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ABSTRACT

In this paper, we prove that any harmonic map from a compact orientable Riemannian manifold
without boundary (or from complete Riemannian manifold) (M, g) to Riemannian manifold (N,h)
is necessarily constant, with (N,h) admitting a torse-forming vector field satisfying some condition.
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1. Introduction

Let (M, g) and (N,h) be two Riemannian manifolds, the energy functional of a map ϕ ∈ C∞(M,N) is defined
by

E(ϕ) =

∫
M

e(ϕ)vg, (1.1)

where e(ϕ) = 1
2 |dϕ|

2 is the energy density of ϕ, |dϕ| is the Hilbert-Schmidt norm of the differential dϕ and vg

is the volume element on (M, g). A map ϕ ∈ C∞(M,N) is called harmonic if it is a critical point of the energy
functional, that is, if it is a solution of the Euler Lagrange equation associated to (1.1)

τ(ϕ) = trace∇dϕ = ∇ϕeidϕ(ei)− dϕ(∇Mei ei) = 0, (1.2)

where {ei} is an orthonormal frame on (M, g), ∇M is the Levi-Civita connection of (M, g), and ∇ϕ denote the
pull-back connection on ϕ−1TN . Harmonic maps are solutions of a second order nonlinear elliptic system and
they play a very important rôle in many branches of mathematics and physics where they may serve as a
model for liquid crystal. One can refer to [8]-[10] for background on harmonic maps.

Example 1.1. (Hopf map [15]) The restriction of the map

F : R2 ×R2 −→ R3,

(x, y) 7−→ (2xy, |x|2 − |y|2)

induces a harmonic map ϕ : S3 −→ S2 with eigenvalue λ = 8 (called Hopf construction).

Example 1.2. Let T2 = S1 × S1 the Torus. We note that the circle S1 is compact orientable manifold of
dimension 1, and without boundary because ∂S1 = ∂(∂D2) = ∅ where D2 is the unit disk in R2. So that
the product manifold S1 × S1 is also compact, without boundary, orientable manifold of dimension 2. In
[16], the authors proved that the non-constant map ϕ : (T2, dx21 + dx22) −→ (S2, dy21 + sin2 y1dy

2
2), defined by

(x1, x2) 7−→ (π/2,mx1 + nx2 + l) is harmonic, where m,n, l ∈ R.

We shall consider a torse-forming vector field ξ, that is, a vector field which is always torse-forming along
any curve traced in a Riemennian manifold (M, g) (see [14]-[20]). In this case, we have

∇MX ξ = fX + ω(X)ξ, ∀X ∈ Γ(TM), (1.3)
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for some smooth function f and 1-form ω on M , where ∇M denotes the Levi-Civita connection of (M, g).
The 1-form ω is called the generating form and the function f is called the conformal scalar. A torse-forming
vector field ξ is called proper torse-forming if the 1-form ω is nowhere zero on a dense open subset of M .
A torqued vector field is a torse-forming vector field ξ satisfying (1.3) with ω(ξ) = 0 (see [5],[6]). In the case
that ω is identically zero, ξ is called a concircular vector field. In particular, if ω = 0 and f = 1, then ξ is called a
concurrent vector field. For the existence of torse-forming vector field on Riemannian manifold see for example
[7] and [12].

Definition 1.1. A special torse-forming vector field or briefly a STF-vector field on a Riemennian manifold
(M, g) is a torse-forming vector field ξ satisfying the equation (1.3) with generating form ω = µξ[, for some
smooth function µ on M , that is

∇MX ξ = fX + µg(X, ξ)ξ, ∀X ∈ Γ(TM). (1.4)

Example 1.3. In Euclidian space Rn, we set ξ = fP , where f(x) = 1
2 |x|

2 + ε, for some constant ε > 0, and P
is the position vector field on Rn, then ξ is a STF-vector field with conformal scalar f and generating form
ω = (1/f)df .

Example 1.4. In Kenmotsu manifolds (see [11]) there exists a unit vector field ξ satisfying the condition
∇MX ξ = X − η(X)ξ, where η(X) = g(X, ξ), for all X ∈ Γ(TM). So ξ is a STF-vector field with f = 1 and µ = −1.
As we can assume that the vector field ξ is a unit one, (1.3) is written in the form

∇MX ξ = f
(
X − η(X)ξ

)
, ∀X ∈ Γ(TM), (1.5)

where η(X) = g(X, ξ). Thus, ξ is a STF-vector field with µ = −f . When the conformal scalar f takes especially
the value −1. Then the manifold in consideration becomes an SP-Sasakian manifold (see [1]).

Remark 1.1.

• A torse-forming vector field ξ ∈ Γ(TM) of conformal scalar f 6= 0 (at any point on M ) and generating
form ω, is parallel if ∇MX ξ = 0, for all X ∈ Γ(TM), that is fX + ω(X)ξ = 0. So that X = −ω(X)

f ξ, thus
Γ(TM) = C∞(M)ξ. Conversely, let ξ ∈ Γ(TM) = C∞(M)ξ, and g be a Riemannian metric on M such that
g(ξ, ξ) = 1, then ∇Xξ = 0 = X − g(X, ξ)ξ.
• A special torse-forming vector field ξ with conformal scalar f and generating form ω = µξ[ on

Riemennian manifold (M, g) (dimM ≥ 2) is conformal vector field (that is g(∇MX ξ, Y ) + g(∇MY ξ,X) =

2f̃g(X,Y ), ∀X,Y ∈ Γ(TM), for some smooth function f̃ on M ) if and only if µ = 0. Indeed; by the
definition of STF-vector field, we have

g(∇MX ξ, Y ) + g(∇MY ξ,X) = 2fg(X,Y ) + 2µg(X, ξ)g(Y, ξ), (1.6)

for all X,Y ∈ Γ(TM). So, if the vector field ξ is conformal with potential function f̃ , by equation (1.6), we
obtain

2(f − f̃)g(X,Y ) + 2µg(X, ξ)g(Y, ξ) = 0, ∀X,Y ∈ Γ(TM). (1.7)

From equation (1.7) with X = Y ⊥ ξ, we get 2(f − f̃)|X|2 = 0, that is f = f̃ , and for X = Y = ξ we have
2µ|ξ|4 = 0, thus µ = 0. Conversely, a conformal vector field ξ on Riemennian manifold (M, g) is a special
torse-forming vector field if the 1-form η(X) = g(X, ξ) is closed on M (see [2]). In this cas, the conformal
scalar is the potential function of ξ and µ = 0.

2. STF-vector fields and harmonic maps

In the seminal work [13], where we proved that, if (M, g) is a compact Riemannian manifold without
boundary, (N,h) is a Riemannian manifold, ϕ : (M, g)→ (N,h) a harmonic map, assume that there is a proper
homothetic vector field ξ on (N,h), that is Lξh = 2kh, for some constant k ∈ R∗, where Lξh is the Lie derivative
of the metric hwith respect to ξ. Then ϕ is a constant map. In the case of STF-vector field we obtain the following
results.

Theorem 2.1. Let (M, g) be a compact orientable Riemannian manifold without boundary, and (N,h) be a Riemannian
manifold admitting a STF-vector field ξ with conformal scalar f and generating form µξ[. If f > 0 and µ ≥ 0 on N , then
any harmonic map ϕ from (M, g) to (N,h) is constant.
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Proof. Define a 1-form on M by

η(X) = h
(
ξ ◦ ϕ, dϕ(X)

)
, ∀X ∈ Γ(TM). (2.1)

Let {ei} be a normal orthonormal frame at x ∈M , we have

divM η = ei
[
h
(
ξ ◦ ϕ, dϕ(ei)

)]
. (2.2)

By equation (2.2), and the harmonicity condition of ϕ, we get

divM η = h
(
∇ϕei(ξ ◦ ϕ), dϕ(ei)

)
, (2.3)

and since ξ is a STF-vector field on (N,h), we find that

divM η = (f ◦ ϕ)h
(
dϕ(ei), dϕ(ei)

)
+ (µ ◦ ϕ)h(ξ ◦ ϕ, dϕ(ei))

2. (2.4)

The Theorem 2.1 follows from (2.4), and the Green Theorem, with f > 0 and µ ≥ 0 on N .

Remark 2.1.

• If (M, g) = (N,h) and ϕ = IdM , from Theorem 2.1, we get; Every orientable Riemannian manifold without
boundary admitting a STF-vector field with strictly positive conformal scalar and µ ≥ 0 is necessarily
non-compact.
• An harmonic map from a compact orientable Riemannian manifold without boundary to a Riemannian

manifold admitting a STF-vector field is not necessarily constant. For example, the identity map on
the unit n-dimensional sphere Sn on Rn+1, note that the sphere Sn admits a STF-vector field given by
ξ = gradλ, where λ(x) =< x,α >Rn+1 for all x ∈ Sn, and α ∈ Rn+1, the conformal scalar of ξ is the function
f = −λ, and the generating form ω is null, that is µ = 0 (see [17]).

From Theorem 2.1 we get the following result:

Corollary 2.1. Let (N,h) be an n-dimensional Riemannian manifold which admits a STF-vector field ξ with conformal
scalar f and generating form ω = µξ

[
. Consider (N,h) a Riemannian hypersurface of (N,h) such that h is the induced

metric of h on N . Suppose that

• (N,h) is totally umbilical, that is:

B(X,Y ) = ρh(X,Y )η, ∀X,Y ∈ Γ(TN),

for some smooth function ρ on N , where B is the second fundamental form of N on N given by B(X,Y ) =
(∇XY )⊥, ∇ is the Levi-Civita connection on N , and η is the unit normal to N ;
• the functions f + ρh(ξ, η) > 0 and µ ≥ 0 on N .

Then, any harmonic map from a compact orientable Riemannian manifold without boundary to (N,h) is constant.

Proof. It is possible to express ξ as ξ = ξ + λη, where ξ is tangent to N and λ is a smooth function on N . Thus
we have

∇Xξ = ∇NXξ + ρh(X, ξ)η +X(λ)η − ρλX, (2.5)

where X ∈ Γ(TN). By equation (2.5) with ξ is STF-vector field of conformal scalar f and generating form
ω = µξ

[
, we get

∇NXξ = (f + ρλ)X + µh(X, ξ)ξ, ∀X ∈ Γ(TN). (2.6)

Thus ξ is STF-vector field of conformal scalar f + ρλ and generating form ω = µξ[ on (N,h). Note that the
function f + ρλ = f + ρh(ξ, η). The Corollary follows by Theorem 2.1.

In the case of non-compact Riemannian manifold, we obtain the following result:

Theorem 2.2. Let (M, g) be a complete non-compact Riemannian manifold, and (N,h) be a Riemannian manifold
admitting a STF-vector field ξ of conformal scalar f > 0 and generating form ω = µξ[ with µ ≥ 0. If ϕ : (M, g) −→
(N,h) is harmonic map, satisfying: ∫

M

|ξ ◦ ϕ|2

(f ◦ ϕ)
vg <∞, (2.7)

then ϕ is constant. Furthermore, if (M, g) has an infinite volume we have ϕ(x) = y0 for all x ∈M and ξ(y0) = 0.
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Proof. Let ρ be a smooth function with compact support on M , we set

η(X) = h
(
ξ ◦ ϕ, ρ2dϕ(X)

)
, X ∈ Γ(TM). (2.8)

Let {ei} be a normal orthonormal frame at x ∈M , we have

divM η = ei

[
h
(
ξ ◦ ϕ, ρ2dϕ(ei)

)]
. (2.9)

By equation (2.9), and the harmonicity condition of ϕ, we get

divM η = h
(
∇ϕei(ξ ◦ ϕ), ρ2dϕ(ei)

)
+ h
(
ξ ◦ ϕ,∇ϕeiρ

2dϕ(ei)
)

= ρ2h
(
∇ϕei(ξ ◦ ϕ), dϕ(ei)

)
+ 2ρei(ρ)h

(
ξ ◦ ϕ, dϕ(ei)

)
. (2.10)

Since ξ is a STF-vector field with conformal scalar f and generating form ω = µξ[, we find that

ρ2h
(
∇ϕei(ξ ◦ ϕ), dϕ(ei)

)
= ρ2(f ◦ ϕ)h

(
dϕ(ei), dϕ(ei)

)
+ ρ2(µ ◦ ϕ)h(ξ ◦ ϕ, dϕ(ei))

2. (2.11)

By the Young’s inequality we have

− 2ρei(ρ)h
(
ξ ◦ ϕ, dϕ(ei)

)
≤ λρ2|dϕ|2 +

1

λ
ei(ρ)2|ξ ◦ ϕ|2, (2.12)

for any smooth function λ > 0 on M . From (2.10), (2.11) and (2.12) we deduce the inequality

ρ2(f ◦ ϕ)|dϕ|2 + ρ2(µ ◦ ϕ)h(ξ ◦ ϕ, dϕ(ei))
2 − divM η ≤ λρ2|dϕ|2 +

1

λ
ei(ρ)2|ξ ◦ ϕ|2. (2.13)

Since ρ2(µ ◦ ϕ)h(ξ ◦ ϕ, dϕ(ei))
2 ≥ 0, by (2.13) with λ = 1

2 (f ◦ ϕ), we have

1

2
ρ2(f ◦ ϕ)|dϕ|2 − divM η ≤ 2ei(ρ)2

|ξ ◦ ϕ|2

(f ◦ ϕ)
. (2.14)

By the divergence Theorem, and (2.14) we have

1

2

∫
M

ρ2(f ◦ ϕ)|dϕ|2vg ≤ 2

∫
M

ei(ρ)2
|ξ ◦ ϕ|2

(f ◦ ϕ)
vg. (2.15)

Consider the smooth function ρ = ρR such that, ρ ≤ 1 on M , ρ = 1 on the ball B(p,R), ρ = 0 on M\B(p, 2R) and
| gradM ρ| ≤ 2

R (see [18]). Then, from (2.15) we get

1

2

∫
M

ρ2(f ◦ ϕ)|dϕ|2vg ≤ 8

R2

∫
M

|ξ ◦ ϕ|2

(f ◦ ϕ)
vg, (2.16)

and since
∫
M
|ξ◦ϕ|2
(f◦ϕ) v

g <∞, when R→∞, we obtain∫
M

(f ◦ ϕ)|dϕ|2vg = 0. (2.17)

Consequently, |dϕ| = 0, that is ϕ is constant.

Corollary 2.2. Let (M, g) be a complete non-compact Riemannian manifold has a STF-vector field of conformal scalar
f > 0 and generating form ω = µξ[ with µ ≥ 0. Then,∫

M

|ξ|2

f
vg =∞.

Using the similar technique we have the following results:

Theorem 2.3. Let (M, g) be a complete non-compact Riemannian manifold has a STF-vector field ξ of conformal scalar
f > 0 and generating form ω = µξ[ with µ ≥ 0, and (N,h) be a Riemannian manifold. If ϕ : (M, g) −→ (N,h) is
harmonic map, satisfying:

ξ(e(ϕ)) ≥ 0,

∫
M

|dϕ(ξ)|2

f
vg <∞, (2.18)

then ϕ is constant.
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Proof. Define a 1-form on M by

η(X) = h
(
dϕ(ξ), ρ2dϕ(X)

)
, X ∈ Γ(TM), (2.19)

where ρ is a smooth function with compact support on M . Let {ei} be a normal orthonormal frame at x ∈M ,
we have

divM η = ei

[
h
(
dϕ(ξ), ρ2dϕ(ei)

)]
. (2.20)

By equation (2.20), and the harmonicity condition of ϕ, we get

divM η = h
(
∇ϕeidϕ(ξ), ρ2dϕ(ei)

)
+ h
(
dϕ(ξ),∇ϕeiρ

2dϕ(ei)
)

= ρ2h
(
∇ϕeidϕ(ξ), dϕ(ei)

)
+ 2ρei(ρ)h

(
dϕ(ξ), dϕ(ei)

)
, (2.21)

and by the property ∇ϕXdϕ(Y ) = ∇ϕY dϕ(X) + dϕ([X,Y ]) (see [4]), with X = ei and Y = ξ, we find that

divM η = ρ2h
(
∇ϕξ dϕ(ei), dϕ(ei)

)
+ ρ2h

(
dϕ(∇Mei ξ), dϕ(ei)

)
+2ρei(ρ)h

(
dϕ(ξ), dϕ(ei)

)
. (2.22)

Since ξ is a STF-vector field with conformal scalar f and generating form µξ[, we have the following

ρ2h
(
dϕ(∇Mei ξ), dϕ(ei)

)
= ρ2f |dϕ|2 + ρ2µ|dϕ(ξ)|2 ≥ ρ2f |dϕ|2. (2.23)

By the Young’s inequality we have

− 2ρei(ρ)h
(
dϕ(ξ), dϕ(ei)

)
≤ f

2
ρ2|dϕ|2 +

2

f
ei(ρ)2|dϕ(ξ)|2. (2.24)

From (2.21), (2.23) and (2.24), with h
(
∇ϕξ dϕ(ei), dϕ(ei)

)
= ξ(e(ϕ)) ≥ 0, we deduce the inequality

1

2
ρ2f |dϕ|2 − divM η ≤ 2ei(ρ)2

|dϕ(ξ)|2

f
. (2.25)

By the divergence Theorem, and inequality (2.25) we have

1

2

∫
M

ρ2f |dϕ|2vg ≤ 2

∫
M

ei(ρ)2
|dϕ(ξ)|2

f
vg. (2.26)

Consider the smooth function ρ = ρR such that, ρ ≤ 1 on M , ρ = 1 on the ball B(p,R), ρ = 0 on M\B(p, 2R) and
| gradM ρ| ≤ 2

R . Then, from (2.26) we get

1

2

∫
M

ρ2f |dϕ|2vg ≤ 8

R2

∫
M

|dϕ(ξ)|2

f
vg, (2.27)

and using the condition
∫
M
|dϕ(ξ)|2

f vg <∞, when R→∞, we obtain∫
M

f |dϕ|2vg = 0. (2.28)

So that |dϕ| = 0, that is ϕ is constant.

Proposition 2.1. Let ξ be a STF-vector field of conformal scalar f 6= 0 (at any point onM ) on n-dimensional Riemannian
manifold (M, g). Then ξ is harmonic if and only if grad f = −

[
g(gradµ, ξ) + (n+ 1)µf + 2µ2|ξ|2

]
ξ;

Ricci(ξ) = 0,

where grad is the gradient operator on (M, g), and Ricci is the Ricci tensor of (M, g).
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Proof. The tension field of ξ is given by (see [3])

τ(ξ) = (trace∇2ξ)V + (traceR(ξ,∇Mξ))H , (2.29)

where for allX ∈ Γ(TM),XV (resp.XH ) is the vertical (resp. horizontal) lift ofX , andR is the curvature tensor
of (M, g). Since ξ is a STF-vector field, we have

∇MX ξ = fX + µg(X, ξ)ξ = fX + ω(X)ξ, ∀X ∈ Γ(TM). (2.30)

Let x ∈M , then for any orthonormal basis {ei} such ∇Mei ej = 0 at x

trace∇2ξ = ∇Mei∇
M
ei ξ (2.31)

= ei(f)ei + ei(ω(ei))ξ + ω(ei)∇Mei ξ
= grad f + ei(ω(ei))ξ + ω(ei)[fei + ω(ei)∇Mei ξ]
= grad f + ei(ω(ei))ξ + fµg(ei, ξ)ei + µ2g(ei, ξ)

2ξ

= grad f + ei(µg(ei, ξ))ξ + fµξ + µ2|ξ|2ξ
= grad f + g(gradµ, ξ)ξ + µg(ei,∇Mei ξ)ξ + fµξ + µ2|ξ|2ξ
= grad f + g(gradµ, ξ)ξ + nµfξ + µ2|ξ|2ξ + fµξ + µ2|ξ|2ξ
= grad f +

[
g(gradµ, ξ) + (n+ 1)µf + 2µ2|ξ|2

]
ξ. (2.32)

For the second term of (2.30), we have

trace R(ξ,∇Mξ) = R(ξ,∇Mei ξ)ei
= f R(ξ, ei)ei + ω(ei)R(ξ, ξ)ei

= f R(ξ, ei)ei

= f Ricci(ξ). (2.33)

The Proposition 2.1 follows from (2.29), (2.31) and (2.33).
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