram-
Schmidt), BRV (Brovey), EHL (Ehlers), HCS (Hyperspherical Colour Space), HPF (High-Pass 
Filtering) ve MCV (Multiplicative) yöntemleri kullanılarak kaynaştırılmıştır. Daha sonra her 
bir kaynaştırılmış görüntüye Temel Bileşenler Analizi uygulanmıştır. Her bir kaynaştırılmış 
görüntü için elde edilen birinci temel bileşen Gabor doku özelliklerinin çıkartılması amacıyla 
kullanılmıştır. Son aşama olarak da elde edilen doku özellikleri girdi çok bantlı görüntüye 
eklenmiştir. Elde edilen bu görüntüler DVM algoritmasıyla sınıflandırılarak kullanılan 
metodolojinin sınıflandırma doğruluğunu ne derece etkilediği incelenmiştir. Sonuç olarak, 
GS yöntemiyle elde edilen Gabor doku özelliklerinin %19.3 artış ile sınıflandırma 
doğruluğunu en fazla oranda arttıran doku özelliği olduğu ve PCA yöntemiyle elde edilen 
Gabor doku özelliklerinin ise %18.7 artış ile sınıflandırma doğruluğunu en fazla oranda 
arttıran ikinci doku özelliği olduğu tespit edilmiştir. 
 
Anahtar kelimeler: Doku özellik çıkarımı, Görüntü kaynaştırma, Gabor doku özellikleri, 
Temel bileşenler analizi, Görüntü sınıflandırma
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1. Introduction 
 
Image classification, which is one of the most widely-used techniques that increases the interpretability of the features 
on the image, categorizes image pixels with respect to their spectral features, i.e. spectrally similar pixels are assigned 
to the same class. Image classification is implemented for a wide range of purposes, including land use classification 
(Johnsson, 1994), geological mapping (Ricchetti, 2000), burned area mapping (Gitas et al., 2004), mapping crops and 
forest areas (Zabala et al., 2006), weed detection in crops (Eddy et al., 2006), imaging urban areas (Omkar et al., 2007), 
marine habitat mapping (Laurer and Aswani, 2008), crop identification (Yang et al., 2011), flood hazard assessment 
(Shaker et al., 2012), ocean mapping (Almendros-Jiménez et al., 2012), mapping riparian vegetation habitats (Kollár et 
al., 2013), land cover mapping (Damodaran and Nidamanuri, 2014), detection of land cover changes (Dube et al., 2014), 
mapping agricultural tillage practices (Ran et al., 2015), rice lodging assessment (Yang et al., 2017), and point cloud 
filtering (Yilmaz et al., 2018).  

Image classification is a complex task and its success depends on several factors. Since bad atmospheric conditions 
and sensor malfunctions may affect the quality of the satellite imageries, atmospheric and radiometric corrections 
should be conducted to the imageries prior to classification, if necessary. Another important factor that plays a 
significant role in the success of a classification process is the experience of the analyst, especially when conducting 
supervised image classification that relies on the training pixels (signatures) collected by the analyst. Improper collection 
of signatures may lead to the confusion of the classes in the classified image. Spatial resolution of the image to be 
classified also affects the performance of the classification procedure employed. Since lower-resolution imageries are 
hard to interpret by the human eye, it may be very hard to collect signatures on this kind of imageries. Image fusion 
may provide an efficient solution to this problem. Since image fusion aims to produce spatially enhanced images by 
combining the spatial detail content of a panchromatic (PAN) image with the colour features of a lower-resolution 
multispectral (MS) image, it increases the interpretability of the images and makes it a lot easier to collect signatures 
for classification. The success of a classification process depends also on the spectral resolution (i.e. the ability to record 
the electromagnetic energy in a large number of spectral bands with narrow spectral band intervals) of the image to be 
classified. Images of higher spectral resolution are more effective in distinguishing land cover features, especially 
features with similar colour characteristics. On the other hand, classification of lower spectral resolution images requires 
some additional procedures to improve their classification performances. In this context, incorporating texture 
information to the classification process is a reasonable approach to enhance the performance of classification methods.  

Until today, a great deal of effort has been made to use the texture features in image classification process to achieve 
better classification results. Baraldi and Parmiggiani (1995) incorporated six (energy, contrast, variance, correlation, 
entropy and inverse difference moment) of the Grey Level Cooccurrence Matrix (GLCM) texture features introduced by 
Haralick et al. (1973) into the classification process. Kurosu et al. (2001), Rao et al. (2002), Podest and Saatchi (2002), 
Butusov (2003), Sambodo et al. (2010), Hermosilla et al. (2010), Pathak and Dikshit (2010), Devi and Rekha (2013), Nanni 
et al. (2013) and Yılmaz (2019) are just some of the other studies where the use of GLCM texture features was 
investigated to achieve more accurate classification results. Augusteijn et al. (1995) performed image classification by 
using the texture features extracted from cooccurrence matrices, texture-tone analysis, grey level differences, Fourier 
spectrum and Gabor filters. Chen et al. 1997, incorporated the intensity and texture information into the classification 
process. In the study, the authors employed a wavelet transform to extract the fractal dimensions as texture features. 
Low et al. (1999) made use of texture features average intensity, second moment of intensity histogram and fractal 
surface dimension in an artificial neural network classifier. Nyoungui et al. (2002) improved the classification accuracy 
by using texture features derived from first-, second-, and third-order statistics is spatial domain, texture features 
obtained from the texture spectrum, and texture features obtained from the grey level difference vector. Angelo and 
Haertel (2003) utilized the Gabor texture features in supervised image classification. Lloyd et al. (2004) indicated that 
the texture features extracted from variograms could be useful in increasing the classification accuracy. Zhang et al. 
(2004) increased the classification accuracy by using grey level cooccurrence texture features derived with geostatistical 
analysis. Jin et al. (2012) increased the classification accuracy by using multi-temporal texture features. Akar and Güngör 
(2015) integrated the GLCM and Gabor texture features into the random forest classifier to improve its performance. 
Yılmaz (2019) enhanced the performance of the support vector machines (SVM) classifier by using the GLCM texture 
features extracted from image segments obtained from fused images.  

This study aimed to increase the SVM classification accuracy by integrating the Gabor texture features extracted 
from fused images. To this aim, the Gabor texture features derived from the results of various popular image fusion 
methods were integrated into the SVM classifier to see which fusion method provided the texture features that led to 
the greatest overall classification accuracy increase.  

The reminder of this paper is as follows: Section 2 will give brief theoretical background for the image fusion methods 
used in this study. Section 3 will give information about the Gabor feature extraction process, whereas Section 4 will 
briefly explain the SVM classifier. Section 5 will introduce the study area and the methodology followed in this study. 
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The results regarding which fusion methods achieved the best texture features leading to the greatest classification 
accuracy increase will be given in Section 6. Finally, the conclusions drawn from this study will be given in Section 7.  
 

2. Image Fusion  
 
Image fusion combines the spatial characteristics of a high-resolution PAN band and colour features of low-resolution 
MS bands to produce spatially enhanced images. Fused images increase the interpretability of the images, enabling the 
users to extract meaningful information from the surface of the earth. Fused images have a wide variety of application 
areas, including topographic map updating (Pohl, 1996), RGB representation (Tsagaris and Anastassopoulos, 2005), 
building database updating (Poulain et al., 2011), visual display (Peli et al., 1999), land cover change detection (Zeng et 
al., 2010), marine monitoring (Du et al., 2003), mapping (Acerbi-Junior et al., 2006), flood plain mapping (Kedzierski et 
al., 2014), coastal monitoring (Yang et al., 2012), vegetation monitoring (Johnson et al., 2013) etc. A large number of 
image fusion approaches have been developed so far. Following are some brief information about the theories of the 
image fusion methods used in this study. 

• The MCV method, which is the simplest of all, performs fusion by multiplying the input PAN and MS bands 
(Crippen, 1989). The BRV method calculates an intensity band by summing all MS bands. The ratio between each 
MS band and intensity band is multiplied by the PAN image to produce the fused bands (Hallada and Cox, 1983). 

• The HPF method injects the spatial details enhanced by a high-pass filter into the MS image (Schowengerdt, 
1980). 

• The PCA method applies a PCA transformation of the input MS bands to de-correlate the image bands. The first 
principal component, which includes the majority of the total variance (i.e. spatial information), is then replaced 
by the input PAN image. The fused image is obtained through an inverse PCA transformation (Chavez and 
Kwarteng, 1989). The GS method, a statistical method like the PCA, combines the MS bands with a PAN band 
simulated from the MS bands, simulated PAN being the first band. A GS transformation is applied on this 
combined data. Then, the first GS component is replaced by the histogram-matched PAN band. An inverse GS 
transformation results in the fused image (Laben and Brower, 2000). 

• The EHL method applies a high-pass filter on the panchromatic spectrum obtained from the Fast Fourier 
Transform (FFT) of the PAN image and a low-pass filter on the intensity spectrum obtained from the FFT of the 
intensity component generated through the IHS transformation of the MS bands. An inverse FFT is applied on 
both filtered spectrums and the results are summed to form a new intensity. Finally, an inverse IHS 
transformation with the new intensity results in the fused image (Ehlers, 2004; Klonus and Ehlers, 2007). 

• The HCS method first simulates a smoothed PAN image and transforms the input data from native colour space 
to hyperspherical colour space. The intensity of the MS image is matched to those of the squares of the original 
and smoothed PAN image. Then, a new intensity component is generated using the squares of smoothed PAN, 
original PAN and MS intensity. Finally, an inverse transform is employed to produce the fused image (Padwick et 
al., 2010). 

• The WSB method generates an approximation band from successive Discrete Wavelet Transformations (DWT). 
The generated approximation band is replaced by the input PAN image. An inverse DWT gives the fused bands 
(Hill et al., 2002; Yilmaz and Gungor, 2016; ERDAS IMAGINE Field Guide 2013). 

 

3. Gabor Texture Feature Extraction  
 
Texture information increases the meaningfulness of images. The Gabor filters, which are widely used to extract texture 
information from images, are a group of wavelets, each of them being able to acquire the energy at a given frequency 
and a given direction (Zhang et al., 2000). The Gabor filters provide optimal localization properties in both frequency 
and spatial domain, which makes them suitable for texture extraction (Yang et al., 2003; Huang et al., 2010). The Gabor 
transformation defines any signal as a summation of orthogonal frequency-shift and time-shift Gaussian functions. The 
Gabor space is obtained by convolving the image with a filter bank that includes various rotations and scales. Texture 
information is retrieved from the statistics of the filtering results (Akar and Güngör, 2015). The 2-D Gabor filter was 
given by Petkov and Wieling (2008) and Akar and Güngör (2015) as;  
 

 
𝑔𝜆,𝜃,𝜑,𝜎,𝛾(𝑥, 𝑦) = exp⁡ (−

𝑥′2 + 𝛾2𝑦′2

2𝜎2
) cos (2𝜋

𝑥′

𝜆
+ 𝜑) 

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 

(1) 
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where, 𝜃 defines the orientation, 𝜆 is the wavelength of the filter, 𝛾 is the spatial aspect ratio and 𝜑 is the phase offset. 
 

4. SVM Classification 
 
The SVM method is based on the identification of decision boundaries, called hyperplanes, to optimize the boundaries 
between classes based on the sample pixels defined, thereby minimizing the possibility of misclassification between the 
pixels. The method was first designed to solve linear classification problems which can be labelled as {-1, + 1} to separate 
the two classes. In linear problems, the hyperplanes must have the highest level of aperture (i.e. margin) to effectively 
separate two classes. More specifically, the SVM method is based on the definition of the optimal hyperplane that 
maximizes the distance between the hyperplane and sample pixels (Vapnik 1995; 1998). Pixels on the optimal 
hyperplanes form support vectors and are used to classify the unknown pixels in the image (Özdarıcı Ok and Akyürek, 
2013). Linear planes are often insufficient to solve real life problems. The concept of non-linear hyperplanes was 
developed for such cases. According to this concept, in order to ensure the best separation between classes, the data 
is transformed into the Euclidean space, also called multidimensional Hilbert space (Özdarıcı Ok and Akyürek, 2013). 
This transformation is done through the use of some kernel functions including the linear, polynomial, sigmoid and 
radial basis function kernels. These functions enable the transformation into a new higher dimensional space, where 
distinction between classes is more possible (Mathur and Foody, 2008). Among all, radial basis function is the most 
preferred one due to its efficiency in achieving high classification accuracy (Huang et al., 2002; Melgani and Bruzzone, 
2004). Various multi-class approaches have been developed for cases where more than two classes should be separated. 
The One-Against-All approach forms an SVM for each class. Each SVM is trained to separate the samples of one class 
from the samples of all other classes (Milgram et al., 2006). On the other hand, the One-Against-One approach forms 
an SVM for each pair of classes. Let n be the number of classes in a problem, n(n-1)/2 SVMs are trained to separate the 
samples of a class from those of another (Milgram et al., 2006). 
 

5. Application 
 

5.1 Study Area 
 
This study was conducted in the Surmene province of the city of Trabzon, Turkey. The study area was captured by the 
WorldView-2 satellite, which produces an 8-band MS image and a PAN image with spatial resolutions of 2 m and 0.5 m, 
respectively. The imageries produced by this satellite have a radiometric resolution of 11 bits. The location of the study 
area and Surmene province can be seen in Figure 1. As seen in the figure, the study area is a rural area covered by 
various types of vegetation and a certain amount of urban features. 
 

 
 

Figure 1. Study area 
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5.2 Methodology 
 
Since the input images were atmospherically and radiometrically corrected, no preprocessing correction procedures 
were conducted before fusion. As the very first step, the spatial detail content of the WorldView-2 MS image was 
increased by fusing it with the WorldView-2 PAN image by means of the PCA, WSB, GS, BRV, EHL, HCS, HPF and MCV 
methods. The ERDAS IMAGINE software was used to apply all fusion methods except the GS, which was applied with a 
MATLAB script. All fusion methods were applied with default settings.  

The next step was to apply a PCA transform on the fused images in order to de-correlate their bands. Since the first 
principal component of the transformed images contained the majority of the variance (i.e. spatial detail) of the fused 
bands, the Gabor TFs were extracted on them. The extracted TFs were combined with the original MS bands, which 
were upsampled to the size of the fused bands. When applying the Gabor transform, a scale of 5, a rotation of 8 and a 
window size of 39 were found to be efficient for texture features extraction. These parameter values were obtained by 
trial and error. It is important to note that, it was, of course, possible to extract the Gabor TFs from any PAN image 
without applying image fusion. However, the texture features are not only based on spatial features, but also on colour 
features. This is the reason that the TFs were extracted from the fused images in this study.   

As the final step, the original MS image and the combined images were classified by the SVM method to investigate 
whether or not the followed procedure led to an increase in the classification accuracy, compared to the original MS 
image. The reason for using the SVM classifier in this study is because it has been proven to be one of the best classifiers 
in the literature (Bigdeli et al., 2012; Mathew and Anto, 2017). All images were classified into eight classes (i.e. tiled roof 
building, concrete roof building, road, soil, shadow, tea, hazelnut and tree) using the same signatures. The classification 
accuracy of each classified image was determined with respect to the reference control points that were randomly 
distributed over the study area. The actual class of each control point was identified by examining it on the high-
resolution fused images. The overall classification accuracy of each classified image was calculated based on the number 
of the correctly classified control points. To conduct a robust classification performance evaluation, the number of the 
control points should be adequate to test the whole study area. This study used the multinomial distribution approach 
(Congalton and Green, 1999) to estimate the minimum number of control points required to compute the overall 
classification accuracy. This approach estimates the minimum number of required control points (𝑁) as; 
 

 𝑁 =
𝑆

4𝑏2
 

𝑆 = 𝑎 𝑘⁄  

(2) 

 
where, 𝑘 is the total number of classes, 𝑎 is the confidence interval and 𝑏 is the desired accuracy. This study 

considered the confidence interval as 96%. Since each classified image consisted of 8 classes, 𝑆 was computed as 0.005 
(𝑆 = 0.04 8⁄ ). χ2 distribution table revealed that the probability level of 0.005 corresponds to 7.87 in one degree of 
freedom, hence, 𝑁 was determined as 1229.7 (7.87 (4 × 0.042⁄ )). Considering this, 2045 control points were decided 
to use to compute the classification accuracy of each classified image. 
 

6. Results and Discussion 
 
Figure 2 shows the images produced by the fusion methods used. As seen in the figure, all methods achieved to increase 
the spatial detail content to some degree. On the other hand, the WSB, GS and EHL methods produced images whose 
colour content was similar to that of the original MS image. The PCA, BRV, HCS and HPF methods presented moderate 
spectral consistency and the MCV method caused significant colour distortions, which can be seen in Figure 2.  

The component substitution-based image fusion methods such as the BRV, PCA, GS and MCV are known for their 
success in enhancing the spatial detail quality. The MCV method injects the spatial details through the multiplication of 
the input MS bands by the input PAN band, which ensures a sharper image but increases the magnitudes of the pixel 
vectors after fusion, distorting the colour characteristics. The same is true for the BRV method, which sums all input MS 
bands to simulate an intensity component that is used to normalize the fusion results. The BRV method causes increases 
in the magnitudes of the pixel vectors, but not as much as the MCV does. This is why the BRV method achieved more 
realistic colours than the MCV method (see Figure 2).  

The PCA method applies a PCA transform to the input MS image relying on the hypothesis that the first principal 
component of the transformed data includes the same amount of spatial detail content as the input PAN band. The first 
principal component is then replaced by the input PAN band. This procedure is successful in sharpening the images most 
of the time. But for some input MS images, it may produce blurry images or images with pixel block effects.  
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This happens when the first principal component does not include a reasonable amount of total variance (i.e. spatial 
detail content), which was the case in this study. It should be noted that the total amount of the variance contained in 
the first principal content varies from image to image.  

For some input images, the first principal component contains almost all of the variance information, whereas less 
variance information may be contained in the first principal component of another images. If the input MS and PAN 
images are highly correlated, then the PCA method is expected to present a good performance in both spectral and 
spatial manner.  
 

 

 
 

Figure 2. Classification accuracies of the original MS image combined with the image fusion-based TFs 
 

The GS method is very similar to the PCA method. The difference between these two is that the GS method uses a 
lower resolution intensity image simulated from the input MS bands. The users may obtain the intensity band either by 
averaging the input MS bands or by linear combination of the input MS bands. It is also possible to define another lower 
resolution intensity image acquired from a different sensor. The success of the GS method depends on the statistical 
relationship between the lower resolution intensity image and input PAN band. If they have statistically similar 
characteristics, then the fusion result is expected to be spectrally and spatially more consistent.  
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This study used an intensity component obtained by averaging the input MS bands. Since the input images were 
acquired from the same sensor, the produced intensity component had similar statistics as the input PAN band. Also, 
the histogram matching applied between the intensity component and input PAN band ensured further resemblance 
between the statistical properties of both images. As seen in Figure 2, the GS method did not only preserved the colour 
features, but also injected the spatial details properly. 

The EHL method applies a high-pass filter on the PAN spectrum and a low-pass filter on the intensity spectrum in 
the Fourier domain. This approach enabled the EHL method to better retain the colour features and enhance the spatial 
details of the PAN band. It is a well-known fact that, in most cases, filtering an image in the Fourier domain enables the 
extraction or enhancement of required features with less information loss, compared to the spatial domain. This was 
the case in this study. Hence, the new intensity component obtained by summing the inverse FFTs of both filtered 
spectrums helped transfer the spatial details without deteriorating the colour features of the input MS bands. The 
ERDAS IMAGINE software used to apply the EHL fusion method offers five window function for filtering in the Fourier 
domain; namely Ideal, Bartlett, Butterworth, Gaussian and Hanning. Our observations revealed that the Hanning filter 
achieved the best compromise between the colour and spatial detail quality of the fusion result. Hence this filter was 
used to filter the PAN and intensity spectrums in the Fourier domain. The ERDAS IMAGINE software allows the users to 
produce fused images with extreme colour or spatial detail quality. Since this study aimed to increase the SVM 
classification accuracy with the help of the Gabor texture features extracted from the fused images, both the spectral 
and spatial quality were important to us, therefore, we sought the best balance between the colour and spatial detail 
quality.  

The WSB method applies DWT on the input PAN band until the spatial resolution of the input MS image is achieved. 
Each DWT results in four subbands (one approximation subband containing the colour information and three high 
frequency subbands containing the spatial content in horizontal, vertical and diagonal directions) with two times coarser 
spatial resolution. Since the spatial resolution of the input PAN band is four times better than that of the input MS 
image, two successive DWTs were applied on the input PAN band. These two DWTs caused a spatial detail loss to some 
degree. Another disadvantage of the DWT is that it extracts the spatial detail content in only horizontal, vertical and 
diagonal directions (Yilmaz et al., 2020), which led to a spatial detail loss in other directions in this study. As seen in 
Figure 2, the WSB method produced a blurry image despite its colour preservation success. Actually, this was expected 
because the multiresolution analysis based fusion methods have been proven to keep the colour content and 
deteriorate the spatial features (Gogineni and Chaturvedi, 2018; Serifoglu Yilmaz et al., 2019).  

The HPF technique employs a high-pass filter on the input PAN image to enhance its spatial details. The ERDAS 
IMAGINE software used to implement this technique identifies the size and content of the high-pass filter with respect 
to the spatial resolution ratio (R) between the input images. Since the spatial resolution of the input PAN band was four 
times better than that of the input MS image, the software recommended to use a 9×9 high pass filter whose elements 
were set to -1 except the centre element, which was set to 80. The ERDAS IMAGINE software allows the users to define 
their own high-pass filters. Since, the efficiency of texture features has a strong relationship with the spatial detail 
quality of the image, we employed a 11×11 high pass filter on the input PAN band to further sharpen the fusion result 
at the expense of colour distortion, which can be observed in Figure 2. The HPF image, which is a function of R, is 
weighted relative to the global standard deviation of the MS bands (ERDAS IMAGINE Field Guide, 2013). The weight is 
calculated using the R and standard deviations of the filtered PAN band and input MS bands. This procedure enabled 
the crispness of the fusion result.  

Table 1 shows the classification accuracies of the original MS image combined with the image fusion-based TFs. As 
seen in the table, all methods provided TFs that achieved to increase the classification accuracy.  

 
Table 1. Classification accuracy of the classes 

 

Data Accuracy Accuracy Increase 

MS 77.6% --- 

MS + PCA-extracted TFs 92.1% 18.7% 

MS + WSB-extracted TFs 82.4% 6.2% 

MS + GS-extracted TFs 92.6% 19.3% 

MS + BRV-extracted TFs 89.0% 14.7% 

MS + EHL-extracted TFs 87.8% 13.1% 

MS + HCS-extracted TFs 87.6% 12.9% 

MS + HPF-extracted TFs 89.4% 15.2% 

MS + MCV-extracted TFs 79.4% 2.3% 
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As also seen in Table 1, combining the MS image with the GS- and PCA-based TFs increased the classification accuracy 
from 77.6% to 92.6% and from 77.6% to 92.1%, which led to an increase of 19.3% and 18.7%, respectively. The HPF and 
BRV were found to provide third and fourth best TFs. The TFs obtained from the WSB and MCV methods were found to 
lead to the smallest classification accuracy increase. 

 
7. Conclusions 
 
This study aimed to integrate the Gabor texture information extracted from the fused images into the SVM classifier to 
increase its performance. For this purpose, the PCA, WSB, GS, BRV, EHL, HCS, HPF and MCV fusion techniques were used 
to fuse a WorldView-2 MS image with a WorldView-2 PAN image. The first principal components of the PCA 
transformation of the fused images were used to extract the Gabor texture features. The extracted features were 
combined with the original MS image and the combined data were classified by the SVM algorithm. The results showed 
that all fusion techniques used yielded images that were useful to extract efficient Gabor texture features. The GS and 
PCA methods were found to provide the most efficient Gabor texture features, as they increased the SVM classification 
accuracy by 19.3% and 18.7%, respectively. On the other hand, the WSB and MCV methods yielded the texture features 
that led to the least classification accuracy increase. Future studies will focus on utilizing more advanced image fusion 
approaches to produce more efficient texture features, providing a greater classification performance.  
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