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Abstract

In this paper, closed forms of the summation formulas for generalized Tribonacci numbers
are presented. Then, some previous results are recovered as particular cases of the present
results. As special cases, we give summation formulas of Tribonacci, Tribonacci-Lucas,
Padovan, Perrin, Narayana and some other third order linear recurrance sequences. All
the summing formulas of well known recurrence sequences which we deal with are linear
except the cases Pell-Padovan and Padovan-Perrin.

1. Introduction

In this work, we investigate linear summation formulas of generalized Tribonacci numbers. Some summing formulas of the Pell and
Pell-Lucas numbers are well known and given in [11, 12], see also [9]. For linear sums of Fibonacci, Tribonacci, Tetranacci, Pentanacci
and Hexanacci numbers, see [10,24], [8,16], [21, 31], [22], and [23] respectively. First, in this section, we present some background
about generalized Tribonacci numbers. The generalized Tribonacci sequence {Wn(W0,W1,W2;r,s, t)}n≥0 (or shortly {Wn}n≥0) is defined as
follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex numbers and r,s, t are real numbers. The generalized Tribonacci sequence has been studied by many
authors, see for example [2,3,5,7,14,15,17,18,19,26,27,28,29,30].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n =−
s
t
W−(n−1)−

r
t
W−(n−2)+

1
t

W−(n−3)

for n = 1,2,3, ... when t 6= 0. Therefore, recurrence (1.1) holds for all integer n.

If we set r = s = t = 1 and W0 = 0,W1 = 1,W2 = 1 then {Wn} is the well-known Tribonacci sequence and if we set r = s = t = 1 and
W0 = 3,W1 = 1,W2 = 3 then {Wn} is the well-known Tribonacci-Lucas sequence.

In fact, the generalized Tribonacci sequence is the generalization of the well-known sequences like Tribonacci, Tribonacci-Lucas, Padovan
(Cordonnier), Perrin, Padovan-Perrin, Narayana, third order Jacobsthal and third order Jacobsthal-Lucas. In literature, for example, the
following names and notations (see Table 1) are used for the special case of r,s, t and initial values.
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Sequences (Numbers) Notation OEIS [20]
Tribonacci {Tn}= {Wn(0,1,1;1,1,1)} A000073, A057597

Tribonacci-Lucas {Kn}= {Wn(3,1,3;1,1,1)} A001644, A073145
third order Pell {P(3)

n }= {Wn(0,1,2;2,1,1)} A077939, A077978
third order Pell-Lucas {Q(3)

n }= {Wn(3,2,6;2,1,1)} A276225, A276228
third order modified Pell {E(3)

n }= {Wn(0,1,1;2,1,1)} A077997, A078049
Padovan (Cordonnier) {Pn}= {Wn(1,1,1;0,1,1)} A000931

Perrin (Padovan-Lucas) {En}= {Wn(3,0,2;0,1,1)} A001608, A078712
Padovan-Perrin {Sn}= {Wn(0,0,1;0,1,1)} A000931, A176971
Pell-Padovan {Rn}= {Wn(1,1,1;0,2,1)} A066983, A128587
Pell-Perrin {Cn}= {Wn(3,0,2;0,2,1)} -

Jacobsthal-Padovan {Qn}= {Wn(1,1,1;0,1,2)} A159284
Jacobsthal-Perrin (-Lucas) {Dn}= {Wn(3,0,2;0,1,2)} A072328

Narayana {Nn}= {Wn(0,1,1;1,0,1)} A078012
third order Jacobsthal {J(3)n }= {Wn(0,1,1;1,1,2)} A077947

third order Jacobsthal-Lucas { j(3)n }= {Wn(2,1,5;1,1,2)} A226308

Table 1: A few special case of generalized Tribonacci sequences

Note that the sequence {Cn} is’t in the database of http://oeis.org [20], yet.

2. Sum formulas of Generalized Tribonacci Numbers with Positive Subscripts

The following Theorem presents some linear summing formulas of generalized Tribonacci numbers with positive subscripts.

Theorem 2.1. For n≥ 0, we have the following formulas:

(a) (Sum of the generalized Tribonacci numbers) If r+ s+ t−1 6= 0, then
n

∑
k=0

Wk =
Wn+3 +(1− r)Wn+2 +(1− r− s)Wn+1−W2 +(r−1)W1 +(r+ s−1)W0

r+ s+ t−1
.

(b) If 2s+2rt + r2− s2 + t2−1 = (r+ s+ t−1)(r− s+ t +1) 6= 0 then
n

∑
k=0

W2k =
(−s+1)W2n+2 +(t + rs)W2n+1 +(t2 + rt)W2n +(−1+ s)W2 +(−t− rs)W1 +(−1+ r2− s2 + rt +2s)W0

(r+ s+ t−1)(r− s+ t +1)

and
n

∑
k=0

W2k+1 =
(r+ t)W2n+2 +(s− s2 + t2 + rt)W2n+1 +(t− st)W2n +(−r− t)W2 +(−1+ s+ r2 + rt)W1 +(−t + st)W0

(r− s+ t +1)(r+ s+ t−1)
.

(c) If r+ t 6= 0, s = 1 then
n

∑
k=0

W2k =
1

r+ t
(W2n+1 + tW2n−W1 + rW0)

and
n

∑
k=0

W2k+1 =
1

r+ t
(W2n+2 + tW2n+1−W2 + rW1) .

Note that (c) is a special case of (b).

Proof.

(a) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

tWn−3 =Wn− rWn−1− sWn−2

we obtain

tW0 =W3− rW2− sW1

tW1 =W4− rW3− sW2

tW2 =W5− rW4− sW3

...

tWn−1 =Wn+2− rWn+1− sWn

tWn =Wn+3− rWn+2− sWn+1.
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If we add the equations by side by, we get

n

∑
k=0

Wk =
Wn+3 +(1− r)Wn+2 +(1− r− s)Wn+1−W2 +(r−1)W1 +(r+ s−1)W0

r+ s+ t−1
.

(b) and (c) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

rWn−1 =Wn− sWn−2− tWn−3

we obtain

rW3 =W4− sW2− tW1

rW5 =W6− sW4− tW3

...

rW2n+1 =W2n+2− sW2n− tW2n−1.

rW2n+3 =W2n+4− sW2n+2− tW2n+1

Now, if we add the above equations by side by, we get

r(−W1 +
n

∑
k=0

W2k+1) = (W2n+2−W2−W0 +
n

∑
k=0

W2k)− s(−W0 +
n

∑
k=0

W2k)− t(−W2n+1 +
n

∑
k=0

W2k+1). (2.1)

Similarly, using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

rWn−1 =Wn− sWn−2− tWn−3

we write the following obvious equations;

rW2 =W3− sW1− tW0

rW4 =W5− sW3− tW2

rW6 =W7− sW5− tW4

...

rW2n =W2n+1− sW2n−1− tW2n−2

rW2n+2 =W2n+3− sW2n+1− tW2n.

Now, if we add the above equations by side by, we obtain

r(−W0 +
n

∑
k=0

W2k) = (−W1 +
n

∑
k=0

W2k+1)− s(−W2n+1 +
n

∑
k=0

W2k+1)− t(−W2n +
n

∑
k=0

W2k). (2.2)

Then, solving the system (2.1)-(2.2), the required results of (b) and (c) follow.

For another proof (using mathematical induction) of the formula in Theorem 2.1 (a), see [4].
Taking r = s = t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.2. If r = s = t = 1 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =

1
2 (Wn+3−Wn+1−W2 +W0).

(b) ∑
n
k=0 W2k =

1
2 (W2n+1 +W2n−W1 +W0).

(c) ∑
n
k=0 W2k+1 =

1
2 (W2n+2 +W2n+1−W2 +W1).

From the above Proposition, we have the following Corollary which gives linear sum formulas of Tribonacci numbers (take Wn = Tn with
T0 = 0,T1 = 1,T2 = 1).

Corollary 2.3. [8,16]For n≥ 0, Tribonacci numbers have the following properties.

(a) ∑
n
k=0 Tk =

1
2 (Tn+3−Tn+1−1).

(b) ∑
n
k=0 T2k =

1
2 (T2n+1 +T2n−1).

(c) ∑
n
k=0 T2k+1 =

1
2 (T2n+2 +T2n+1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above Proposition, we have the following Corollary which presents linear sum formulas
of Tribonacci-Lucas numbers.
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Corollary 2.4. [8,16]For n≥ 0, Tribonacci-Lucas numbers have the following properties.

(a) ∑
n
k=0 Kk =

1
2 (Kn+3−Kn+1).

(b) ∑
n
k=0 K2k =

1
2 (K2n+1 +K2n +2).

(c) ∑
n
k=0 K2k+1 =

1
2 (K2n+2 +K2n+1−2).

Taking r = 2,s = 1, t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.5. [25]If r = 2,s = 1, t = 1 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =

1
3 (Wn+3−Wn+2−2Wn+1−W2 +W1 +2W0) .

(b) ∑
n
k=0 W2k =

1
3 (W2n+1 +W2n−W1 +2W0) .

(c) ∑
n
k=0 W2k+1 =

1
3 (W2n+2 +W2n+1−W2 +2W1) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order Pell numbers (take Wn = P(3)
n

with P(3)
0 = 0,P(3)

1 = 1,P(3)
2 = 2).

Corollary 2.6. [25]For n≥ 0, third-order Pell numbers have the following properties:

(a) ∑
n
k=0 P(3)

k = 1
3 (P

(3)
n+3−P(3)

n+2−2P(3)
n+1−1).

(b) ∑
n
k=0 P(3)

2k = 1
3 (P

(3)
2n+1 +P(3)

2n −1).

(c) ∑
n
k=0 P(3)

2k+1 =
1
3 (P

(3)
2n+2 +P(3)

2n+1).

Taking Wn = Q(3)
n with Q(3)

0 = 3,Q(3)
1 = 2,Q(3)

2 = 6 in the last Proposition, we have the following Corollary which presents linear sum
formulas of third-order Pell-Lucas numbers.

Corollary 2.7. [25]For n≥ 0, third-order Pell-Lucas numbers have the following properties:

(a) ∑
n
k=0 Q(3)

k = 1
3 (Q

(3)
n+3−Q(3)

n+2−2Q(3)
n+1 +2).

(b) ∑
n
k=0 Q(3)

2k = 1
3 (Q

(3)
2n+1 +Q(3)

2n +4).

(c) ∑
n
k=0 Q(3)

2k+1 =
1
3 (Q

(3)
2n+2 +Q(3)

2n+1−2).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order modified Pell numbers (take
Wn = E(3)

n with E(3)
0 = 0,E(3)

1 = 1,E(3)
2 = 1).

Corollary 2.8. [25]For n≥ 0, third-order modified Pell numbers have the following properties:

(a) ∑
n
k=0 E(3)

k = 1
3 (E

(3)
n+3−E(3)

n+2−2E(3)
n+1).

(b) ∑
n
k=0 E(3)

2k = 1
3 (E

(3)
2n+1 +E(3)

2n −1).

(c) ∑
n
k=0 E(3)

2k+1 =
1
3 (E

(3)
2n+2 +E(3)

2n+1 +1).

Taking r = 0,s = 1, t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.9. If r = 0,s = 1, t = 1 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =Wn+3 +Wn+2−W2−W1.

(b) ∑
n
k=0 W2k =W2n+1 +W2n−W1.

(c) ∑
n
k=0 W2k+1 =W2n+2 +W2n+1−W2.

From the last Proposition, we have the following Corollary which gives linear sum formulas of Padovan numbers (take Wn = Pn with
P0 = 1,P = 1,P2 = 1).

Corollary 2.10. [1] For n≥ 0, Padovan numbers have the following properties.

(a) ∑
n
k=0 Pk = Pn+3 +Pn+2−2.

(b) ∑
n
k=0 P2k = P2n+1 +P2n−1.

(c) ∑
n
k=0 P2k+1 = P2n+2 +P2n+1−1.

Taking Wn = En with E0 = 3,E2 = 0,E2 = 2 in the last Proposition, we have the following Corollary which presents linear sum formulas of
Perrin numbers.

Corollary 2.11. [1] For n≥ 0, Perrin numbers have the following properties.

(a) ∑
n
k=0 Ek = En+3 +En+2−2.

(b) ∑
n
k=0 E2k = E2n+1 +E2n.

(c) ∑
n
k=0 E2k+1 = E2n+2 +E2n+1−2.

Taking Wn = Sn with S0 = 0,S2 = 0,S2 = 1 in the last Proposition, we have the following Corollary which gives linear sum formulas of
Padovan-Perrin numbers.

Corollary 2.12. For n≥ 0, Padovan-Perrin numbers have the following properties.
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(a) ∑
n
k=0 Sk = Sn+3 +Sn+2−1.

(b) ∑
n
k=0 S2k = S2n+1 +S2n.

(c) ∑
n
k=0 S2k+1 = S2n+2 +S2n+1−1.

If r = 0,s = 2, t = 1 then (r− s+ t +1) = 0 so we can’t use Theorem 2.1 (b). In other words, the method of the proof Theorem 2.1 (b) can’t
be used to find ∑

n
k=0 W2k and ∑

n
k=0 W2k+1. Therefore we need another method to find them which is given in the following Theorem.

Theorem 2.13. If r = 0,s = 2, t = 1 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =

1
2 (Wn+3 +Wn+2−Wn+1−W2−W1 +W0) .

(b) ∑
n
k=0 W2k =W2n+1 +(W2−W1−W0)n+W0−W1.

(c) ∑
n
k=0 W2k+1 =

1
2 (W2n+3 +W2n+2−W2n+1 +2n(−W2 +W1 +W0)−W2 +W1−W0) .

Proof.

(a) Taking r = 0,s = 2, t = 1 in Theorem 2.1 (a) we obtain (a).
(b) and (c) Using the recurrence relation

Wn = 2Wn−2 +Wn−3

we obtain

0

∑
k=0

W2k =W0

1

∑
k=0

W2k =W0 +W2 =W3 +W2−2W1

2

∑
k=0

W2k =W0 +W2 +W4 =W5 +2W2−3W1−W0

...
n

∑
k=0

W2k =W2n+1 +(W2−W1−W0)n+W0−W1.

This result can be also proved by mathematical induction. Note that from (a) we get

n

∑
k=0

W2k+1 =
1
2
(W2n+3 +W2n+2 +W2n+1−W2−W1 +W0)−

n

∑
k=0

W2k.

Now, (c) follows from the last equation.

From the above Theorem we have the following Corollary which gives sum formulas of Pell-Padovan numbers (take Wn = Rn with
R0 = 1,R1 = 1,R2 = 1).

Corollary 2.14. For n≥ 0, Pell-Padovan numbers have the following property:

(a) ∑
n
k=0 Rk =

1
2 (Rn+3 +Rn+2−Rn+1−1) .

(b) ∑
n
k=0 R2k = R2n+1−n.

(c) ∑
n
k=0 R2k+1 =

1
2 (R2n+3 +R2n+2−R2n+1 +2n−1) .

Taking Wn =Cn with C0 = 3,C1 = 0,C2 = 2 in the last Theorem, we have the following Corollary which presents sum formulas of Pell-Perrin
numbers.

Corollary 2.15. For n≥ 0, Pell-Perrin numbers have the following property:

(a) ∑
n
k=0 Ck =

1
2 (Cn+3 +Cn+2−Cn+1 +1) .

(b) ∑
n
k=0 C2k =C2n+1−n+3.

(c) ∑
n
k=0 C2k+1 =

1
2 (C2n+3 +C2n+2−C2n+1 +2n−5) .

Taking r = 0,s = 1, t = 2 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.16. If r = 0,s = 1, t = 2 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =

1
2 (Wn+3 +Wn+2−W2−W1) .

(b) ∑
n
k=0 W2k =

1
2 (W2n+1 +2W2n−W1) .

(c) ∑
n
k=0 W2k+1 =

1
2 (W2n+2 +2W2n+1−W2) .

Taking Wn = Qn with Q0 = 1,Q1 = 1,Q2 = 1 in the last Proposition, we have the following Corollary which presents linear sum formulas of
Jacobsthal-Padovan numbers.

Corollary 2.17. For n≥ 0, Jacobsthal-Padovan numbers have the following properties.

(a) ∑
n
k=0 Qk =

1
2 (Qn+3 +Qn+2−2) .
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(b) ∑
n
k=0 Q2k =

1
2 (Q2n+1 +2Q2n−1) .

(c) ∑
n
k=0 Q2k+1 =

1
2 (Q2n+2 +2Q2n+1−1) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of Jacobsthal-Perrin numbers (take Wn = Dn
with D0 = 3,D1 = 0,D2 = 2).

Corollary 2.18. For n≥ 0, Jacobsthal-Perrin numbers have the following properties.

(a) ∑
n
k=0 Dk =

1
2 (Dn+3 +Dn+2−2) .

(b) ∑
n
k=0 D2k =

1
2 (D2n+1 +2D2n) .

(c) ∑
n
k=0 D2k+1 =

1
2 (D2n+2 +2D2n+1−2) .

Taking r = 1,s = 0, t = 1 in Theorem 2.1 (a) and (c), we obtain the following Proposition.

Proposition 2.19. If r = 1,s = 0, t = 1 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =Wn+3−W2.

(b) ∑
n
k=0 W2k =

1
3 (W2n+2 +W2n+1 +2W2n−W2−W1 +W0).

(c) ∑
n
k=0 W2k+1 =

1
3 (2W2n+2 +2W2n+1 +W2n−2W2 +W1−W0).

From the last Proposition, we have the following Corollary which presents linear sum formulas of Narayana numbers (take Wn = Nn with
N0 = 0,N1 = 1,N2 = 1).

Corollary 2.20. For n≥ 0, Narayana numbers have the following properties.

(a) ∑
n
k=0 Nk = Nn+3−1.

(b) ∑
n
k=0 N2k =

1
3 (N2n+2 +N2n+1 +2N2n−2).

(c) ∑
n
k=0 N2k+1 =

1
3 (2N2n+2 +2N2n+1 +N2n−1).

Taking r = 1,s = 1, t = 2 in Theorem 2.1 (a) and (c), we obtain the following Proposition.

Proposition 2.21. If r = 1,s = 1, t = 2 then for n≥ 0 we have the following formulas:

(a) ∑
n
k=0 Wk =

1
3 (Wn+3−Wn+1−W2 +W0).

(b) ∑
n
k=0 W2k =

1
3 (W2n+1 +2W2n−W1 +W0).

(c) ∑
n
k=0 W2k+1 =

1
3 (W2n+2 +2W2n+1−W2 +W1).

Taking Wn = J(3)n with J(3)0 = 0,J(3)1 = 1,J(3)2 = 1 in the last Proposition, we have the following Corollary which presents linear sum formulas
of third order Jacobsthal numbers.

Corollary 2.22. For n≥ 0, third order Jacobsthal numbers have the following properties.

(a) [6] ∑
n
k=0 J(3)k = 1

3 (J
(3)
n+3− J(3)n+1−1).

(b) ∑
n
k=0 J(3)2k = 1

3 (J
(3)
2n+1 +2J(3)2n −1).

(c) ∑
n
k=0 J(3)2k+1 =

1
3 (J

(3)
2n+2 +2J(3)2n+1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third order Jacobsthal-Lucas numbers (take
Wn = jn with j(3)0 = 2, j(3)1 = 1, j(3)2 = 5).

Corollary 2.23. For n≥ 0, third order Jacobsthal-Lucas numbers have the following properties.

(a) [6] ∑
n
k=0 j(3)k = 1

3 ( j(3)n+3− j(3)n+1−3).

(b) ∑
n
k=0 j(3)2k = 1

3 ( j(3)2n+1 +2 j(3)2n +1).

(c) ∑
n
k=0 j(3)2k+1 =

1
3 ( j(3)2n+2 +2 j(3)2n+1−4).

3. Sum formulas of Generalized Tribonacci Numbers with Negative Subscripts

The following Theorem presents some linear summing formulas (identities) of generalized Tribonacci numbers with negative subscripts.

Theorem 3.1. For n≥ 1, we have the following formulas:

(a) (Sum of the generalized Tribonacci numbers with negative indices) If r+ s+ t−1 6= 0, then
n

∑
k=1

W−k =
−(r+ s+ t)W−n−1− (s+ t)W−n−2− tW−n−3 +W2 +(1− r)W1 +(1− r− s)W0

r+ s+ t−1
.

(b) If (r+ s+ t−1)(r− s+ t +1) 6= 0 then

n

∑
k=1

W−2k =
−(r+ t)W−2n+1 +(r2 + rt + s−1)W−2n +(st− t)W−2n−1 +(1− s)W2 +(t + rs)W1 +(1− rt−2s− r2 + s2)W0

(r+ s+ t−1)(r− s+ t +1)

and
n

∑
k=1

W−2k+1 =
(s−1)W−2n+1− (t + rs)W−2n− (t2 + rt)W−2n−1 +(r+ t)W2 +(1− r2− rt− s)W1 +(t− st)W0

(r+ s+ t−1)(r− s+ t +1)
.
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(c) If (r+ s+ t−1)(r− s+ t +1) 6= 0∧ r+ t = 0∧ s 6= 1 then

n

∑
k=1

W−2k =
−W−2n− tW−2n−1 +W2 + tW1 +(1− s)W0

s−1

and
n

∑
k=1

W−2k+1 =
1

s−1
(−W−2n+1− tW−2n +W1 + tW0) .

Note that (c) is a special case of (b).

Proof.

(a) Using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n⇒W−n =−
s
t
W−(n−1)−

r
t
W−(n−2)+

1
t

W−(n−3)

i.e.

tW−n =W−n+3− rW−n+2− sW−n+1

or

W−n =
1
t

W−n+3−
r
t
W−n+2−

s
t
W−n+1

we obtain

tW−n =W−n+3− rW−n+2− sW−n+1

tW−n+1 =W−n+4− rW−n+3− sW−n+2

tW−n+2 =W−n+5− rW−n+4− sW−n+3

...

tW−2 =W1− r×W0− s×W−1

tW−1 =W2− r×W1− s×W0.

If we add the above equations by side by, we get

n

∑
k=1

W−k =
−(rW−n−1 + s(W−n−1 +W−n−2)+ t(W−n−1 +W−n−2 +W−n−3)−W2 +(r−1)W1 +(r+ s−1)W0)

r+ s+ t−1
.

(b) and (c) Using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n

i.e.

sW−n+1 =W−n+3− rW−n+2− tW−n

we obtain

sW−2n+1 =W−2n+3− rW−2n+2− tW−2n

sW−2n+3 =W−2n+5− rW−2n+4− tW−2n+2

...

sW−3 =W−1− rW−2− tW−4

sW−1 =W1− rW0− tW−2.

If we add the equations by side by, we get

s
n

∑
k=1

W−2k+1 = (−W−2n+1 +W1 +
n

∑
k=1

W−2k+1)− r(−W−2n +W0 +
n

∑
k=1

W−2k)− t(
n

∑
k=1

W−2k). (3.1)

Similarly, using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n

i.e.

sW−n+1 =W−n+3− rW−n+2− tW−n
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we obtain

sW−2n =W−2n+2− rW−2n+1− tW−2n−1

sW−2n+2 =W−2n+4− rW−2n+3− tW−2n+1

...

sW−6 =W−4− rW−5− tW−7

sW−4 =W−2− rW−3− tW−5

sW−2 =W0− rW−1− tW−3.

If we add the above equations by side by, we get

s
n

∑
k=1

W−2k = (−W−2n +W0 +
n

∑
k=1

W−2k)− r(
n

∑
k=1

W−2k+1)− t(W−2n−1−W−1 +
n

∑
k=1

W−2k+1).

Since

W−1 = (− s
t
W0−

r
t
W1 +

1
t

W2).

it follows that

s
n

∑
k=1

W−2k = (−W−2n +W0 +
n

∑
k=1

W−2k)− r(
n

∑
k=1

W−2k+1)− t(W−2n−1− (− s
t
W0−

r
t
W1 +

1
t

W2)+
n

∑
k=1

W−2k+1). (3.2)

Then, solving system (3.1)-(3.2) the required results of (b) and (c) follow.

Note that (c) of the above theorem can be written as follows: If r+ t = 0∧ s 6= 1 then

n

∑
k=1

W−2k =
−W−2n + rW−2n−1 +W2− rW1 +(1− s)W0

s−1

and
n

∑
k=1

W−2k =
−W−2n + rW−2n−1 +W2− rW1 +(1− s)W0

s−1
.

Next, we present several sum formulas (identities).
Taking r = s = t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.2. If r = s = t = 1 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =

1
2 (−3W−n−1−2W−n−2−W−n−3 +W2−W0) .

(b) ∑
n
k=1 W−2k =

1
2 (−W−2n+1 +W−2n +W1−W0) .

(c) ∑
n
k=1 W−2k+1 =

1
2 (−W−2n−W−2n−1 +W2−W1) .

From the above Proposition, we have the following Corollary which gives linear sum formulas of Tribonacci numbers (take Wn = Tn with
T0 = 0,T1 = 1,T2 = 1).

Corollary 3.3. For n≥ 1, Tribonacci numbers have the following properties.

(a) [13] ∑
n
k=1 T−k =

1
2 (−3T−n−1−2T−n−2−T−n−3 +1).

(b) ∑
n
k=1 T−2k =

1
2 (−T−2n+1 +T−2n +1).

(c) ∑
n
k=1 T−2k+1 =

1
2 (−T−2n−T−2n−1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above Proposition, we have the following Corollary which gives linear sum formulas of
Tribonacci-Lucas numbers.

Corollary 3.4. For n≥ 1, Tribonacci-Lucas numbers have the following properties:

(a) ∑
n
k=1 K−k =

1
2 (−3K−n−1−2K−n−2−K−n−3).

(b) ∑
n
k=1 K−2k =

1
2 (−K−2n+1 +K−2n−2).

(c) ∑
n
k=1 K−2k+1 =

1
2 (−K−2n−K−2n−1 +2).

Taking r = 2,s = 1, t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.5. If r = 2,s = 1, t = 1 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =

1
3 (−4W−n−1−2W−n−2−W−n−3 +W2−W1−2W0) .

(b) ∑
n
k=1 W−2k =

1
3 (−W−2n+1 +2W−2n +W1−2W0) .

(c) ∑
n
k=1 W−2k+1 =

1
3 (−W−2n−W−2n−1 +W2−2W1) .
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From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order Pell numbers (take Wn = P(3)
n

with P(3)
0 = 0,P(3)

1 = 1,P(3)
2 = 2).

Corollary 3.6. For n≥ 1, third-order Pell numbers have the following properties.

(a) ∑
n
k=1 P(3)

−k = 1
3 (−4P(3)

−n−1−2P(3)
−n−2−P(3)

−n−3 +1).

(b) ∑
n
k=1 P(3)

−2k =
1
3 (−P(3)

−2n+1 +2P(3)
−2n +1).

(c) ∑
n
k=1 P(3)

−2k+1 =
1
3 (−P(3)

−2n−P(3)
−2n−1).

Taking Wn = Q(3)
n with Q(3)

0 = 3,Q(3)
1 = 2,Q(3)

2 = 6 in the last Proposition, we have the following Corollary which gives linear sum formulas
of third-order Pell-Lucas numbers.

Corollary 3.7. For n≥ 1, third-order Pell-Lucas numbers have the following properties.

(a) ∑
n
k=1 Q(3)

−k =
1
3 (−4Q(3)

−n−1−2Q(3)
−n−2−Q(3)

−n−3−2).

(b) ∑
n
k=1 Q(3)

−2k =
1
3 (−Q(3)

−2n+1 +2Q(3)
−2n−4).

(c) ∑
n
k=1 Q(3)

−2k+1 =
1
3 (−Q(3)

−2n−Q(3)
−2n−1 +2).

From the last Proposition, we have the following Corollary which presents linear sum formulas of third-order modified Pell numbers (take
Wn = E(3)

n with E(3)
0 = 0,E(3)

1 = 1,E(3)
2 = 1).

Corollary 3.8. For n≥ 1, third-order modified Pell numbers have the following properties.

(a) ∑
n
k=1 E(3)

−k = 1
3 (−4E(3)

−n−1−2E(3)
−n−2−E(3)

−n−3).

(b) ∑
n
k=1 E(3)

−2k =
1
3 (−E(3)

−2n+1 +2E(3)
−2n +1).

(c) ∑
n
k=1 E(3)

−2k+1 =
1
3 (−E(3)

−2n−E(3)
−2n−1−1).

Taking r = 0,s = 1, t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.9. If r = 0,s = 1, t = 1 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =−2W−n−1−2W−n−2−W−n−3 +W2 +W1.

(b) ∑
n
k=1 W−2k =−W−2n+1 +W1.

(c) ∑
n
k=1 W−2k+1 =−W−2n−W−2n−1 +W2.

Taking Wn = Pn with P0 = 1,P1 = 1,P2 = 1 in the last Proposition, we have the following Corollary which gives linear sum formulas of
Padovan numbers.

Corollary 3.10. For n≥ 1, Padovan numbers have the following properties.

(a) ∑
n
k=1 P−k =−2P−n−1−2P−n−2−P−n−3 +2.

(b) ∑
n
k=1 P−2k =−P−2n+1 +1.

(c) ∑
n
k=1 P−2k+1 =−P−2n−P−2n−1 +1.

From the last Proposition, we have the following Corollary which presents linear sum formulas of Perrin numbers (take Wn = En with
E0 = 3,E = 0,E2 = 2).

Corollary 3.11. For n≥ 1, Perrin numbers have the following properties.

(a) ∑
n
k=1 E−k =−2E−n−1−2E−n−2−E−n−3 +2.

(b) ∑
n
k=1 E−2k =−E−2n+1.

(c) ∑
n
k=1 E−2k+1 =−E−2n−E−2n−1 +2.

Taking Wn = Sn with S0 = 0,S1 = 0,S2 = 1 in the last Proposition, we have the following Corollary which gives linear sum formulas of
Padovan-Perrin numbers.

Corollary 3.12. For n≥ 1, Padovan-Perrin numbers have the following properties.

(a) ∑
n
k=1 S−k =−2S−n−1−2S−n−2−S−n−3 +1.

(b) ∑
n
k=1 S−2k =−S−2n+1.

(c) ∑
n
k=1 S−2k+1 =−S−2n−S−2n−1 +1.

If r = 0,s = 2, t = 1 then (r+ s+ t−1)(r− s+ t +1) = 0 so we can’t use Theorem 3.1 (b) and (c). In other words, the method of the proof
Theorem 3.1 (b) and (c) can’t be used to find ∑

n
k=0 W2k and ∑

n
k=0 W2k+1. Therefore we need another method to find them which is given in

the following Theorem.

Theorem 3.13. If r = 0,s = 2, t = 1 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =

1
2 (−3W−n−1−3W−n−2−W−n−3 +W2 +W1−W0) .

(b) ∑
n
k=1 W−2k =−W−2n+1 +W−2n +(W1−W0)+(W2−W1−W0)n.

(c) ∑
n
k=1 W−2k+1 =

1
2 (W−2n+1−3W−2n−W−2n−1 +(W2−W1 +W0)+2(−W2 +W1 +W0)n).
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Proof.

(a) Taking r = 0,s = 2, t = 1 in Theorem 3.1 (a) we obtain (a).
(b) and (c) Proof can be done as in the proof of Theorem 2.13. Induction also can be used for the proof.

From the last Theorem, we have the following Corollary which gives sum formula of Pell-Padovan numbers (take Wn = Rn with R0 = 1,R =
1,R2 = 1).

Corollary 3.14. For n≥ 1, Pell-Padovan numbers have the following property:

(a) ∑
n
k=1 R−k =

1
2 (−3R−n−1−3R−n−2−R−n−3 +1) .

(b) ∑
n
k=1 R−2k =−R−2n+1 +R−2n−n.

(c) ∑
n
k=1 R−2k+1 =

1
2 (R−2n+1−3R−2n−R−2n−1 +1+2n).

Taking Wn =Cn with C0 = 3,C = 0,C2 = 2 in the last Theorem, we have the following Corollary which gives sum formulas of Pell-Perrin
numbers.

Corollary 3.15. For n≥ 1, Pell-Perrin numbers have the following property:

(a) ∑
n
k=1 C−k =

1
2 (−3C−n−1−3C−n−2−C−n−3−1)

(b) ∑
n
k=1 C−2k =−C−2n+1 +C−2n−3−n

(c) ∑
n
k=1 C−2k+1 =

1
2 (C−2n+1−3C−2n−C−2n−1 +5+2n)

Taking r = 0,s = 1, t = 2 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.16. If r = 0,s = 1, t = 2 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =

1
2 (−3W−n−1−3W−n−2−2W−n−3 +W2 +W1) .

(b) ∑
n
k=1 W−2k =

1
2 (−W−2n+1 +W1) .

(c) ∑
n
k=1 W−2k+1 =

1
2 (−W−2n−2W−2n−1 +W2) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of Jacobsthal-Padovan numbers (take Wn = Qn
with Q0 = 1,Q1 = 1,Q2 = 1).

Corollary 3.17. For n≥ 1, Jacobsthal-Padovan numbers have the following properties.

(a) ∑
n
k=1 Q−k =

1
2 (−3Q−n−1−3Q−n−2−2Q−n−3 +2) .

(b) ∑
n
k=1 Q−2k =

1
2 (−Q−2n+1 +1) .

(c) ∑
n
k=1 Q−2k+1 =

1
2 (−Q−2n−2Q−2n−1 +1) .

Taking Wn = Dn with D0 = 3,D1 = 0,D2 = 2 in the last Proposition, we have the following Corollary which gives linear sum formulas of
Jacobsthal-Perrin numbers.

Corollary 3.18. For n≥ 1, Jacobsthal-Perrin numbers have the following properties.

(a) ∑
n
k=1 D−k =

1
2 (−3D−n−1−3D−n−2−2D−n−3 +2) .

(b) ∑
n
k=1 D−2k =

−1
2 D−2n+1.

(c) ∑
n
k=1 D−2k+1 =

1
2 (−D−2n−2D−2n−1 +2) .

Taking r = 1,s = 0, t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 3.19. If r = 1,s = 0, t = 1 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =−2W−n−1−W−n−2−W−n−3 +W2.

(b) ∑
n
k=1 W−2k =

1
3 (−2W−2n+1 +W−2n−W−2n−1 +W2 +W1−W0) .

(c) ∑
n
k=1 W−2k+1 =

1
3 (−W−2n+1−W−2n−2W−2n−1 +2W2−W1 +W0) .

From the above Proposition, we have the following Corollary which gives linear sum formulas of Narayana numbers (take Wn = Nn with
N0 = 0,N1 = 1,N2 = 1).

Corollary 3.20. For n≥ 1, Narayana numbers have the following properties.

(a) ∑
n
k=1 N−k =−2N−n−1−N−n−2−N−n−3 +1.

(b) ∑
n
k=1 N−2k =

1
3 (−2N−2n+1 +N−2n−N−2n−1 +2) .

(c) ∑
n
k=1 N−2k+1 =

1
3 (−N−2n+1−N−2n−2N−2n−1 +1) .

Taking r = 1,s = 1, t = 2 in Theorem 3.1, we obtain the following Proposition.

Proposition 3.21. If r = 1,s = 1, t = 2 then for n≥ 1 we have the following formulas:

(a) ∑
n
k=1 W−k =

1
3 (−4W−n−1−3W−n−2−2W−n−3 +W2−W0).

(b) ∑
n
k=1 W−2k =

1
3 (−W−2n+1 +W−2n +W1−W0) .

(c) ∑
n
k=1 W−2k+1 =

1
3 (−W−2n−2W−2n−1 +W2−W1) .
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Taking Wn = Jn with J0 = 0,J1 = 1,J2 = 1 in the last Proposition, we have the following Corollary which gives linear sum formulas of third
order Jacobsthal numbers.

Corollary 3.22. For n≥ 1, third order Jacobsthal numbers have the following properties.

(a) ∑
n
k=1 J(3)−k = 1

3 (−4J(3)−n−1−3J(3)−n−2−2J(3)−n−3 +1).

(b) ∑
n
k=1 J(3)−2k =

1
3 (−J(3)−2n+1 + J(3)−2n +1).

(c) ∑
n
k=1 J(3)−2k+1 =

1
3 (−J(3)−2n−2J(3)−2n−1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third order Jacobsthal-Lucas numbers (take
Wn = j(3)n with j(3)0 = 2, j(3)1 = 1, j(3)2 = 5).

Corollary 3.23. For n≥ 1, third order Jacobsthal-Lucas numbers have the following properties.

(a) ∑
n
k=1 j(3)−k = 1

3 (−4 j(3)−n−1−3 j(3)−n−2−2 j(3)−n−3 +3).

(b) ∑
n
k=1 j(3)−2k =

1
3 (− j(3)−2n+1 + j(3)−2n−1).

(c) ∑
n
k=1 j(3)−2k+1 =

1
3 (− j(3)−2n−2 j(3)−2n−1 +4).
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2011.
[17] A. Scott, T. Delaney, Jr. V. Hoggatt, The Tribonacci sequence, Fibonacci Quart., 15(3) (1977), 193–200.
[18] A.G Shannon, A.F. Horadam, Some properties of third-order recurrence relations, Fibonacci Quart., 10(2) (1972), 135-146.
[19] A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quart., 15(3) (1977), pp. 268 and 275.
[20] N.J.A. Sloane, The on-line encyclopedia of integer sequences. Available: http://oeis.org/
[21] Y. Soykan, Matrix sequences of Tribonacci and Tribonacci-Lucas numbers, (2018), arXiv:1809.07809v1 [math.NT] .
[22] Y. Soykan, Linear summing formulas of generalized Pentanacci and Gaussian generalized Pentanacci numbers, Journal of Advanced in Mathematics

and Computer Science, 33(3) (2019), 1-14.
[23] Y. Soykan, On summing formulas of generalized Hexanacci and Gaussian generalized Hexanacci numbers, Asian Research Journal of Mathematics,

14(4) (2019), 1-14.
[24] Y. Soykan, On summing formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers, Advances in Research, 20(2) (2019), 1-15.
[25] Y. Soykan, On generalized Third-Order Pell numbers, Asian Journal of Advanced Research and Reports, 6(1) (2019), 1-18.
[26] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118–120.
[27] C. C. Yalavigi, A Note on ‘Another Generalized Fibonacci Sequence’, Math. Student. 39 (1971), 407–408.
[28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart., 10(3) (1972), 231–246.
[29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci., 8(39) (2014), 1947-1955.
[30] M. E. Waddill, Using matrix techniques to establish properties of a generalized Tribonacci sequence (in Applications of Fibonacci Numbers, Volume 4,

G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: pp. 299-308, 1991.
[31] M. E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart., (1992), 9-20.


	Introduction
	Sum formulas of Generalized Tribonacci Numbers with Positive Subscripts
	Sum formulas of Generalized Tribonacci Numbers with Negative Subscripts

