New Theory

ISSN: 2149-1402

30 (2020) 79-85 Journal of New Theory http://www.newtheory.org Open Access

A Decomposition of α -continuity and $\mu\alpha$ -continuity

Selvaraj Ganesan¹

Article History

 Received:
 23.12.2018

 Accepted:
 10.02.2020

 Published:
 25.03.2020

 Original Article

Abstract – The main purpose of this paper is to introduce the concepts of $*\eta$ -sets, $*\eta$ -continuity and $**\eta$ -continuity and to obtain decomposition of α -continuity and $\mu\alpha$ -continuity in topological spaces.

Keywords - $\mu\alpha$ -closed set, $\mu\rho$ -closed set, $*\eta$ -set, $**\eta$ -set, $*\eta$ -continuity and $**\eta$ -continuity

1. Introduction and Preliminaries

Tong [1] introduced the notions of A-sets and A-continuity in topological spaces and established a decomposition of continuity. In [2], he also introduced the notions of B-sets and B-continuity and used them to obtain a new decomposition of continuity and Ganster and Reill [3] improved Tong's decomposition result. Moreover, Noiri and Sayed [4] introduced the notions of η -sets and obtained some decompositions of continuity. Quite recently, Veera kumar [5] introduced and studied the notions of μ p-sets in topological spaces. Quite recently, Ganesan [6] introduced and studied the notions of $\mu\alpha$ -closed sets in topological spaces. In this paper, we introduce the notions of * η -sets, ** η -sets, * η -continuity and ** η -continuity and obtain decomposition of α -continuity and $\mu\alpha$ -continuity. Throughout this paper (X, τ) and (Y, σ) (or X and Y)represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and A^C denote the closure of A, the interior of A and complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called:

- 1. a regular open [7] if A = int(cl(A)).
- 2. an α -open set [8] if $A \subseteq int(cl(int(A)))$.
- 3. a semi-open set [9] if $A \subseteq cl(int(A))$.
- 4. a pre-open set [10] if $A \subseteq int(cl(A))$.

The complements of the above mentioned open sets are called their respective closed sets. The α -closure [8](resp. semi-closure [11], pre-closure [12]) of a subset A of X, denoted by $\alpha cl(A)$

¹sgsgsgsgsg77@gmail.com (Corresponding Author)

¹PG & Research Department of Mathematics, Raja Doraisingam Government Arts College(Affiliated to Alagappa University, Karaikudi), Sivagangai-630561, Tamil Nadu, India

(resp.scl(A), pcl(A)) is defined to be the intersection of all α -closed (resp. semi-closed, pre-closed) sets of (X, τ) containing A. For any subset A of an arbitrarily chosen topological space, the α -interior [8] (resp. semi-interior [11], pre-interior [12]) of a subset A of X, denoted by α int(A) (resp.sint(A), pint(A)) is defined to be the union of all α -open (resp. semi-open, pre-open) sets of (X, τ) contained A.

Definition 1.2. A subset A of a space X is called:

- 1. a t-set [2] if int(cl(A))=int(A).
- 2. an α^* -set [13] if int(A) = int(cl(int(A))).
- 3. an A-set [1] if $A = V \cap T$ where V is open and T is a regular closed set.
- 4. a B-set [2,14] if $A = V \cap T$ where V is open and T is a t-set.
- 5. an αB -set [15] if $A = V \cap T$ where V is α -open and T is a t-set.
- 6. an η -set [4] if $A = V \cap T$ where V is open and T is an α -closed set.
- 7. a locally closed set [16] if $A = V \cap T$ where V is open and T is closed.

The collection of A-sets (resp. B-sets, α B-sets, η -sets, locally closed sets) in X is denoted by A(X) (resp. B(X), α B(X), η (X), LC(X)).

Definition 1.3. A subset A of a space (X, τ) is called:

- 1. a $g\alpha^*$ -closed set [17, 18] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) . The complement of $g\alpha^*$ -closed set is called $g\alpha^*$ -open set.
- 2. a μ -preclosed (briefly μ p-closed) set [5] if pcl(A) \subseteq U whenever A \subseteq U and U is $g\alpha^*$ -open in (X, τ). The complement of μ p-closed set is called μ p-open set.
- 3. a $\mu\alpha$ -closed set [6] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) . The complement of $\mu\alpha$ -closed set is called $\mu\alpha$ -open set.

The collection of all $\mu\alpha$ -open (resp. μ p-open) sets in X will be denoted by $\mu\alpha O(X)$ (resp. $\mu pO(X)$).

Remark 1.4. In a space X, the followings hold:

- 1. Every open set is $g\alpha^*$ -open but not conversely [6].
- 2. Every α -open set is $\mu\alpha$ -open but not conversely [6].
- 3. Every $\mu\alpha$ -closed set is μ p-closed but not conversely [6].
- 4. Every $\mu\alpha$ -continuous map is μ p-continuous but not conversely [6].
- 5. The intersection of two t-sets is a t-set [2].

Remark 1.5. In a space X, the followings hold:

- 1. A is α -closed set if and only if $A = \alpha cl(A)$.
- 2. Every regular closed set is closed but not conversely.
- 3. Every regular closed set is semi-closed (= t-set) but not conversely.
- 4. Every closed set is α -closed but not conversely.
- 5. Every α -closed set is semi-closed (= t-set) but not conversely.

2. * $^{\eta}$ -sets and ** $^{\eta}$ -sets

In this section we introduce and study the notions of $*^{\eta}$ -sets and $**^{\eta}$ -sets in topological spaces.

Definition 2.1. A subset A of a space X is called:

- 1. an $*^{\eta}$ -set if $A = U \cap T$ where U is $g\alpha^*$ -open and T is α -closed in X.
- 2. an $**^{\eta}$ -set if $A = U \cap T$ where U is $\mu \alpha$ -open and T is a t-set in X.

The collection of all $*^{e}ta$ -sets (resp. $**^{\eta}$ -sets) in X will be denoted by $*^{\eta}(X)$ (resp. $**^{\eta}(X)$)

Theorem 2.2. For a subset A of a space X, the following are equivalent.

- 1. A is an $*^{\eta}$ -set.
- 2. $A = U \cap \alpha cl(A)$ for some $g\alpha^*$ -open set U.

PROOF. (1) \rightarrow (2) Since A is an*^{η}-set, then A = U \cap T, where U is g α *-open and T is α -closed. So, A \subset U and A \subset T. Hence α cl(A) $\subset \alpha$ cl(T). Therefore A $\subset U \cap \alpha$ cl(A) $\subset U \cap \alpha$ cl(T) = U \cap T = A. Thus, A = U $\cap \alpha$ cl(A).

 $(2) \rightarrow (1)$ It is obvious because $\alpha cl(A)$ is α -closed by Remark 1.5(1).

Remark 2.3. In a space X, the intersection of two** $^{\eta}$ -sets is an** $^{\eta}$ -set.

Remark 2.4. Union of two** $^{\eta}$ -sets need not be an** $^{\eta}$ -set as seen from the following example.

Example 2.5. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. The sets $\{a\}, \{c\}$ are $**^{\eta}$ -sets in (X, τ) but their union $\{a, c\}$ is not an $**^{\eta}$ -set in (X, τ) .

Remark 2.6. We have the following implications.

where none of these implications is reversible as shown by [4] and the following examples.

Example 2.7. 1. In Example 2.5, the set $\{b\}$ is an $*\eta$ -set but not an η -set in (X, τ) .

- 2. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, c\}, X\}$. Clearly the set $\{b\}$ is an ** η -set but not an $\mu\alpha$ -open set in (X, τ) .
- 3. In Example 2.5, the set {a} is an ** η -set but not an α B-set in (X, τ).

Remark 2.8. 1. The notions of $*\eta$ -sets and $\mu\alpha$ -closed sets are independent.

2. The notions of $**\eta$ -sets and μ p-closed sets are independent.

Example 2.9. In Example 2.5, the set {a, c} is $\mu\alpha$ -closed but not an $*^{\eta}$ -set and also the set {a, b} is an $*^{\eta}$ -set but not a $\mu\alpha$ -closed in (X, τ).

Example 2.10. In Example 2.7(2), the set {b} is an $**\eta$ -set but not a μ p-open set and also the set {a, b} is an μ p-open set but not a $**\eta$ -set in (X, τ).

Theorem 2.11. For a subset A of a space X, the following are equivalent:

- 1. A is α -closed.
- 2. A is an $*\eta$ -set and μ_{α} -closed.

PROOF. $(1) \rightarrow (2)$ It follows from Remark 1.4(1) and Definition 2.1(1).

 $(2) \rightarrow (1)$ Since A is an $*^{\eta}$ -set, then by Theorem 2.2, $A = U \cap \alpha cl(A)$ where U is $g\alpha^*$ -open in X. So, $A \subset U$ and since A is $\mu\alpha$ -closed, then $\alpha cl(A) \subset U$. Therefore, $\alpha cl(A) \subset U \cap \alpha cl(A) = A$. But $A \subset \alpha cl(A)$ always. Hence by Remark 1.5(1), A is α -closed.

Proposition 2.12. [19] Let A and B be subsets of a space X. If B is an α^* -set, then $\alpha int(A \cap B) = \alpha int(A) \cap int(B)$

Theorem 2.13. For a subset S of a space X, the following are equivalent.

- 1. S is $\mu\alpha$ -open.
- 2. S is an $^{**\eta}$ -set and μ p-open.

PROOF. Necessity: It follows from Remark 1.4(3) and Definition 2.1(2).

Sufficiency: Assume that S is μ p-open and an $^{**\eta}$ -set in X. Then $S = A \cap B$ where A is μ_{α} -open and B is a t-set in X. Let $F \subset S$, where F is $g\alpha^*$ -closed in X. Since S is μ p-open in X, $F \subset pint(S) = S \cap int(cl(S)) = (A \cap B) \cap int[cl(A \cap B)] \subset A \cap B \cap int(cl(A)) \cap int(cl(B)) = A \cap B \cap int(cl(A)) \cap int(B)$, since B is a t-set. This implies, $F \subset int(B)$. Note that A is $\mu\alpha$ -open and that $F \subset A$. So, $F \subset \alpha int(A)$. Therefore, $F \subset \alpha int(A) \cap int(B) = \alpha int(S)$ by Proposition 2.12. Hence S is $\mu\alpha$ -open.

3. * $^{\eta}$ -continuity and ** $^{\eta}$ -continuity

Definition 3.1. A function $f: X \to Y$ is said to be $*^{\eta}$ -continuous (resp. $**^{\eta}$ -continuous) if $f^{-1}(V)$ is an $*^{\eta}$ -set (resp. an $**^{\eta}$ -set) in X for every open subset V of Y.

Definition 3.2. A function $f: X \to Y$ is said to be $C^{*\eta}$ -continuous if $f^{-1}(V)$ is an ${}^{*\eta}$ -set in X for every closed subset V of Y.

We shall recall the definitions of some functions used in the sequel.

Definition 3.3. A function $f: X \to Y$ is said to be

- 1. A-continuous [1] if $f^{-1}(V)$ is an A-set in X for every open set V of Y.
- 2. B-continuous [2,14] if $f^{-1}(V)$ is an B-set in X for every opens set V of Y.
- 3. α -continuous [20] if $f^{-1}(V)$ is an α -open set in X for every open set V of Y.
- 4. LC-continuous [16] (resp. α B-continuous [15] if f⁻¹(V) is an locally closed set (resp. α B-set) in X for every open set V of Y,
- 5. η -continuous [4] if $f^{-1}(V)$ is an η -set in X for every open set V of Y.
- 6. $\mu\alpha$ -continuous [6] (resp. μ p-continuous [5]) if $f^{-1}(V)$ is an $\mu\alpha$ -open set (resp. μ p-open set) in X for every open set V of Y.

Remark 3.4. It is clear that, a function $f: X \to Y$ is α -continuous if and only if $f^{-1}(V)$ is an α -closed set in X for every closed set V of Y.

From the definitions stated above, we obtain the following diagram

Remark 3.5. None of the implications is reversible as shown by the following examples.

Example 3.6. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{b, c\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is $*^{\eta}$ -continuous but not η -continuous.

Example 3.7. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with $\sigma = \{\phi, \{c\}, \{b, c\}, Y\}$. Then f is ** η -continuous but not α B-continuous.

Example 3.8. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Then f is ** η -continuous but not $\mu\alpha$ -continuous.

Remark 3.9. The following examples show that the concepts of

- 1. $\mu\alpha$ -continuity and $*\eta$ -continuity are independent.
- 2. $\mu\alpha$ -continuity and C^{* η}-continuity are independent.
- 3. $^{*\eta}$ -continuity and C $^{*\eta}$ -continuity are independent.

Example 3.10. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is $\mu\alpha$ -continuous but not $*\eta$ -continuous.

Example 3.11. Let X, τ and f be as in Example 3.10. Let Y = {a, b, c} with $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$. Then f is * η -continuous but not $\mu\alpha$ -continuous.

Example 3.12. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is $\mu\alpha$ -continuous but not $C^*\eta$ -continuous.

Example 3.13. Let X, τ and f be as in Example 3.12. Let Y = {a, b, c} with $\sigma = \{\phi, \{b\}, \{a, c\}, Y\}$. Then f is C* η -continuous but not $\mu\alpha$ -continuous.

Example 3.14. Let X, τ and f be as in Example 2.5. Let Y = {a, b, c}with $\sigma = \{\phi, \{c\}, \{a, c\}, Y\}$. Then f is C* η -continuous but not * η -continuous.

Example 3.15. Let X, τ and f be as in Example 2.5. Let Y = {a, b, c} with $\sigma = \{\phi, \{b\}, Y\}$. Then f is $*\eta$ -continuous but not C* η -continuous.

Remark 3.16. The following examples show that the concept of μ p-continuity and $^{**\eta}$ -continuity are independent.

Example 3.17. Let X and τ be as in Example 2.7(2). Let $Y = \{a, b, c\}$ with $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is μ p-continuous but not $**\eta$ -continuous.

Example 3.18. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with $\sigma = {\phi, {a}, Y}$. Then f is ** η -continuous but not μ p-continuous.

Theorem 3.19. For a function $f : X \to Y$, the following are equivalent.

- 1. f is α -continuous.
- 2. f is C* η -continuous and $\mu\alpha$ -continuous.

PROOF. The proof follows from Definitions 3.2 and 3.3(6), Remark 3.4 and Theorem 2.11.

Theorem 3.20. For a function $f : X \to Y$, the following are equivalent.

- 1. f is $\mu\alpha$ -continuous.
- 2. f is $^{**\eta}$ -continuous and μ p-continuous.

PROOF. The proof follows from Theorem 2.13.

References

- [1] J. Tong, A Decomposition of Continuity, Acta Mathematica Hungarica 48 (1986) 11–15.
- [2] J. Tong, A Decomposition of Continuity in Topological Spaces, Acta Mathematica Hungarica 54(1-2) (1989) 51-55.
- [3] M. Ganster, I. L. Reilly, A Decomposition of Continuity, Acta Mathematica Hungarica 56 (1990) 299–301.
- [4] T. Noiri, O. R. Sayed, On Decomposition of Continuity, Acta Mathematica Hungarica 111(1-2) (2006) 1–8.
- [5] M. K. R. S. Veera Kumar, μp-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 2(1) (2005) 31–52.
- [6] S. Ganesan, Remarks on $\mu\alpha$ -Closed Sets in Topological Spaces (Submitted).
- M. Stone, Application of The Theory of Boolean Rings to General Topology, Transactions of the American Mathematical Society 41 (1937) 374–481.
- [8] O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15 (1965) 961–970.
- [9] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The American Mathematical Monthly 70(1963) 36–41.
- [10] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On Precontinuous and Weak Pre Continuous Mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982) 47–53.
- [11] S. G. Crossley, S. K. Hildebrand, Semi-Closure, Texas Journal of Science 22 (1971) 99-112.
- [12] T. Noiri, H. Maki, J. Umehara, *Generalized Preclosed Functions*, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 19 (1998) 13–20.
- [13] E. Hatir, T. Noiri, S. Yuksel, A Decomposition of Continuity, Acta Mathematica Hungarica 70 (1996) 145–150.
- [14] I. L. Reilly, M. R. Vamanamurthy, On α-Continuity in Topological Spaces, Acta Mathematica Hungarica 45 (1985) 27–32.

- [15] B. Al-Nashef, A Decomposition of α-Continuity and Semicontinuity, Acta Mathematica Hungarica 97(1-2) (2002) 115–120.
- [16] M. Ganster, I. L. Reilly, Locally Closed Cets and LC-Continuous Functions, International Journal of Mathematics and Mathematical Sciences 12 (1989) 417–424.
- [17] H. Maki, R. Devi, K. Balachandran, Generalized α-Closed Sets in Topology, Bulletin of Fukuoka University of Education. Part III. 42 (1993) 13–21.
- [18] M. K. R. S. Veera Kumari, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 21 (2000) 1–19.
- [19] T. Noiri, M. Rajamani, P. Sundaram, A Decomposition of a Weaker Form of Continuity, Acta Mathematica Hungarica 93(1-2) (2001) 109–114.
- [20] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α-Continuous and α-Open Mappings, Acta Mathematica Hungarica 41 (1983) 213–218.