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Abstract − In 2010, Torra introduced the notion of a hesitant fuzzy set, which is
a generalization of Zadeh’s fuzzy set. In the paper, we define two rough operators on
hesitant fuzzy group by means of a normal hesitant fuzzy subgroup, and investigate
some of their properties.
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1. Introduction

In 1965, Zadeh proposed the pioneering work of fuzzy subsets of a set [1], and in 1971, Rosenfeld intro-
duced the notion of fuzzy subgroups of a group [2] which led to the fuzzification of algebraic structures.
In 1982, Pawlak initiated the rough set theory to study incomplete and insufficient information [3].

Dubois, Prade first investigated fuzzy rough set and rough fuzzy set in [4], which attracting many
scholars attentions. From the view of the theory of groups, Davvaz, Kuroki, Biswas, Kuroki, Yaqoob,
Chen etc studied the notions of fuzzy groups, fuzzy subgroups, rough groups, rough subgroups, rough
fuzzy groups, rough fuzzy subgroups in [5–11].

On the other hand, Torra [12] introduced the notion of a hesitant fuzzy set. After that time, Pei,
Thakur et al. investigated some operators on hesitant fuzzy sets [13, 14]. Divakaran, John, et al.
studied hesitant fuzzy rough sets, hesitant fuzzy groups [15–18]. Jun and Ahn applied hesitant fuzzy
sets to BCK/BCI -algebras [19]. For more references,see [20–27].

In [28], Wang and Chen investigated the theory of rough subgroups by means of a normal subgroup,
and obtained some interesting results. In [6], we investigated two rough operators on L-groups. As
a generalization of [6, 9, 28], in the paper, we define the notion of rough hesitant fuzzy group, and
investigate some of their properties.

The above contents are arranged into three parts, Section 3: Hesitant fuzzy group, and Section 4:
Rough hesitant fuzzy group. In Section 2, we give an overview of hesitant fuzzy sets, group, rough
sets, which surveys Preliminaries.

2. Preliminaries

In the section, we introduce some main notions for each area, i.e., hesitant fuzzy sets [12–14], groups,
rough sets [3, 29,30].
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2.1.Hesitant Fuzzy Sets

The seminal paper on fuzzy sets is [1]. As a generalization, the notion of a hesitant fuzzy set was
introduced in [12].

Definition 2.1. Suppose X is a reference set, and P [0, 1] the power set of [0, 1], then a mapping
h : X → P [0, 1] is called a hesitant fuzzy set on X.

For instance: h0 : X → P [0, 1], h1 : X → P [0, 1] are defined as: for all x ∈ X, h0(x) = ∅, h1(x) =
[0, 1], respectively.

We use the symbol HF (X) to denote the set of all hesitant fuzzy sets in X. For h1, h2 ∈ HF (X),
h1 � h2 is defined: if ∀x ∈ X, we have h1(x) ⊆ h2(x), and h1 ≈ h2, if h1 � h2, h2 � h1.

Definition 2.2. Suppose h1, h2 ∈ HF (X), then h1∩̃h2 and h1∪̃h2 are defined as follows

(h1∩̃h2)(x) = h1(x) ∩ h2(x), (h1∪̃h2)(x) = h1(x) ∪ h2(x) for every x ∈ X.

In special, a hesitant fuzzy point xλ is defined by

xλ(y) =

{
λ ⊆ [0, 1] if y = x
∅ if y 6= x

The collection of all hesitant fuzzy points is denoted by M . For more details, see [17,31].

2.2. Rough Sets

Pawlak proposed the rough set theory in [3]. Let (X,R) be an approximation space, and R ⊆ X ×X
be an equivalence relation, then for A ⊆ X, two subsets R(A) and R(A) of X are defined:

R(A) = {x ∈ X | [x]R ⊆ A}, R(A) = {x ∈ X | [x]R ∩A 6= ∅}

where [x]R = {y ∈ X | xRy}.

If R(A) = R(A), A is called a definable set; if R(A) 6= R(A), A is called an undefinable set, and
(R(A), R(A)) is referred to as a pair of rough set. Therefore, R and R are called two rough operators.

Furthermore, as generalizations, they also were defined by an arbitrary binary relation in [30,32],
a mapping in [29], and other methods. Dubois, Prade investigated fuzzy rough set and rough fuzzy
set in [4].

2.3.Group

We assume familiarity with the notion of a group as used in the intuitive set theory. Suppose G is a
multiplicative group with an identity e , and A is a subgroup of G, if ∀x, y ∈ A, we have xy ∈ A.

N is a normal subgroup of G, if ∀x ∈ G, and y ∈ N , we have xyx−1 ∈ N .

3.Hesitant Fuzzy Group

Suppose G is a group with an identity e, the main notions and propositions of the section are from [17].

Definition 3.1. h : G → P [0, 1] is called a hesitant fuzzy subgroup of G, if for every x, y ∈ G, we
have h(x) ∩ h(y) ⊆ h(xy), and h(x) ⊆ h(x−1).

Example 3.2. Suppose G = {e, x, y, z} with the operator as the following table,

· e x y z

e e x y z

x x e z y

y y z e x

z z y x e

Then h1 = {eλ, xµ, yµ, zµ} is a hesitant fuzzy subgroup of G, where λ ⊆ [0, 1], µ ⊆ [0, 1], and µ ⊆ λ.
For example, we choose λ = [0.3, 0.8], µ = [0.4, 0.6], h1 = {e[0.3,0.8], x[0.4,0.6], y[0.4,0.6], z[0.4,0.6]}.
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Let h2(e) = [0, 1], h2(x) = {15 ,
1
4 ,

1
2}, h2(y) = {17 ,

1
4 ,

1
3 ,

1
2}, h2(z) = { 1

10 ,
1
4 ,

1
2}, then h2 is also a

hesitant fuzzy subgroup of G.
In [17], Propositions 3.3, 3.4, 3.5 hold.

Proposition 3.3. h is a hesitant fuzzy subgroup of G if and only if h(x−1y) ⊇ h(x−1) ∩ h(y) for all
x, y ∈ G.

Proposition 3.4. Suppose h is a hesitant fuzzy subgroup of G, then for all x ∈ G
(1) h(e) ⊇ h(x)
(2) h(x) = h(x−1)
(3) h(xn) ⊇ h(x)

Proposition 3.5. Suppose h1, h2 are two hesitant fuzzy subgroups of G, then h1∩̃h2 is also a hesitant
fuzzy subgroup of G.

Definition 3.6. g is called a normal hesitant fuzzy subgroup of G, if for every x, y ∈ G, we have
g(y) ⊆ g(xyx−1).

Cleraly, h3(e) = {1, 13 ,
5
7}, h3(x) = {13 ,

5
7}, h3(y) = ∅, h3(z) = ∅ is a normal hesitant fuzzy subgroup

of G.
In [17], Propositions 3.7, 3.8 hold.

Proposition 3.7. Suppose g is a hesitant fuzzy subgroup of G, then the following conditions are
equivalence.

(1) g is normal.
(2) g(xy) = g(yx), for all x, y ∈ G
(3) g(xyx−1) = g(y), for all x, y ∈ G

Proposition 3.8. Suppose g1, g2 are two normal hesitant fuzzy subgroups of G, then g1∩̃g2 is also a
normal hesitant fuzzy subgroup of G.

In the classical case, for two subsets A,B of G, AB = {z | z = xy, x ∈ A, y ∈ B}, as a generaliza-
tion, we give the following definition.

Definition 3.9. For h1, h2 two hesitant fuzzy subgroups of G, we define h1h2, for every z ∈ G,

(h1h2)(z) =
⋃
z=xy

h1(x) ∩ h2(y)

In special, (xλh)(w) =
⋃
w=st
{xλ}(s) ∩ h(t) =

⋃
w=xt

λ ∩ h(t) = λ ∩ h(x−1w).

xλyµ = zν , where z = xy, ν = λ ∩ µ.

Example 3.10. Following Example 3.2, clearly h4 = {e[0.2,0.8], y[0.5,0.7]} is also a hesitant fuzzy sub-
group of G. Then h1h4 = {e[0.2,0.8], x[0.4,0.7], y[0.4,0.7], z[0.4,0.7]}.

4. Rough Hesitant Fuzzy Group

In the section, we introduce the notion of a rough hesitant fuzzy group defined by a normal hesitant
fuzzy subgroup, and investigate some of their properties.

First, we give the notion of a rough hesitant fuzzy group.

Definition 4.1. Suppose N is a hesitant fuzzy normal subgroup of G, for every hesitant fuzzy subset
h of G, we define N−(h) and N−(h), for every x ∈ G,

N−(h)(x) =
⋃

xλ∈M
{λ |

⋃
z∈G

(xλN)(z) ∩ h(z) 6= ∅}

=
⋃

xλ∈M
{λ |

⋃
z∈G

λ ∩N(x−1z) ∩ h(z) 6= ∅},

N−(h)(x) =
⋃

xλ∈M
{λ |

⋂
z∈G

(xλN)(z) ⊆ h(z)}

=
⋃

xλ∈M
{λ |

⋂
z∈G

λ ∩N(x−1z) ⊆ h(z)}
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where M = {xλ | x ∈ G,λ ⊆ [0, 1]} of all hesitant fuzzy singletons.

Then N−(h), N−(h) are called the upper approximation, the lower approximation of h with respect
to the hesitant fuzzy normal subgroup N , respectively.

Example 4.2. N = h3 be a normal hesitant fuzzy subgroup of G, then for h2, we have
N−(h2)(e) =

⋃
eλ∈M

{λ |
⋃
w∈G

λ ∩N(e−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(x) =
⋃

xλ∈M
{λ |

⋃
w∈G

λ ∩N(x−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(y) =
⋃

yλ∈M
{λ |

⋃
w∈G

λ ∩N(y−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(z) =
⋃

zλ∈M
{λ |

⋃
w∈G

λ ∩N(z−1w) ∩ h2(w) 6= ∅} = [0, 1].

and

N−(h2)(e) =
⋃

eλ∈M
{λ |

⋂
w∈G

λ ∩N(e−1w) ⊆ h2(w)} = [0, 1]− {13 ,
5
7},

N−(h2)(x) =
⋃

xλ∈M
{λ |

⋂
w∈G

λ ∩N(x−1w) ⊆ h2(w)} = [0, 1]− {13 ,
5
7},

N−(h2)(y) =
⋃

yλ∈M
{λ |

⋂
w∈G

λ ∩N(y−1w) ⊆ h2(w)} = [0, 1)− {13 ,
5
7},

N−(h2)(z) =
⋃

zλ∈M
{λ |

⋂
w∈G

λ ∩N(z−1w) ⊆ h2(w)} = [0, 1)− {13 ,
5
7}.

Where A−B denotes the difference set.

Next, we discuss the following properties.

Proposition 4.3. Suppose N is a normal hesitant fuzzy subgroup of G, and h ∈ HF (G), we have

(1) N−(h) � h

(2) N−(h) � Nh

(3) N−(h1) ≈ h1

(4) N−(h0) ≈ h0

Proof. (1) For every w ∈ G, we obtain h(w) ∩ h(w−1w) ⊆ h(w); but for z ∈ G, z 6= w, h(w) ∩
g(w−1z) ⊆ h(z) may be not holds.

N−(h)(w) =
⋃

xλ∈M
{λ |

⋂
z∈G

(xλN)(z) ⊆ h(z)}

=
⋃

xλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ⊆ h(z)}

⊆
⋃
{h(w) | h(w) ∩N(w−1w) ⊆ h(w)}

= h(w)

By the above proof, we have N−(h) � h.

(2) For every w ∈ G, if (Nh)(w) 6= ∅, we have

N−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ | λ ∩ [

⋃
z∈G

N(w−1z) ∩ h(z)] 6= ∅}

=
⋃

wλ∈M
{λ | λ ∩ (Nh)(zw−1z) 6= ∅}

⊇
⋃
{(Nh)(w) | (Nh(w) ∩ (Nh)(w) 6= ∅}

(Note: λ = (Nh)(w), z = w)

= (Nh)(w)

(3 )and (4) are clearly.
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Proposition 4.4. Suppose h1, h2 ∈ HF (G), and h1 � h2, N is a normal hesitant fuzzy subgroup,
then

(1) N−(h1) � N−(h2)
(2) N−(h1) � N−(h2)

Proof. By Definition 4.1

Proposition 4.5. Suppose N is a normal hesitant fuzzy subgroup of G, and h1, h2 ∈ HF (G), we
have

(1) N−(h1∪̃h2) ≈ N−(h1)∪̃N−(h2)
(2) N−(h1∩̃h2) � N−(h1)∩̃N−(h2)
(3) N−(h1∪̃h2) � N−(h1)∪̃N−(h2)
(4) N−(h1∩̃h2) ≈ N−(h1)∩̃N−(h2)

Proof. By Definition 4.1.

Proposition 4.6. Suppose N is a normal hesitant fuzzy subgroup of G, and h is a (normal) hesitant
fuzzy subgroup of G, we have N−(h) is a (normal) hesitant fuzzy subgroup of G.

Proof. For s, t ∈ G, we obtain

N−(h)(s) ∩N−(h)(t) =
⋃

sλ∈M
{λ |

⋃
x∈G

λ ∩N(s−1x) ∩ h(x) 6= ∅}

∩
⋃

tµ∈M
{µ |

⋃
y∈G

µ ∩N(t−1y) ∩ h(y) 6= ∅}

=
⋃

sλ∈M

⋃
tµ∈M

[{λ |
⋃
x∈G

λ ∩N(s−1x) ∩ h(x) 6= ∅}

∩{µ |
⋃
y∈G

µ ∩N(t−1y) ∩ h(y) 6= ∅}]

=
⋃

sλ∈M

⋃
tµ∈M

{λ ∩ µ |
⋃
x∈G

⋃
y∈G

λ ∩ µ ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z=xy∈G

ν ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

⊆
⋃

wν∈M
{ν |

⋃
z=xy∈G

ν ∩N(w−1z) ∩ h(z) 6= ∅}

= N−(h)(w) (Note w = st, z = xy)

So, N−(h) is a hesitant fuzzy subgroup of G.

Furthermore, if h is a normal hesitant fuzzy subgroup of G, then for s, t ∈ G, let w = s−1ts, we
have

N−(h)(s−1ts) = N−(h)(w)

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(w−1z) ∩ h(w) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N((s−1ts)−1z) ∩ h(s−1ts) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(st−1s−1z) ∩ h(t) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(st−1zs−1) ∩ h(t) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(t−1z) ∩ h(t) 6= ∅}

=
⋃

tλ∈M
{λ |

⋃
z∈G

λ ∩N(t−1z) ∩ h(t) 6= ∅}

= N−(h)(t)

By the above proof, we obtain N−(h) is a normal hesitant fuzzy subgroup of G.
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In general, N−(h) is not a hesitant fuzzy subgroup of G. But if N−(h) is a hesitant fuzzy subgroup
of G, and h is a normal hesitant fuzzy subgroup of G, in the similar method, we can prove N−(h) is
also a normal hesitant fuzzy subgroup of G.

Proposition 4.7. Suppose N , H are two normal hesitant fuzzy subgroups of G, the corresponding
rough operators N−, N−;H−, H− respectively, and h, k ∈ HF (G), we have

(1) N−(h)N−(k) � N−(hk)
(2) N−(h)N−(k) � N−(hk)
(3) (N ∩̃H)−(h) � N−(h)∩̃H−(h)
(4) (N ∩̃H)−(h) � N−(h)∩̃H−(h)

where (N ∩̃H)−, (N ∩̃H)− are two rough operators induced by the normal hesitant fuzzy subgroup
N ∩̃H.

Proof. (1) For every w ∈ G,

N−(hk)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ (hk)(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ [
⋃
z=xy

h(x) ∩ k(y)] 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy

λ ∩N(w−1z) ∩ h(x) ∩ k(y) 6= ∅}

(N−(h)N−(k))(w) =
⋃
w=st

N−(h)(s) ∩N−(k)(t)

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}

∩
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩N(t−1y) ∩ k(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}

∩{ν |
⋃
y∈G

ν ∩N(t−1y) ∩ k(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

{µ ∩ ν |
⋃
x∈G

⋃
y∈G

µ ∩N(s−1x) ∩ h(x) ∩ ν ∩N(t−1y) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ k(y) 6= ∅}

(Note wλ = sµtν)

⊆
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1xt−1y) ∩ h(x) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1t−1xy) ∩ h(x) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(w−1z) ∩ h(x) ∩ k(y) 6= ∅}

= N−(hk)(w)

(2) For every w ∈ G,

N−(hk)(w) =
⋃

wλ∈M
{λ |

⋂
z∈G

(wλN)(z) ⊆ (hk)(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

(wλN)(z) ⊆
⋃
z=xy

h(x) ∩ k(y)}

=
⋃
z=xy

⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
z∈G

(sµN)(z) ⊆ k(x)}]

∩[
⋃

tν∈M
{ν |

⋂
z∈G

(tνN)(z) ⊆ k(y)}] (Note wλ = sµtν)

=
⋃
z=xy

⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
z∈G

µ ∩N(s−1z) ⊆ h(x)}]
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∩[
⋃

tν∈M
{ν |

⋂
z∈G

ν ∩N(t−1z) ⊆ k(y)}]

⊇
⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[
⋃

tν∈M
{ν |

⋂
y∈G

ν ∩N(t−1y) ⊆ k(y)}]

=
⋃
w=st

N−(h)(s) ∩N−(k)(t)

= (N−(h)N−(k))(w)

Which implies that N−(h)N−(k) � N−(hk).

(3) For every w ∈ G, we have

(N ∩̃H)−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

(wλ(N ∩̃H))(z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (N ∩̃H)(w−1z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩H(w−1z) ∩ h(z) 6= ∅}

⊇ [
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ h(z) 6= ∅}]

∩[
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩H(w−1z) ∩ h(z) 6= ∅}]

= N−(h)(w) ∩H−(h)(w)

= (N−(h)∩̃H−(h))(w)

(4) For every w ∈ G, we have

(N ∩H)−(h)(w) =
⋃

wλ∈M
{λ |

⋂
z∈G

(wλ(N ∩̃H))(z) ⊆ h(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩ (N ∩̃H)(w−1z) ⊆ h(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ∩H(w−1z) ⊆ h(z)}

⊆
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ⊆ h(z)}

∩
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩H(w−1z) ⊆ h(z)}

= N−(h)(w) ∩H−(h)(w)

= (N−(h)∩̃H−(h))(w)

Proposition 4.8. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every hesitant
fuzzy subgroup h of G, we have N−(h)H−(h) � (NH)−(h).

Proof. For every w ∈ G, we have

(NH)−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

(wλ(NH))(z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

(N−(h)H−(h))(w) =
⋃
w=st

N−(h)(s) ∧H−(h)(t)

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

(sµN)(x) ∩ h(x) 6= ∅}]

∩[
⋃

tν∈M
{ν |

⋃
y∈G

(tνH)(y) ∩ h(y) 6= ∅}]

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]
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∩[
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

{µ ∧ ν |
⋃
x∈G

⋃
y∈G

µ ∩ ν ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
x∈G

⋃
y∈G

λ ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ∩ h(x) ∩ h(y) 6= ∅} (w = st)

⊆
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

= (NH)−(h)(w)

Proposition 4.9. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every hesitant
fuzzy subgroup h of G, we have (NH)−(h) � (N−(h))H∩̃(H−(h))N .

Proof. For every w ∈ G, we have

((N−(h))H∩̃(H−(h))N)(w) = ((N−(h))H)(w) ∩ ((H−(h))N)(w)

= [
⋃
w=st

(N−(h)(s) ∩H(t)] ∩ [
⋃
w=st

H−(h)(t) ∩N(s)]

= [
⋃
w=st

⋃
sµ∈M

{µ |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅} ∩H(t)]

∩[
⋃
w=st

⋃
tν∈M

{ν |
⋃
y∈G

ν ∩H(t−1y) ∩ ν(y) 6= ∅} ∩N(s)]

= [
⋃
w=st

⋃
sµ∈M

{µ ∩H(t) |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]

∩[
⋃
w=st

⋃
tν∈M

{ν ∩N(s) |
⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ ∩H(t) |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]

∩[{ν ∩N(s) |
⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

∨
tν∈M

{µ ∩H(t) ∩ ν ∩N(s) |

⋃
x∈G

⋃
y∈G

µ ∩N(s−1x) ∩ h(x) ∩ ν ∩H(t−1y) ∩ h(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ ∩H(t) ∩N(s) |
⋃
z=xy

|

λ ∩N(s−1x) ∩ h(x) ∩H(t−1y) ∩ h(y) 6= ∅}

⊆
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1x) ∩H(t−1y) ∩ h(z) 6= ∅}

(h(x) ∧ h(y) ⊆ h(z))

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

= (NH)−(h)(w)

Proposition 4.10. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every
hesitant fuzzy subgroup h of G, we have N−(h)H−(h) � (NH)−(h).

Proof. For every w ∈ G,

(N−(h)H−(h))(w) =
⋃
w=st

N−(h)(s) ∩H−(h)(t)
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=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩H(t−1y) ⊆ h(y)}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ |
⋃
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[{ν |
⋃
y∈G

ν ∩H(t−1y) ⊆ h(y)}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ ∩ ν |
⋃
x∈G

⋃
y∈G

µ ∩ ν ∩N(s−1x) ∩H(t−1y) ⊆ h(x) ∩ h(y)}]

=
⋃
w=st

⋃
wλ∈M

[{λ |
⋃

z=xy∈G
λ ∩N(s−1x) ∩H(t−1y) ⊆ h(x) ∩ h(y)}]

=
⋃
w=st

⋃
wλ∈M

[{λ |
⋃

z=xy∈G
λ ∩ (NH)(w−1z) ⊆ h(x) ∩ h(y)}]

⊆
⋃

wλ∈M
[{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ⊆ h(z)}]

= (NH)−(h)(w)

5. Conclusion

In [31], the set of all hesitant fuzzy sets forms a Boolean algebra. As a generalization, we defined two
rough operators on a hesitant fuzzy group, and discussed some of their properties.
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