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Abstract
Spectral properties of analytic families of compact operators on a Hilbert space are studied. The results obtained
are then used to establish that an analytic family of self-adjoint compact operators on a Hilbert space H , which
commute with their derivative, must be functionally commutative.
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1. Preliminaries
In [6], Stuart Goff studied analytic hermitian function matrices which commute with their derivative on some real interval I, i.e,
A(t)A′(t) = A′(t)A(t) for all t ∈ I. He obtained as a main result that these matrices are functionally commutative on I, i.e.,

A(s)A(t) = A(t)A(s)

for all s, t ∈ I [[6], Theorem 3.6].
Subsequently, in [5], Jean-Claude Evard while studying the nonlinear differential equation

A(t)
dA(t))

dt
=

dA(t))
dt

A(t), t ∈Ω,

where Ω is an open interval in R and A is a differentiable map from Ω into the C-Banach space Mn of all n×n matrices (αi, j),
with αi, j ∈ C for i, j ∈ {1, · · · ,n}, was led to consider the more general problem where Ω is an open connected subset of a
Banach space on R or C. In his paper Evard generalized Goff’s theorem in([5], Theorem 4.3) and summarizes the history and
motivations behind the problem on matrix functions commuting with their derivative from 1950 to 1982. It also suggests further
paths of investigations such as the one of interest to us, indeed our main result, Theorem 3, extends the final dimensional result
of Goff [6] to the infinite-dimensional situation of compact self-adjoint operators on a Hilbert space.

In this paper, we study analytic families of compact self-adjoint operators, on a complex Hilbert space, which commute
with their derivative on some real interval I. Our main result establishes that these operators must be functionally commutative
on I, that is,

A(s)A(t) = A(t)A(s)
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for all s, t ∈ I, extending the main result of [6] and [5] from the case of matrices to the infinite dimensional situation of operators
on a Hilbert space. Indeed, Stuart Goff studied the case of Hermitian function matrices which commute with their derivative in
[6] and Jean-Claude Evard extended Goff’s result to matrix functions defined on an open subset of a normed space in [5].

We recall that B(H ) denotes the Banach algebra of all bounded operators on the complex Hilbert space H and by
definition the spectrum of T, denoted by SpT , is the set of λ ∈ C such that T −λ I is not invertible in B(H ). In this paper
A(t) will denote an analytic family of compact self-adjoint operators on a complex Hilbert space and defined on a real
interval I = (a,b) with a < 0 < b. Let λ be an eigenvalue of A(0). In fact, more generally A(t) can be an analytic family of
bounded self-adjoint operators on H with the property that λ is an isolated point of the spectrum SpA(0), and such that the
λ−eigenspace of A(0) is finite-dimensional. Let D be a closed disk centered at λ such that SpA(0)∩D = {λ}. It follows
that, for t sufficiently small, SpA(t)∩ γ = /0 where γ = ∂D is the boundary of D. For such t, we have the orthogonal Riesz
projections

P =
1

2πi

∫
γ

(ξ I−A)−1dξ

with range H (t), depending analytically on t, such that P(0) is the orthogonal projection of H onto the λ−eigenspace of
A(0).

We have the following important result in the general setting of a Banach algebra. Let f be an analytic function from
a domain D of C into the algebra of compact operators K (X) on a Banach space X and let λ0 ∈ D, α0 ∈ Sp f (λ0) with
α0 6= 0. Suppose α0 is an eigenvalue of multiplicity one, or equivalently that the Riesz projection associated to the null space
N ( f (λ0)1−α0I) has rank one. Then there exist r, δ > 0 such that |λ −λ0| < δ implies that Sp( f (λ ))∩B(α0,r) contains
only one eigenvalue α(λ ). What can be said about α? In this particular case it is known that α is holomorphic on B(λ0,δ ). A
proof of the next theorem is given in [1], pp 59-60.

Theorem 1.1 (Holomorphic Variation of Isolated Spectral Values). Let f be an analytic function from a domain D of C into a
Banach algebra U . Suppose there exists λ0 ∈ D, α0 ∈ Sp f (λ0) and r,δ > 0 such that |λ −λ0|< δ implies that λ ∈ D and
that Sp( f (λ ))∩B(α0,r) contains only one point α(λ ). Then α is holomorphic in a neighbourhood of λ0.

A more general discussion about the behaviour of isolated parts of the spectrum is dealt with in [2], Chapter 10. Another
source of interest on this topic is [8], Chapter XII, where a proof of the analyticity of discrete eigenvalues in the nondegenerate
case for analytic families of operators is given. We recall that a point λ ∈ Sp(A) is called discrete if λ is isolated and its
associated Riesz projection Pλ is finite-dimensional; if Pλ is one-dimensional, we say that λ is a nondegenerate eigenvalue.These
results are contained in the Kato-Rellich theorem ([8], Chapter III, p.15). If A(z) is an operator depending analytically on a
complex parameter z near z = 0 and σ0 is a component of Sp(A(0)), then the Riesz projection P(z) will still be defined for
sufficiently small z, and will represent an idempotent depending analytically on z. Our main result will be based essentially on
the possibility of decomposing an operator like A(z) into a sum ∑ µkPk(z), where the Pk(z) are mutually orthogonal analytic
projections, i.e. (Pk(z)Pl(z) = 0 for k 6= l), such that A(z)Pk(z) = Pk(z)A(z). It is a spectral decomposition with the added
condition of analyticity. For a more complete and comprehensive modern reference for spectral theory we refer the reader to
[3], Chapter VIII.

2. Self-Adjoint Compact Operators on a Hilbert Space

It is well known that self-adjoint n× n matrices can be diagonalized, i.e. can be written as ∑
k
α=1 λα Pα where the Pα are

self-adjoint orthogonal projections and the λα are real numbers. This result can be extended to self-adjoint compact operators
on a Hilbert space. A proof of the next theorem is given in [1], pp 25-26.

Theorem 2.1 (Spectral Theorem for Self-Adjoint Compact Operators on a Hilbert Space). Let H be a Hilbert space and let T
be a self-adjoint compact operator on H . Let {λk}k≥1 be the discrete set of nonzero eigenvalues of T. Also let E0 = N (T )
and Ek = N (T −λkI), for k ≥ 1. Then we have the following properties:

(i) for k ≥ 0 the closed subspaces Ek are orthogonal and their Hilbertian direct sum is H . Moreover, if Pk denotes the
self-adjoint projection on Ek we have T Pk = PkT for all k,

(ii) the series ∑k≥1 λkPk converges in norm in B(H ) and we have

T = ∑
k≥1

λkPk.



Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative — 11/12

3. Analytic self-adjoint compact operators on a Hilbert space
The proof of the following lemma is suggested by the argument used in the proof of Theorem 3.5 of [5]. Here z ∈ I where I is
an interval in R. As in [5], we say that A(t) commutes with its derivative on a real interval I if it satisfies the commutation
equation

A(t)
dA(t)

dt
=

dA(t)
dt

A(t), t ∈ I,

that we write simply as

A(t)A′(t) = A′(t)A(t), t ∈ I.

Lemma 3.1. Let A(t) be an analytic family of self-adjoint compact operators on a Hilbert space H which commute with its
derivative. Then the projections associated to the eigenvalues of A(t) commute with their derivative.

Proof. Let t ∈ I such that A′(t)A(t) = A(t)A′(t) and

SpA(t)⊂
∞⋃

n=1

(C−Γi),

where Γi is a simple contour which does not meet SpA(t). Then as in the proof of Theorem 3.5 of [5],

Pk(t) =
1

2πi

∫
Γk

(z−A(t))−1dz,

commutes with its derivative

P′k(t)) =
1

2πi

∫
Γk

(z−A(t))−1(−A′(t))(z−A(t))−1)dz,

because

A(t)A′(t) = A′(t)A(t)

and Γk is compact (so differentiation inside the integral sign is justified).

Evard proved in [4] that if P(t) commute with its derivative, its range ran(P(t)) is not only invariant under their derivative,
but also constant. Indeed he proved in Theorem 6 of the same paper that the family P(t) itself is constant.

Lemma 3.2. If a family of projections P(t) commutes with its derivative on an interval I ∈ R, then P(t) is constant.

Proof. Since P2(t) = P(t), it follows by differentiation of the two sides that

P′(t)P(t)+P(t)P′(t) = P′(t).

Now by hypothesis

P′(t)P(t) = P(t)P′(t)

so we get

2P′(t)P(t) = P′(t),

which by multiplication by P(t) yields

2P′(t)P(t) = P′(t)P(t).

Hence, P′(t)P(t) = 0. Going back to the relation

2P′(t)P(t) = P′(t),

we conclude that P′(t) = 0, which means P(t) is constant.
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Using the previous results, we establish our main result in the next theorem.

Theorem 3.3. Let A(t) be an analytic family of compact self-adjoint operators on a Hilbert space H. Suppose that A(t)
commutes with its derivative for all t ∈ I ⊂ R. Then A(t) is functionally commutative, i.e. A(s)A(t) = A(t)A(s) for all s, t ∈ I.

Proof. By Theorem 2, any compact self-adjoint operator on a Hilbert space admits a spectral decomposition, so we can write,

A(t) =
∞

∑
k=1

λk(t)P(t)

where {λk} ⊂ SpA(t) and P2(t) = P(t). Moreover by Lemma 2, the projections P(t) commute with their derivative, and by
Lemma 3 they are constant. Hence,

A(t) =
∞

∑
i=1

λi(t)Pi

where P2
i = Pi are constant projections. Consequently we get,

A(s) =
∞

∑
i=1

µi(t)Pi

and

A(s)A(t) = A(t)A(s) for alls, t ∈ I.

Note. If T is a compact operator, then its point spectrum is nonempty and countable, which may not hold for noncompact
(normal) operators. But this is not the main role played by compact operators in the Spectral Theorem - we can deal with an
uncountable weighted sum of projections. What is actually special with a compact operator is that a compact normal operator
not only has a nonempty point spectrum but it has enough eigenspaces to span H. That makes the difference, since normal
(noncompact) operators may have an empty point spectrum or it may have eigenspaces but not enough to span the whole space
H. However, the Spectral Theorem survives the lack of compactness if the point spectrum is replaced with the whole spectrum
(which is never empty). Such an approach for the general case of the Spectral Theorem (i.e. for normal, not necessarily compact
operators) requires measure theory. This is a work that we intend to undertake in a future investigation.
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