A New Subclass of Meromorphic Starlike Functions Defined by Certain Integral Operator

Bolineni Venkateswarlu ${ }^{1}$, Pinnintti Thirupathi Reddy ${ }^{2}$, Rompilli Madhuri Shilpa ${ }^{3}$

Article History
Received: 04.05.2019
Accepted: 24.02.2020
Published: 23.03.2020
Original Article

Abstract

The aim of this paper is to introduce a new class $\sum_{p}^{*}(\alpha, \beta, \sigma)$ of meromorphically starlike functions defined by certain integral operator in the unit disc $E=\{z|0<|z|<1\}$ and investigate coefficients, distortion properties and radius of convexity for the class. Furthermore it is shown that the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$ is closed under convex linear combinations and integral transforms.

Keywords - Meromorphic, distortion, radius of convexity, integral transforms

1. Introduction

Let Σ be denote the class of all functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are regular in $E=\{z: 0<|z|<1\}$, with a simple pole at the origin. Let $\sum_{s}, \sum^{*}(\alpha)$ and $\sum_{k}(\alpha),(0 \leq \alpha<1)$ denote the subclasses of \sum that are univalent, moromorphically starlike of order α and meromorphically convex of order α respectively. Analytically $f(z)$ of the form (1) is in $\sum^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha,(z \in E) \tag{2}
\end{equation*}
$$

Similarly, $f \in \sum_{k}(\alpha)$ if and only if $f(z)$ is of the form (1) and satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha,(z \in E) \tag{3}
\end{equation*}
$$

It being understood that if $\alpha=1$ then $f(z)=\frac{1}{z}$ is the only function which is $\sum^{*}(1)$ and $\sum_{k}(1)$.

[^0]The classes $\sum^{*}(\alpha)$ and $\sum_{k}(\alpha)$ have been extensively studied by Pommerenke [1], Clunie [2], Royster [3] and others. Recently the integral operator of $f(z)$ in \sum_{s} for $\sigma>0$ is denoted by I^{σ} and defined as following

$$
\begin{equation*}
I^{\sigma} f(z)=\frac{1}{z^{2} \Gamma(\sigma)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} t f(t) d t \tag{4}
\end{equation*}
$$

That is defined by Jung et al. [4]. It is easy to verify that if $f(z)$ is of the form (1), then

$$
\begin{equation*}
I^{\sigma} f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{n+2}\right)^{\sigma} a_{n} z^{n} \tag{5}
\end{equation*}
$$

The aim of the present paper is to introduce the class of meromorphically starlike functions which we denote by $\sum^{*}(\alpha, \beta, \sigma)$ for some $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1)$ and $\sigma>0$. We then consider the class $\sum_{p}^{*}(\alpha, \beta, \sigma)=\sum_{p} \cap \sum^{*}(\alpha, \beta, \sigma)$ and extend some of the results of Juneja et al. [5] to this class. We obtain coefficient estimates, distortion properties and radius of convexity for the class. Furthermore it is shown that the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$ is closed under convex linear combinations and integral transforms.
Definition 1.1. Let the function $f(z)$ be defined by (1). Then $f(z) \in \sum^{*}(\alpha, \beta, \sigma)$ if and only if

$$
\left|\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}+1\right|<\beta\left|\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}+2 \alpha-1\right|,
$$

for some $\alpha(0 \leq \alpha<1), \beta(0<\beta \leq 1), \sigma>0$ and for all $z \in E$.

2. Coefficient estimates

In this section we obtain a sufficient condition for a function to be in $\sum^{*}(\alpha, \beta, \sigma)$.
Theorem 2.1. Let $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ be regular in E. If

$$
\begin{equation*}
\sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right| \leq 2 \beta(1-\alpha) \tag{6}
\end{equation*}
$$

for some $0 \leq \alpha<1,0<\beta \leq 1$ and $\sigma>0$ then $f(z) \in \sum^{*}(\alpha, \beta, \sigma)$.
Proof. Suppose (6) holds for all admissible values of α and β. Consider the expression

$$
\begin{equation*}
H\left(f, f^{\prime}\right)=\left|z\left[I^{\sigma} f(z)\right]^{\prime}+\left[I^{\sigma} f(z)\right]\right|-\beta\left|z\left[I^{\sigma} f(z)\right]^{\prime}+(2 \alpha-1)\left[I^{\sigma} f(z)\right]\right| \tag{7}
\end{equation*}
$$

The we have

$$
\begin{aligned}
H\left(f, f^{\prime}\right) & \leq\left|\sum_{n=1}^{\infty}(n+1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}\right|-\beta\left|2(\alpha-1) \frac{1}{z}+\sum_{n=1}^{\infty}(n+2 \alpha-1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}\right| \\
\Rightarrow r H\left(f, f^{\prime}\right) & =\sum_{n=1}^{\infty}(n+1)\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right| r^{n+1}-\beta\left\{2(\alpha-1)-\sum_{n=1}^{\infty}(n+2 \alpha-1)\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right| r^{n+1}\right\} \\
& =\sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right| r^{n+1}-2 \beta(1-\alpha) .
\end{aligned}
$$

Since the above inequality holds for all $r, 0<r<1$, letting $r \rightarrow 1$, we have

$$
\begin{aligned}
H\left(f, f^{\prime}\right) & \leq \sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right|-2 \beta(1-\alpha) \\
& \leq 0, \text { by }(6) .
\end{aligned}
$$

Hence it follows that $\left|\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}+1\right|<\beta\left|\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}+2 \alpha-1\right|$.
So that $f(z) \in \sum^{*}(\alpha, \beta, \sigma)$. Hence the theorem.
Theorem 2.2. Let the function $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ be regular in E. Then $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$ if and only if (6) is satisfied.

Proof. In view of Theorem 2.1, it is sufficient to show that only if part.
Let us assume that $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ is in $\sum_{p}^{*}(\alpha, \beta, \sigma)$.
Then $\left|\frac{\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}+1}{\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I \sigma} f(z)}+2 \alpha-1\right|=\left|\frac{\sum_{n=1}^{\infty}(n+1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}}{2(1-\alpha) \frac{1}{z}-\sum_{n=1}^{\infty}(n+2 \alpha-1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}}\right|<\beta$, for all $z \in E$.
Using the fact that $\operatorname{Re}(z) \leq|z|$, if follows that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty}(n+1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}}{2(1-\alpha) \frac{1}{z}-\sum_{n=1}^{\infty}(n+2 \alpha-1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} z^{n}}\right\}<\beta, z \in E \tag{8}
\end{equation*}
$$

Now choose the values of z on the real axis so that $\frac{z\left[I^{\sigma} f(z)\right]^{\prime}}{I^{\sigma} f(z)}$ is real.
Upon clearing the denominator in (8) and letting $z \rightarrow 1$ through positive values,
we obtain $\sum_{n=1}^{\infty}(n+1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n} \leq \beta\left\{2(1-\alpha)-\sum_{n=1}^{\infty}(n+2 \alpha-1)\left[\frac{1}{n+2}\right]^{\sigma} a_{n}\right\}$

$$
\Rightarrow \sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1]\left[\frac{1}{n+2}\right]^{\sigma}\left|a_{n}\right| \leq 2 \beta(1-\alpha)
$$

Hence the theorem.
Corollary 2.3. If $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ is in $\sum_{p}^{*}(\alpha, \beta, \sigma)$ then

$$
\begin{equation*}
a_{n} \leq \frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1}, n=1,2, \cdots \tag{9}
\end{equation*}
$$

with equality for each n, for function of the form

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n}, n=1,2, \cdots \tag{10}
\end{equation*}
$$

If $\beta=1$ in the above theorem, we get the following result of Atshan et al. [6].
Corollary 2.4. If $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$ then

$$
a_{n} \leq \frac{(1-\alpha)(n+2)^{\sigma}}{n+\alpha}, n=1,2, \cdots
$$

The result is sharp for the functions $f_{n}(z)$ is given by

$$
f_{n}(z)=\frac{1}{z}+\frac{(1-\alpha)(n+2)^{\sigma}}{n+\alpha} z^{n}, n=1,2, \cdots
$$

3. Distortion properties and radius of convexity estimates

In this section we prove the Distortion Theorem and radius of convexity estimates for the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$.

Theorem 3.1. Let $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$. Then for $0<|z|=r<1$,

$$
\begin{equation*}
\frac{1}{r}-\frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta} r \leq|f(z)| \leq \frac{1}{r}+\frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta} r \tag{11}
\end{equation*}
$$

with equality for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta} z, \text { at } z=r, i r \tag{12}
\end{equation*}
$$

Proof. Suppose $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$. In view of Theorem 2.2, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \leq \frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta} \tag{13}
\end{equation*}
$$

Thus for $0<|z|=r<1$,

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}\right| \\
& \leq \frac{1}{|z|}+\sum_{n=1}^{\infty} a_{n}|z|^{n} \\
& \leq \frac{1}{r}+r \sum_{n=1}^{\infty} a_{n} \\
& \leq \frac{1}{r}+\frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta}, \quad \text { by }(13)
\end{aligned}
$$

This gives the right hand side of (11). Also,

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z}-\sum_{n=1}^{\infty} a_{n} z^{n}\right| \\
& \geq \frac{1}{|z|}-\sum_{n=1}^{\infty} a_{n}|z|^{n} \\
& \geq \frac{1}{r}-r \sum_{n=1}^{\infty} a_{n} \\
& \geq \frac{1}{r}-\frac{3^{\sigma} \beta(1-\alpha)}{1+\alpha \beta}
\end{aligned}
$$

which gives the left hand side of (11) .
Theorem 3.2. Let the function $f(z)$ be in $\sum_{p}^{*}(\alpha, \beta, \sigma)$. Then for $f(z)$ is meromorphically convex of order $\delta(0 \leq \delta<1)$ in $|z|<r=r(\alpha, \beta, \sigma, \delta)$, where

$$
\begin{equation*}
r(\alpha, \beta, \sigma, \delta)=\inf _{n}\left\{\frac{(1-\delta)[(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha) n(n+2-\delta)(n+2)^{\sigma}}\right\}^{\frac{1}{n+1}}, \quad n=1,2, \cdots \tag{14}
\end{equation*}
$$

The bound for $|z|$ is sharp for each n with the extremal function being of the form (10).
Proof. Let $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$. Then by Theorem 2.2

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}} a_{n} \leq 1 \tag{15}
\end{equation*}
$$

In view of (3), it is sufficient to show that

$$
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta, \text { for }|z|<r(\alpha, \beta, \sigma, \delta)
$$

or equivalently to show that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right| \leq 1-\delta, \quad \text { for }|z|<r(\alpha, \beta, \sigma, \delta) \tag{16}
\end{equation*}
$$

Substituting the series expansions for $f^{\prime}(z)$ and $\left(z f^{\prime}(z)\right)^{\prime}$ in the left hand side of (16) then we get

$$
\left|\frac{\sum_{n=1}^{\infty} n(n+1) a_{n} z^{n-1}}{-\frac{1}{z^{2}}+\sum_{n=1}^{\infty} n a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=1}^{\infty} n(n+1) a_{n}|z|^{n+1}}{1-\sum_{n=1}^{\infty} n a_{n}|z|^{n+1}}
$$

This will be bounded by $(1-\delta)$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n(n+2-\delta)}{1-\delta} a_{n}|z|^{n+1} \leq 1 \tag{17}
\end{equation*}
$$

In view of (15), it follows that (17) is true if

$$
\begin{align*}
& \frac{n(n+2-\delta)}{1-\delta}|z|^{n+1} \leq \frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}}, n=1,2, \cdots \\
\Rightarrow & |z| \leq\left\{\frac{(1-\delta)[(1+\beta) n+(2 \alpha-1) \beta+1]}{2 \beta(1-\alpha) n(n+2-\delta)(n+2)^{\sigma}}\right\}^{\frac{1}{n+1}}, n=1,2, \cdots \tag{18}
\end{align*}
$$

Setting $|z|=r(\alpha, \beta, \sigma, \delta)$ in (18), the result follows.
The result is sharp, the extremal function being of the form

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n}, n=1,2, \cdots
$$

4. Convex linear combinations

In this section we prove that the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$ is closed under convex linear combinations.
Theorem 4.1. Let $f_{0}(z)=\frac{1}{z}$ and $f_{n}(z)=\frac{1}{z}++\frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n}, n=1,2, \cdots$. Then $f(z) \in$ $\sum_{p}^{*}(\alpha, \beta, \sigma)$ if and only if it can be expressed in the form $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$, where $\lambda_{n} \geq 0$ and $\sum_{n=0}^{\infty} \lambda_{n}=1$.

Proof. Let $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$, where $\lambda_{n} \geq 0$ and $\sum_{n=0}^{\infty} \lambda_{n}=1$. Then

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)=\lambda_{0} f_{0}(z)+\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \\
& =\left[1-\sum_{n=1}^{\infty} \lambda_{n}\right] f_{0}(z)+\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \\
& =\left[1-\sum_{n=1}^{\infty} \lambda_{n}\right] \frac{1}{z}+\sum_{n=1}^{\infty} \lambda_{n}\left[\frac{1}{z}+\frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n}\right] \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \lambda_{n} \frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n} \\
\text { Since } & \sum_{n=1}^{\infty}\left\{\frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}}\right\} \lambda_{n} \frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1} \\
& =\sum_{n=1}^{\infty} \lambda_{n}=1-\lambda_{0} \leq 1
\end{aligned}
$$

Therefore $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$.
Conversely suppose that $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$.
Since $a_{n} \leq \frac{2 \beta(1-\alpha)(n+2)^{\sigma}}{(1+\beta) n+(2 \alpha-1) \beta+1}, n=1,2, \cdots$.
Setting $\lambda_{n}=\frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}} a_{n}, n=1,2, \cdots$ and $\lambda_{0}=1-\sum_{n=0}^{\infty} \lambda_{n}$.
It follows that $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$. This completes the proof of the theorem.
Theorem 4.2. The class $\sum_{p}^{*}(\alpha, \beta, \sigma)$ is closed under convex linear combination.
Proof. Let the function $F_{k}(z)$ be given by
$F_{k}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} f_{n, k} z^{n}, k=1,2 \cdots, m$ be in the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$.
Then it is enough to show that the function

$$
H(z)=\lambda F_{1}(z)+(1-\lambda) F_{2}(z),(0 \leq \lambda \leq 1)
$$

tt is also in the class $\sum_{p}^{*}(\alpha, \beta, \sigma)$. Since for $0 \leq \lambda \leq 1$,

$$
H(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left[\lambda f_{n, 1}+(1-\lambda) f_{n, 2}\right] z^{n}
$$

We observe that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1] \frac{1}{(n+2)^{\sigma}}\left[\lambda f_{n, 1}+(1-\lambda) f_{n, 2}\right] \\
& =\lambda \sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1] \frac{1}{(n+2)^{\sigma}} f_{n, 1} \\
& \quad \quad+(1-\lambda) \sum_{n=1}^{\infty}[(1+\beta) n+(2 \alpha-1) \beta+1] \frac{1}{(n+2)^{\sigma}} f_{n, 2} \\
& \leq 2 \beta \lambda(1-\alpha)+(1-\lambda) 2 \beta(1-\alpha)=2 \beta(1-\alpha)
\end{aligned}
$$

By Theorem 2.2, we have $H(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$.

5. Integral transforms

In this section, we consider integral transforms of functions in $\sum_{p}^{*}(\alpha, \beta, \sigma)$.
Theorem 5.1. If $f(z)$ is in $\sum_{p}^{*}(\alpha, \beta, \sigma)$ then the integral transforms

$$
\begin{equation*}
F_{c}(z)=c \int_{0}^{1} u^{c} f(u z) d u, 0<c<\infty \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\text { are in } \sum_{p}^{*}(\delta), \text { where } \delta=\delta(\alpha, \beta, \sigma, c)=\frac{(1+\alpha \beta)(c+2)-3^{\sigma} \beta c(1-\alpha)}{(1+\alpha \beta)(c+2)+3^{\sigma} \beta c(1-\alpha)} \tag{20}
\end{equation*}
$$

The result is best possible for the function $f(z)=\frac{1}{z}+\frac{3^{\sigma} \beta(1-\alpha)}{(1+\alpha \beta)} z$.
Proof. Suppose $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$. We have

$$
F_{c}(z)=c \int_{0}^{1} u^{c} f(u z) d u=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{c a_{n}}{n+c+1} z^{n}
$$

It is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n+\delta)}{(1-\delta)} \frac{c a_{n}}{(n+c+1)} \leq 1 \tag{21}
\end{equation*}
$$

Since $f(z) \in \sum_{p}^{*}(\alpha, \beta, \sigma)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}} a_{n} \leq 1 \tag{22}
\end{equation*}
$$

Thus (21) will be satisfied if $\frac{(n+\delta)}{(1-\delta)} \frac{c}{(n+c+1)} \leq \frac{(1+\beta) n+(2 \alpha-1) \beta+1}{2 \beta(1-\alpha)(n+2)^{\sigma}}$, for each n

$$
\begin{equation*}
\Rightarrow \delta \leq \frac{[(1+\beta) n+(2 \alpha-1) \beta+1][n+c+1]-2 \beta(1-\alpha) n c(n+2)^{\sigma}}{[(1+\beta) n+(2 \alpha-1) \beta+1][n+c+1]+2 \beta(1-\alpha) n c(n+2)^{\sigma}} \tag{23}
\end{equation*}
$$

Since the right hand side of (23) is an increasing function of n, putting $n=1$ in (23), we get

$$
\delta \leq \frac{(1+\alpha \beta)(c+2)-3^{\sigma} \beta(1-\alpha) c}{(1+\alpha \beta)(c+2)+3^{\sigma} \beta(1-\alpha) c}
$$

Hence the theorem.

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

[1] Ch. Pommarenke, On Meromorphic Starlike Functions, Pacific Journal of Mathematics 13 (1963) 221-235.
[2] J. Clunie, On Meromorphic Schlicht Functions, Journal of the London Mathematical Society 34 (1959) 215-216.
[3] W. C. Royster, Meromorphic Starlike Multivalent Functions, Transactions of the American Mathematical Society 107 (1963) 300-308.
[4] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy Space of Analytic Functions Associated with Certain One-Parameter Families of Integral Operators, Journal of Mathematical Analysis and Applications 176 (1993) 138-147.
[5] O. P. Juneja, T. R. Reddy, Meromorphic Starlike Univalent Functions with Positive Coefficients, Annales Universitatis Mariae Curie-Sklodowska, sectio A 39 (1985) 65-76.
[6] W. G. Atshan, S. R. Kulakarni, Meromorphic p-Valent Functions with Positive Coefficients Defined by Convolution and Integral Operator, The Journal of the Indian Academy of Mathematics 29 (2007) 409-423.

[^0]: ${ }^{1}$ bvlmaths@gmail.com (Corresponding Author); ${ }^{2}$ reddypt2@gmail.com; ${ }^{3}$ madhuri.4073@gmail.com
 ${ }^{1,3}$ Department of Mathematics, GSS, GITAM University, Doddaballapur- 562 163, Bengaluru Rural, India
 ${ }^{2}$ Department of Mathematics, Kakatiya Univeristy, Warangal- 506 009, Telangana, India

